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Figure 1: We present a novel approach for the prediction of volumetric avatars of human heads from a small number of

example views. Our model enables view synthesis for unseen identities and is able to generate faithful facial expressions.

Abstract

Acquisition and rendering of photo-realistic human

heads is a highly challenging research problem of particu-

lar importance for virtual telepresence. Currently, the high-

est quality is achieved by volumetric approaches trained in

a person-specific manner on multi-view data. These mod-

els better represent fine structure, such as hair, compared

to simpler mesh-based models. Volumetric models typically

employ a global code to represent facial expressions, such

that they can be driven by a small set of animation param-

eters. While such architectures achieve impressive render-

ing quality, they can not easily be extended to the multi-

identity setting. In this paper, we devise a novel approach

for predicting volumetric avatars of the human head given

just a small number of inputs. We enable generalization

across identities by a novel parameterization that combines

neural radiance fields with local, pixel-aligned features ex-

tracted directly from the inputs, thus side-stepping the need

for very deep or complex networks. Our approach is trained

in an end-to-end manner solely based on a photometric re-

rendering loss without requiring explicit 3D supervision.

We demonstrate that our approach outperforms the existing

state of the art in terms of quality and is able to generate

faithful facial expressions in a multi-identity setting.

1. Introduction

The acquisition and rendering of photo-realistic human

heads is a highly challenging research problem with high

significance for virtual telepresence applications. Human

heads are challenging to model and render due to their com-

plex geometry and appearance properties: sub-surface scat-

tering of skin, fine-scale surface detail, thin-structured hair,

and the human eyes as well as the teeth are both specular

and translucent. Most existing approaches require complex

and expensive multi-view capture rigs (with up to hundreds

of cameras) to reconstruct even a person-specific model of

a human head.

Currently, the highest-quality approaches are those that

employ volumetric models rather than a textured mesh,

since they can better learn to represent fine structures on

the face like hair, which is critical to achieving a photo-

realistic appearance. These volumetric models [13] typi-

cally employ a global code to represent facial expressions

or only work for static scenes [16, 9]. While such archi-

tectures achieve impressive rendering quality, they can not

easily be adapted to a multi-identity setting. A global code,

as is used to control expression, is not sufficient for model-

ing identity variation across subjects. There has been sig-

nificant progress of late in using implicit models to repre-

sent scenes and objects. These models have the advantage
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that the scene is represented as a parametric function in a

continuous space, which allows for fine-grained inference

of geometry and texture [22]. But these approaches can not

model view-dependent effects and it is challenging to repre-

sent for example hair with a textured surface. The approach

of Sitzmann et al. [27] can generalize across objects, but

only at low resolutions and can only handle purely Lamber-

tian surfaces, which is not sufficient for human heads. De-

spite the recent success and advantages of such scene repre-

sentation approaches, there are several limitations. In par-

ticular, most of the above methods train a network to model

only a single scene or object. Methods which can generate

multiple objects are typically limited in terms of quality and

resolution of the predicted texture and geometry.

We present pixel-aligned volumetric avatars (PVA), a

novel framework for the estimation of a volumetric 3D

avatar from only a few input images of a human head.

Our approach is able to generalize to unseen identities at

test time. Methods such as Scene Representation Networks

(SRNs) [25], which generate a set of weights from a global

image encoding (i.e., a single latent code vector per image),

have difficulty generalizing to local changes (e.g., facial ex-

pressions) and fail to recover high-frequency details even

when these are visible in the input images. This is because

the global latent code summarizes information in the im-

age and must discard some information to generate a com-

pact encoding of the data. To improve generalization across

identities, we instead parameterize the volumetric model via

local, pixel-aligned features extracted from the input im-

ages.

We show that our model can synthesize novel views for

unseen identities and expressions while preserving high fre-

quency details in the rendered avatar. To summarize, our

contribution are:

• We introduce a novel pixel-aligned radiance field that

predicts implicit shape and appearance from a sparse

set of posed images.

• Our model generalizes to unseen identities and expres-

sions at test time.

• We demonstrate state of the art performance on novel

view synthesis compared to recent approaches.

2. Related Work

Generating avatars from images has a long history in

computer vision and graphics. Traditional methods employ

mesh-based representations and physics-inspired models of

how faces deform and interact with light, while more re-

cent approaches employ deep learning to overcome some of

the limitations of classical techniques. We discuss several

classes of methods below and compare them to ours.

Mesh-based Approaches Active Appearance Models

(AAMs) was among the first face models capable of mod-

eling facial expressions, although it was originally used as

a statistical joint shape and appearance model for human

faces [4], and later extended to 3D faces [2]. Deep Ap-

pearance Models [12, 17] create a 3D morphable model us-

ing deep networks to create an extremely high-quality and

driveable face model. However mesh-based methods strug-

gle with rendering thin structures like hair, which are criti-

cal for realistic human face rendering. Mesh-based methods

have been extended in a number of ways to improve qual-

ity and expressiveness, though they typically share similar

disadvantages. Notably, mesh-based models require a fixed

topology, which poses problems for modeling hair, which

can vary dramatically from one person to another. Further-

more, mesh-based methods have hard triangle boundaries

which can look unpleasant for soft features. Finally, opti-

mizing meshes to match the appearance of arbitrary shapes

is still a difficult problem. Efforts in differentiable raster-

izers [3, 11, 8, 6] have shown impressive results in gener-

ating meshes from single and multi-view images without

3D supervision, but the generated meshes usually have re-

strictions in terms of topology and fail to capture high fre-

quency details. Furthermore, they are limited in terms of

the textures that can be represented. In contrast, our method

is able to capture arbitrary topology (as seen in expressions

and hairstyles) and captures high frequency texture details

better, since it is able to use pixel-level information more

efficiently.

Image-based Methods Recently, there has been a great

deal of progress in high-quality controllable face synthesis

[7, 30, 1]. However, these image-based methods work with

mostly frontal faces and have difficulty explicitly control-

ling the viewpoint and expression of the synthesized im-

ages. Without giving the network a notion of 3D space, it is

difficult for the methods to generalize without many train-

ing images. StyleRig [28] enables parameteric control of

StyleGAN generated imagery. However, the results are not

multi-view consistent and the approach does not work on

real images.

Voxel-based Methods Methods such as [33, 19, 26] learn

an intermediate 3D voxel grid of features and a 3D-2D pro-

jection operation to synthesize images. Transformable bot-

tleneck networks [21] present a method that learns a bottle-

neck of 3D features that can be manipulated directly to en-

able a variety of applications. However, the primary prob-

lem with these voxel-based approaches are their inability to

scale to higher resolution due to memory restrictions. We

eschew the problem of capacity by learning a multi-layer

perceptron (MLP) that directly translates 3D locations and

pixel-aligned features to color and occupancy.
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Figure 2: Overview of the proposed approach. Given a target viewpoint and a set of conditioning images, our novel approach

employs local, pixel-aligned features that are extracted from the inputs to condition a multi-identity neural radiance field.

Volume rendering is employed to generate an image of the subject from the target viewpoint.

Implicit Methods Works such as [31] use explicit 3D in-

formation during training. PIFu/PIFuHD [22, 23] models

human bodies with an implicit function evaluated at the

depth of a point. It is capable of rendering human bod-

ies with high quality. A key insight is to use pixel-aligned

features to retain high-frequency detail. We leverage this

insight, but our method does not require 3D supervision.

Scene Representation Networks (SRNs) [27] model scenes

with a learned SDF and do not require 3D supervision.

We do not assume a well-defined surface through an SDF

but rather a semi-transparent representation that can better

model hair and thin structures. The authors of [18, 5] learn

an implicit representation of geometry from natural images

in an unsupervised manner to allow novel view synthesis.

These methods are limited in the degree of multi-view con-

sistency that can be achieved. TextureFields [20] learn to

transfer textures from an exemplar image to a source mesh

to allow novel view synthesis. We eschew the need for a

mesh at inference time by learning an implicit representa-

tion of geometry.

Neural Rendering Many neural rendering models have

been proposed recently that better represent thin structures,

like hair and clothes. Neural volumes [13] and NeRF [16]

are two recently introduced methods that model objects

with a semitransparent volume and have shown the abil-

ity to model thin structures well. Neural Volumes can also

model dynamic scenes. NeRF-W [14] extends the work of

[16] to a conditional setting to models scenes under dif-

ferent lighting with same underlying geometry. However,

these methods fail to generalize to novel identities. Inspired

by insights from NeRF and PIFu, we demonstrate a frame-

work that handles multiple identities by relying on pixel-

aligned features. GRAF [24] learns a conditional radiance

field in an unsupervised manner by disentangling a global

shape and appearance code which limits its ability to model

local shape and texture deformations. Other works focus on

speeding up NeRF using a sparse Octree structure [10]. We

refer the readers to the recent STAR of Tewari et al. [29] for

an in-depth treatment of recent neural rendering methods.

3. Approach

We present a Pixel-aligned Volumetric avatars(PVA). An

implicit model of faces that is learned from a multi-view

image collection, see Fig. 2. Our model can generate

novel views of unseen identities from one or more exam-

ple images. The framework consists of two main compo-

nents. The first is a shallow convolutional encoder-decoder

(Nfeat) network that takes as input one or more images (vi)

of a person from a known viewpoint {Ki, [R|t]i} and pro-

duces pixel-aligned feature maps f (i). The second compo-

nent is a radiance field network (N ) that converts 3D lo-

cation and pixel-aligned features to color and opacity. To

render the radiance field, we march along the camera ray of

each pixel in the target view j, defined by {Kj , [R|t]j}, ac-

cumulating the color and occupancy produced by N at each
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point. We train our approach based on a multi-identity train-

ing corpus using gradient descent. To this end, we minimize

the L2 loss between predicted images and the correspond-

ing ground truth.

3.1. Pixelaligned Radiance Fields

We employ a pixel-aligned scene representation modeled

as a neural network. Concretely, for a conditioning view

vi ∈ ❘
h×w×3 we define functions

f (i) = Nfeat(vi) (1)

{c, σ} = N (φ(X), fX) (2)

where φ(X) : ❘3 → ❘
6×l is the positional encoding of

X ∈ ❘
3 as in [16] with 2 × l different basis functions,

f (i) ∈ ❘
h×w×d is the feature map of vi, d the number

of feature channels, h and w are image height and width,

and fX ∈ ❘d
′

is the aggregated image feature associated

with the point X as explained in the next section. For each

feature map f (i), we obtain f
(i)
X

∈ ❘d by projecting 3D

point X along the ray using camera intrinsic and extrinsic

parameters K,R, t of that particular viewpoint,

xi = Π(X;Ki [R|t]i), (3)

f
(i)
X

= F(f (i);xi) (4)

where Π is a perspective projection function to camera pixel

coordinates, and F(f, x) is the bilinear interpolation of f at

pixel location x.

3.2. Volume Rendering

For each given training image vj with camera intrinsics

Kj and rotation and translation Rj , tj , the predicted color

of a pixel p ∈ R
2 for a given viewpoint in the focal plane of

the camera and center r0 ∈ R
3 is obtained by marching rays

into the scene using the camera-to-world projection matrix,

P
−1 = [Ri|ti]

−1
K

−1
i with the direction of the rays given

by,

d =
P

−1p− r0

‖P−1p− r0‖
. (5)

Note that in order to help the network focus its capacity

on modeling the content of the scene, all camera extrinsics

are relative to the computed head pose, which is found via

traditional head registration.

We then accumulate the radiance and opacity along the

ray r(t) = r0 + td for t ∈ [tnear, tfar] as defined in

NeRF [15] as follows:

Irgb(p) =

∫ tfar

tnear

T(t)σ(r(t))c(r(t),d)dt (6)

where,

T(t) = exp

(

−

∫ t

tnear

σ(r(s))ds

)

(7)

In practice we uniformly sample a set of ns points t ∼
[tnear, tfar]. We set X = r(t) and use the quadrature rule

to approximate the integral. We also define Iα(p) as,

Iα(p) =

ns
∑

i=1

αi

i
∏

j=1

(1− αj) (8)

where αi = 1− exp(−δiσi) with δi being the distance be-

tween the i+ 1-th and i-th sample point along the ray.

3.3. Multiview Feature Aggregation

A critical component of our method is how to fuse pixel-

aligned features f
(i)
X

from multiple images to help the net-

work best use this information.

3.3.1 Fixed number of conditioning views

In a multi-view setting with known camera viewpoints and

a fixed number of conditioning views we can aggregate the

features by simple concatenation [13]. Concretely, for n

conditioning images {vi}
n
i=1 with corresponding rotation

and translation matrices given by {Ri}
n
i=1 and {ti}

n
i=1. We

obtain n features {f
(i)
X

}ni=1 for each point X as in Eq. 3 and

generate the final feature as follows,

fX = [f
(1)
X

⊕

f
(2)
X
...
⊕

f
(n)
X

]

where
⊕

represents concatenation along the depth dimen-

sion. This preserves feature information from all the view-

points, leaving the MLP to figure out how to best combine

and employ the conditioning information.

3.3.2 Variable number of conditioning views

The more interesting use case is to make the model agnos-

tic to viewpoint and number of conditioning views. Sim-

ple concatenation as above is insufficient in this case, since

we do not know the number of conditioning views a pri-

ori, leading to different feature dimensions during inference

time. To summarize features for a multi-view setting we

need a permutation invariant function G : Rn×d → Rd

such that for any permutation ψ,

G([f (1), f (2), ..., f (n)]) = G([fψ(1), fψ(2), ..., fψ(n)]).

A simple permutation invariant function for feature ag-

gregation is the mean of the sampled features (as employed

in PIFu [22]). This is a reasonable aggregation procedure

when we have depth information during training. However,

since we have inherent depth ambiguity (since the points

are projected onto the feature image before sampling) we

find that this kind of aggregation produces artifacts. Fig. 9

shows an example of this behavior.
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This simple mean of image features does not consider

camera information, which may help the network use the

conditioning information more effectively. To inject view-

point information into the feature, we learn another net-

work Ncf : Rd+7 → Rd
′

that takes the feature vector

and the camera information (ci) and produces a camera-

summarized feature vector. These modified vectors are then

averaged for all conditioning views as follows

f
′(i)
X

= Ncf (f
(i)
X
, ci) (9)

fX =
1

n

n
∑

i=1

f
′(i)
X

(10)

The advantage of this approach is that the camera-

summarized features can take likely occlusions into account

before the feature average is performed. The camera infor-

mation is encoded as a 4D rotation quaternion and 3D cam-

era position.

3.4. Background Model

To avoid learning parts of the background in the scene

representation, we define a background estimation network:

Nbg : Rnc :→ Rh×w×3 to learn a per-camera fixed back-

ground. Particularly, we predict the final image pixels as

Ip = Irgb + (1− Iα)Ibg (11)

with Ibg = Ībg +Nbg(Ci) for camera Ci where Ībg is an

initial estimate of the background extracted using inpaint-

ing. These inpainted backgrounds are often noisy leading

to ‘halo’ effects around the head of the person (Fig. 7). Our

background estimation model learns the residual to the in-

painted background. This has the advantage of not needing

a high capacity network to account for the background.

3.5. Color Correction Model

The different camera sensors have a slightly different re-

sponse to the same incident radiance despite the fact that

they are the same camera model. If nothing is done to ad-

dress this, the intensity differences end up baked into the

scene representation N , which will cause the image to un-

naturally brighten or darken from certain view points. To

address this, we learn a per-camera bias and gain value.

This allows the system to have an ‘easier’ way to explain

this variation in the data.

3.6. Loss Function

For ground truth target images vj , we train both the ra-

diance field and feature extraction network using a simple

photo-metric reconstruction loss:

Lphoto = ‖Ipj − vj‖2 .

Note, our approach is trained in an end-to-end manner

solely based on this 2D re-rendering loss without requiring

explicit 3D supervision.

4. Experiments

We describe the setup used to capture the training data,

describe the baselines used for comparison, and perform

quantitative as well as qualitative comparisons.

4.1. Training Setup

Our capture setup consists of 53 cameras positioned

around the subject. For each subject, we record a set of

30 expressions with a hair-cap. And a neutral expression

with no hair-cap. Each frame is fit with a 3D face model

including rigid head pose which we use to center the vol-

ume between different identities and expressions. We do not

use any of the mesh information during training. We train

our network on 50 subjects using 40 viewpoints and test on

held out viewpoints. Additionally, for the expression-based

model we train our network on 25 expressions and test on

the remaining expressions. During training, we divide each

target image into a 16×16 grid, and randomly sample a ray

from each grid location for a total of 256 rays per training

image. Further, we sample ns = 128 points along the ray

while clamping the sample points to lie in a unit volume

cube. We train our model with a batch-size of 4. Our model

takes around 24 hours to converge on 4 Nvidia Tesla V100s.

4.2. Baselines

In the following, we introduce the baselines we employ

for the qualitative and quantitative comparisons.

Reality Capture: Is a commercially available software

based on classical structure-from-motion (SFM) and multi-

view stereo (MVS), that reconstructs a 3d model from a set

of captured images.

Neural Volumes: Neural volumes (NV) is a voxel-based

inference method that globally encodes dynamic images of

a scene and decodes a voxel grid and a warp field that rep-

resents the scene.

cNeRF: We trained a variant of NeRF with global iden-

tity conditioning (cNeRF). Particularly, we employ a VGG-

network to extract a single 64D feature vector for each train-

ing identity and condition NeRF additionally on this input.

4.3. Qualitative Comparisons

We demonstrate novel view synthesis of unseen identi-

ties using our pixel aligned radiance fields, see Fig. 3. As

can be seen, given only two views as input, our approach

predicts volumetric avatars that can be viewed from a large

number of novel viewpoints.

We also compare our method against three baselines that

can handle unseen identities and do not use explicit 3D su-

pervision for training in Fig. 4. In all baselines and for

our approach, we employ only two images of the novel

identities as input to compute the reconstruction. As can

be seen, our approach outperforms all baselines in terms
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Figure 3: We demonstrate novel view synthesis of unseen identities using pixel aligned radiance fields. All volumetric avatars

were computed given only two views as input.

Figure 4: We compare our approach against three baselines: Reality Capture (a), Neural Volumes (b), Globally conditioned

NeRF (c). We also show our result (d) and the ground truth identity (e). As can be seen, our approach outperforms the other

methods in terms of completeness and level of reconstructed detail by a large margin.

(a) (b) (c)

Figure 5: Generated alpha/normals/avatar in the canonical viewpoint using (a) eNerf and (b) Ours for (c) the ground truth

identity. Note, for this experiment the eNeRF baseline has seen all identities and expressions at training time. Our approach

not only better captures the identity of the person, but also the facial expression, while not having seen these specific identities

at training time. We attribute this better generalization behaviour to our pixel-aligned features.

11738



SSIM (↑) MSE(↓) LPIPS (↓)

cNeRF 0.7663 1611.0112 4.3775

NV 0.8027 1208.36 3.1112

Ours 0.8889 383.71 1.7392

Table 1: Quantitative comparison of our approach (Ours) to

reconstructions from, Neural Volumes (NV), and Globally

conditioned NeRF (cNeRF).

of completeness and the amount of reconstructed details.

Our method produces more complete reconstructions than

Reality Capture, which would require many more views

of the person to obtain a good reconstruction. In addi-

tion, our approach also leads to more detailed reconstruc-

tion than the globally conditioned Neural Volumes and cN-

erf approaches. We attribute this better generalization to

the use of the pixel-aligned features, that better inform the

model at test time.

4.4. Quantitative Comparisons

We compare the performance of our method with NV

and cNeRF baselines (we omit RC because it fails to cap-

ture the complete head shape) in Table 1 on three common

metrics from the literature (SSIM, LPIPS[32] and MSE).

We note that our framework outperforms all the baselines

by a considerable margin.

4.5. Analysis

We observe that methods that use global identity encod-

ing like Neural Volumes and cNeRF do not generalize well

to unseen identities as these methods are designed to be

trained in a scene specific manner. Particularly, we notice

in cNeRF that the facial features are smoothed out and

some of the local details of unseen identities (like facial

hair in row 3 and 4, and hair length in row 2) are lost,

since this model relies heavily on the learned global prior.

Reality Capture fails to capture the structure of the head

as there are no priors built into the SfM+MVS framework,

leading to incomplete reconstructions. A large number of

images would be required to faithfully reconstruct a novel

identity using RC (we refer to the supplementary document

for additional analysis). Neural volumes is able to generate

better textures because of the generated warp field which

accounts for some degree of local information. However,

since neural volume uses an encoder-decoder architecture,

with the encoder using a global encoding, it projects test

time identities into the nearest training time identity leading

to inaccurate avatar predictions. Our proposed framework

is able to reconstruct volumetric heads from just two

example viewpoints, along with the structure of the hair.

Expression Information We present additional qualita-

tive comparison on the ability of our model to better cap-

ture expression information in Fig. 5. We train another

Num. Views SSIM (↑) MSE(↓) LPIPS (↓)

1 0.8467 1467.15 2.9486

2 0.8596 1314.17 2.6451

3 0.8632 1285.67 2.5582

4 0.8739 1191.08 2.3606

5 0.8753 1181.32 2.3167

Table 2: Quantitative evaluation of the number of required

conditioning views.

conditional NeRF baseline for expressions. Particularly,

since cNeRF cannot generalize to novel identities, we train

a NeRF model conditioned on a one-hot expression code

and one-hot identity information (eNeRF) on test time iden-

tities (unseen for our method). We observe in this case that

despite having seen all the identities during training eNeRF

fails to generalize to dynamic expressions for multiple iden-

tities. Since our method leverages the local features for con-

ditioning, it is better able to capture dynamic effects on a

specific identity (both geometry and texture).

Normals Texture View added Normals Texture View added

Figure 6: Predicted texture with respect to the number of

views. In each row, we add one additional conditioning

view (top to bottom). As can be seen, each added input

increases the reconstruction quality.

5. Ablation Studies

In the following, we perform several ablation studies to

explore different aspects of our approach in more detail.

How does the quality of the generated images change

with respect to the number of example images? Fig. 6

shows view extrapolation for unseen identities. Particularly,

since our model learns shape priors from training identities,

the predicted normals are consistent with the input identity.
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Normals Texture Conditioning 
image

Normals Texture Conditioning 
image

(a) (b)

Figure 7: Background ablation. (a) Without background

estimation (b) Ours. Our learned background model leads

to better reconstruction results.

Conditioning 
View Hourglass network UNet Shallow Conv

Figure 8: We demonstrate the sensitivity of the pixel-

aligned features to the choice of the employed feature ex-

tractor. As can be seen, our shallow convolutional network

leads to better reconstructions.

However, when extrapolating to extreme views (1st row),

artifacts appear in the parts of the face that are unseen in the

conditioning images. This is because of the inherent depth

ambiguity due to projection of the sample points onto the

feature image. We see that adding just the second view

already significantly reduces these artifacts as the model

now has more information regarding features from differ-

ent views and can thus reason about depth. In practice, we

find that we can achieve a large degree of view extrapola-

tion with just two conditioning views. Tab. 2 provides the

corresponding quantitative evaluation.

Is camera information required in addition to the ex-

tracted features? Fig. 9 demonstrates the need to incor-

porate camera information in the extracted features. Par-

ticularly, without the camera information, we see a large

degree of streaking in the generated images due to incon-

sistent averaging of information from different viewpoints

(particularly in row 1 and 2).

Are the results sensitive to the employed feature extrac-

tion network? U-Net and hour glass networks are some

of the popular feature extraction networks used in recent

works [23]. However, we find that in our setting a shallow

encoder-decoder architecture serves as the best feature ex-

traction networks (Fig. 8) as it preserves more of the local

information without having to encode all the pixel level in-

formation into a bottleneck layer.

Mean 
features

Ours Conditioning views

Figure 9: Feature summarization. As can be seen,

our camera-aware feature summarization strategy leads to

higher quality results than using simple mean pooling.

6. Limitations

While we have demonstrated compelling results for pre-

dicting volumetric avatars of human heads from just a small

number of example images, our approach is still subject to

a few limitations that can be addressed in follow-up work:

(1) Our approach currently has limited extrapolation capa-

bilities in terms of completely unobserved regions, e.g., the

back of the head will not be reconstructed in detail if only

front views are provided as example images. The incor-

poration of a global prior could improve generalization in

such scenarios. (2) Our approach can currently not be ap-

plied to in-the-wild data. This has multiple reasons: First,

we require the absolute head pose at test time for each of

the example images. Second, our training corpus does not

capture the spectrum of illumination and background vari-

ation of in-the-wild images. This could be tackled in the

future by a more sophisticated training corpus or by data

augmentation strategies.

7. Conclusion

We presented PVA - a novel approach for predicting vol-

umetric avatars of the human head given only a small num-

ber of images as input. To this end, we devised a neural ra-

diance field that leverages local, pixel-aligned features that

can be extracted directly from the inputs, thus side-stepping

the need for very deep or complex neural networks. Our ap-

proach is trained in an end-to-end manner solely based on

a photometric re-rendering loss without requiring explicit

3D supervision. We have demonstrated that our approach

outperforms the existing state of the art in terms of quality

and that we are able to generate faithful facial expression

in a multi-identity setting. We hope that this approach will

serve as a simple and strong baseline for future work.
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