
Learning Delaunay Surface Elements for Mesh Reconstruction

Marie-Julie Rakotosaona

LIX, Ecole Polytechnique, IP Paris

mrakotos@lix.polytechnique.fr

Paul Guerrero

Adobe Research

guerrero@adobe.com

Noam Aigerman

Adobe Research

aigerman@adobe.com

Niloy Mitra

UCL, Adobe Research

n.mitra@ucl.ac.uk

Maks Ovsjanikov

LIX, Ecole Polytechnique, IP Paris

maks@lix.polytechnique.fr

Abstract

We present a method for reconstructing triangle meshes

from point clouds. Existing learning-based methods for

mesh reconstruction mostly generate triangles individually,

making it hard to create manifold meshes. We leverage

the properties of 2D Delaunay triangulations to construct

a mesh from manifold surface elements. Our method first

estimates local geodesic neighborhoods around each point.

We then perform a 2D projection of these neighborhoods

using a learned logarithmic map. A Delaunay triangula-

tion in this 2D domain is guaranteed to produce a mani-

fold patch, which we call a Delaunay surface element. We

synchronize the local 2D projections of neighboring ele-

ments to maximize the manifoldness of the reconstructed

mesh. Our results show that we achieve better overall man-

ifoldness of our reconstructed meshes than current meth-

ods to reconstruct meshes with arbitrary topology. Our

code, data and pretrained models can be found online:

https://github.com/mrakotosaon/dse-meshing

1. Introduction

Surface reconstruction from a given set of points (e.g.,

a scan), has a long history in computational geometry and

computer vision [5, 39]. A version of the problem requires

triangulating a given point cloud to produce a watertight and

manifold surface. A key challenge is to handle different

sampling conditions while producing well-shaped triangles

and preserving the underlying shape features.

A good surface reconstruction algorithm should satisfy

the following requirements: (i) produce a connected, man-

ifold and watertight triangulation; (ii) require no case-

specific parameter tuning; (iii) preserve sharp features;

(iv) handle point sets with non-uniform distribution; and

PointTriNet IER Meshing ours
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Figure 1. We present a method for mesh reconstruction from point

clouds. We combine Delaunay triangulations with learned local

parameterizations to obtain a higher-quality mesh than the current

state-of-the-art. Bad (non-manifold) triangles are shown in red.

Our method is robust to uniformly (top) and non-uniformly (bot-

tom) sampled points.
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(v) generalize to handle a variety of shapes.

A widely-used pipeline for surface reconstruction con-

sists in first computing an implicit surface representation

[31] and then extracting a triangulation using a volumet-

ric method such as Marching Cubes [36]. Methods in this

category often require additional information (e.g., oriented

normals), while, crucially, the resulting triangulations may

not preserve the original point set and can oversmooth sharp

features. On the other hand, methods from computational

geometry, e.g., alpha shapes [20], ball pivoting [6], etc., can

respect the original point set, come with theoretical guar-

antees and produce triangulations with desirable properties

(e.g., good angle distribution). These approaches, however,

typically require careful parameter selection and rely on

dense, uniformly sampled point sets.

More recently, learning-based approaches have been de-

veloped to extract a triangulation without case-specific pa-

rameter selection. Most of such techniques focus on ro-

bustly predicting a signed distance field or simply an oc-

cupancy map, from which a mesh is subsequently extracted

using volumetric triangulation [12, 23, 41]. Only two recent

methods [42, 35] produce a triangulation while respecting

the original point set, but they ignore the quality of the tri-

angles or have trouble reconstructing sharp features.

We present a method that combines the advantages of

classical methods with learning-based data priors. Our

method is based on blending together Delaunay surface el-

ements, which are defined by a 2D Delaunay triangulation

of a local neighborhood in the point set after projecting it to

a planar 2D domain. For this, we propose an approach that

predicts a local projection via learned logarithmic maps and

uses them to propose likely triangles using local Delaunay

triangulations. Figure 1 shows an example reconstructions

using our method. We evaluate our method on a benchmark

of diverse surface point sets, and provide a comparison with

both classical and learning-based methods to show the ad-

vantages of the proposed approach. Through these exten-

sive experiments, we demonstrate that our method gener-

alizes across diverse test sets, is more robust than classical

approaches, and produces higher-quality triangulations than

recent learning-based methods.

2. Related Works

Computing a triangulation of a given point set is one of

the most fundamental problems in computational geometry,

computer vision, and related disciplines. We review meth-

ods most closely related to ours and refer to recent surveys

[32, 44, 5, 39] for a more in-depth discussion.

A commonly-used pipeline for surface reconstruc-

tion [29, 13] consists of computing the implicit surface rep-

resentation using, e.g., a signed distance function. A mesh

can then be extracted with standard methods such as Pois-

son surface reconstruction [31] combined with Marching

Cubes [36] or Dual Contouring [30]. Such approaches work

well in the presence of oriented normals and dense/uniform

point sets, but do not necessarily preserve the given points

in the final mesh and lead to over-smoothing or loss of de-

tails (see [5] for a detailed discussion).

We were inspired by classical methods based on Delau-

nay triangulations [8, 33, 9, 25, 17], alpha shapes [20] or

ball pivoting [6]. Such approaches can be shown to recover

the shape mesh topology [2] under certain sampling con-

ditions (an excellent overview of such approaches is pro-

vided in [16]). Unlike implicit-based methods, approaches

in this category, e.g., [6, 1, 10] typically preserve the input

point set. However, they can often fail to produce satisfac-

tory results for coarsely sampled shapes or in the presence

of complex geometric features. Another more robust, but

computationally more expensive, approach capable of fea-

ture preservation was introduced in [18], based on iterative

optimisation using optimal transport.

2.1. Learning for surface reconstruction

To address the challenges mentioned above, recent meth-

ods have aimed to learn surface reconstruction priors from

data. The majority of existing learning-based methods in

this area use a volumetric shape representation. For exam-

ple, meshes can be computed by predicting voxel grid occu-

pancy [24, 37] or via a differentiable variant of the marching

cubes [34], or more recently using generative models for ex-

plicit or implicit surface prediction [12, 23, 41, 38]. While

these methods can produce accurate results they solve a dif-

ferent problem to ours and do not compute a mesh over the

given point set. Instead, we focus on directly meshing a set

of input points, which provides better control over the fi-

nal shape and avoid over-smoothing, often associated with

implicit surface-based techniques.

Other methods have also aimed to compute a surface by

deforming a simple template while updating its connectiv-

ity [45, 40], fitting parameterized [26, 46] or mesh-aware

patches [3], performing local (e.g., convex) shape decom-

position. Majority of these schemes are restricted to partic-

ular shape topology or category and again do not necessarily

guarantee point set preservation.

2.2. Learning mesh connectivity

More directly, our work fits within the line of recent ef-

forts aimed explicitly at learning the mesh connectivity for a

given shape geometry. An early approach, Scan2Mesh [14]

developed a graph-based formulation to generate triangles

in a mesh. However, the method uses a costly volumetric

representation, does not aim to produce manifold meshes,

and specializes on particular shape categories.

Most closely related to ours are two very recent ap-

proaches aimed directly to address the point set triangu-

lation problem. The first method PointTriNet [42] works
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Figure 2. Overview of Delaunay Surface Element (DSE) generation. For any point pi in an input point cloud, we select the k-nearest

neighbors and extract the subset of points that are in the geodesic neighborhood of pi, using a learned classification network. A projection

network then estimates a log map projection of the points into a 2D embedding, where we can apply Delaunay Triangulation to get a DSE.

on point clouds and, similarly to ours, uses a local patch-

based network for predicting connectivity. However, this

technique processes triangles independently and only pro-

motes watertight and manifold structure through soft penal-

ties. The second method was presented in [35], and es-

timates local connectivity by predicting the ratio between

geodesic and Euclidean distances. This is a powerful sig-

nal, which is then fed into a non-learning based selection

procedure, which aims to finally output a coherent mesh.

In contrast to both of these approaches [42, 35], we for-

mulate the meshing problem as learning of (local) Delaunay

triangulations. Starting from the restricted Voronoi diagram

based formulation proposed in [10] we use data-driven pri-

ors to directly learn local projections to create local Delau-

nay patches. As a result, locally our network guarantees the

coherence of the computed mesh. As we demonstrate be-

low, learning Delaunay surface elements, both leads to bet-

ter shaped triangles (i.e., more desirable angle distribution)

and improves the overall manifold and watertight nature of

the computed triangle mesh.

3. Method

We assume to be given an point set P ∈ R
N×3 sampled

from a surface Ŝ. Our goal is to create a mesh M = (P ′, T )
that approximates Ŝ, by choosing a new triangulation T

that triangulates a subset P ′ ⊂ P of the input point cloud.

It is easy to obtain a high-quality triangulation for any set

of points that lies in 2D, via Delaunay triangulation [15].

However, when the set of points lies in 3D, finding a tri-

angulation is a much harder problem. A simple solution

is to locally project points to an estimated tangent plane of

the surface, resulting in local 2D embeddings where we can

apply a Delaunay triangulation. However, this is problem-

atic near complex geometry, such as edges or thin structures

and is sensitive to an imperfect estimation of the tangent

plane. Logarithmic maps [19, 28], or log maps for short,

provide a systematic solution to this problem by providing

local geodesic charts of the ground truth surface that are

good local parameterizations of complex geometry.

The core idea of our method is therefore to combine De-

launay triangulations and learned log maps to create small

triangulated patches that we call Delaunay Surface Ele-

ments (DSEs). Each DSE approximates a small part of the

surface and is guaranteed to have a manifold triangulation.

Since neighboring log maps may disagree, especially in re-

gions of high curvature, we align them locally with non-

rigid transformations of the 2D parameterizations of each

DSE. DSEs enable us to maintain the good properties of De-

launay Triangulations, like manifoldness and high-quality

triangles, within a data-driven approach, that learns to ex-

tract local geodesic patches and parameterize them with a

the log map, thereby increasing robustness and reconstruc-

tion accuracy. Our approach proceeds in four steps (the first

two steps are illustrated in Figure 2):

1. For each point pi ∈ P , a network estimates a geodesic

ball, by extracting a 3D patch P i ∈ R
k×3 made up of

its k-geodesically-closest points.

2. For each 3D point patch P i, a second network approx-

imates the log map parameterization, to get a 2D em-

bedding of the patch, denoted U i ∈ R
k×2.

3. We improve the consistency of neighboring patches

by aligning their 2D embeddings, giving us improved

patch embeddings Û i, which we then use to compute

the Delaunay Surface Elements.

4. The Delaunay Surface Elements vote for candidate tri-

angles, which are then aggregated iteratively into a

mesh.

3.1. Constructing Local Embeddings

The first two steps in our method are aimed at creating

a patch P i around each point pi and a local 2D embedding

Ui of the points inside the patch. These two ingredients will

later be used to compute a 2D Delaunay triangulation that

defines a Delaunay Surface Element.

Geodesic patch construction Given the point pi and its

K nearest neighbors Qi, we train a network to find a subset

of k points from these neighbors that are geodesically clos-

est to pi on the ground truth surface. In our experiments, we

set K = 120 and k = 30. The network is trained to model

24



a function cj := fθ([q
i
j , d

i
j ] | Q

i) that classifies each point

qij in Qi as being one of the k geodesically closest points if

cj = 1 or not if cj = 0. We concatenate the Euclidean dis-

tance dij to the center point as additional input. The network

is parameterized by θ, conditioned on the point set Qi, and

models a function from 3D position to classification value.

We train this network with an L2 loss ‖cj −σ(ĉj)‖
2, where

ĉj is the ground classification and σ is the sigmoid func-

tion. To obtain a fixed number of k points, we select the

top-k points based on their predicted labels cij , giving the

(geodesic) patch P i.

Log map estimation We train a second network to com-

pute the log map coordinates of each point in P i, denoted

as U i ∈ R
k×2. The network is trained to model a func-

tion ui
j := gφ([p

i
j , d

i
j ] | P

i), where φ denotes the network

parameters and pj are the 3D coordinates of a point in P i.

These coordinates are concatenated with the Euclidean dis-

tance dij to the center point. The network outputs the log

map coordinates ui
j in U i, consisting of the Euclidean co-

ordinates of the log map with an origin at the center point

of the patch. Like the classification network, this network

is conditioned on the input point set P i. We use the sum of

two losses: a loss that penalizes the difference to the ground

truth coordinates and one that penalizes only the radial com-

ponent of the coordinates, i.e. the geodesic distance to the

center. Since log map coordinates are defined only up to

a 2D rotation around the central point, we use the Kabsh

algorithm [7] to find a 2D rotation and/or reflection that op-

timally aligns the predicted log map and the ground truth

log map before computing the loss: ‖RU i − Û i‖2
2
, where

Û i is the ground truth and R is the optimal rigid transforma-

tion computed by the Kabsh algorithm. Note that the Kabsh

algorithm is differentiable. Our second loss measures the

error in the radial component:
∑

j(‖u
i
j‖2 − ‖ûi

j‖2)
2. This

loss measures how well the network can recover geodesic

distances regardless of the orientation in the patch.

Network architecture When approximating log maps

with a network, continuity is an important property. If the

estimated mapping from 3D space to the 2D log map param-

eterization is not continuous, the resulting Delaunay trian-

gulation may have flipped or intersecting triangles. We base

our architecture on FoldingNet [47] that produces continu-

ous mappings from an input to an output domain. Unlike the

original implementation, however, which maps from 2D to

3D, we want to map from 3D to 2D. Our experiments have

shown that this network architecture leads to more contin-

uous results than a PointNet-based architecture. We have

also found that it improves the performance of our classifi-

cation network, where we also adopt an architecture based

on FoldingNet. Since we train our network on individual

Log maps Rigid alignment Clustering Averaging

Figure 3. Log map alignment. To improve the consistency of log

maps, we align corresponding points in neighboring log maps with

rigid transformations. The resulting sets of corresponding points

are then clustered to remove outliers and averaged, giving us 2D

point embeddings that are more consistent with their neighbors.

patches, we can train on relatively small datasets, where

each shape provides a large number of patches as training

samples. More details on the architecture are provided in

the supplementary.

3.2. Combining Delaunay Surface Elements

At this point, we have a local 2D parameterization for

each patch. We could use these local parameterizations

to construct a triangulation of the patch by Delaunay-

triangulating it. However, each patch may be rather incon-

sistent with neighboring patches, in the sense that if two

patches P i, P j share three points a, b, c, the Delaunay tri-

angulation of U i may produce the triangle (a, b, c) while

the triangulation of U j may not, since the points are laid

out differently in each of the two parameterization. An ex-

ample is shown in Figure 4, right. Hence, the final pair of

steps is aimed at improving the consistency between the dif-

ferent patch parameterizations of neighboring DSEs before

combining all DSEs into the final mesh M .

Log map alignment In 2D, Delaunay triangulation are

guaranteed to produce a manifold triangulation. However,

we produce independent 2D parametrizations for each DSE.

Large differences in the parameterization of neighboring

DSEs may make their triangulations incompatible (i.e., the

union of their triangles may be non-manifold). In this step,

we locally align the log maps to one another to ensure better

consistency, without requiring the construction of a global

parameterization. Namely, a point pk ∈ P from the original

point cloud has an image in the log maps of each patch that

contains that point. We denote this set of all log map images

of point pk as Rk. We say U i, U j are neighbor patches if

they both have a point in the same Rk. Denote the image

of pk in the log map of each of the two patches as U i (pk),
U j (pk), respectively.

Our approach is illustrated in Figure 3. Considering the

patch U i, we align the neighboring patch U j to it, by tak-

ing all corresponding points and using the Kabsch algo-
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triangle is member of three DSEs triangle is member of one DSE

Figure 4. Triangle membership count. Delaunay Surface Elements

are shown as colored triangles. Triangles that are part of exactly

three DSEs, like the dotted red triangle on the left, result in a man-

ifold triangulation. Triangles that are part of less than three DSEs,

like the triangle on the right, result in non-manifold triangulations.

We use this property to define a triangle confidence when selecting

triangles.

rithm to find the rigid motion that best aligns (in the least-

squares sense) the points based on their correspondences

U i (pk) ↔ U j (pk). Repeating this for all neighboring

patches aligns them all to U i. We then define the set Ri
k

to be the set of images of the point pk in the aligned log

maps and cluster Ri
k with DBSCAN [21]. The largest clus-

ter corresponds to the largest agreement between neighbor-

ing patches on the 2D coordinates ui
k of point pk in patch i.

We average all 2D coordinates in the cluster to update ui
k,

and weigh the average based on the distance of each point

in Ri
k to the center of its patch. Applying this process to all

2D coordinates U i in each patch, we get a corrected log map

Û i for each patch, giving us DSEs that are more consistent

with the neighboring DSEs.

Delaunay triangulation Given a patch P i and its 2D pa-

rameterization Û i, we can compute a Delaunay Triangula-

tion on the 2D points ui
j . If Û i approximates the log map,

this gives us a manifold triangulation of the 3D patch that

locally approximates the ground truth surface Ŝ. We de-

fine a Delaunay Surface Element D := (P i, T i) as the set

of Delaunay triangles T i corresponding to the Voronoi cell

centered at pi. These triangles form an umbrella with pi as

its central point. We restrict our triangulation to triangles

that include the central point, as triangulations are increas-

ingly inconsistent with neighboring DSEs as the distance

from the central point increases.

Triangle selection Combining the triangles of all DSEs

yields a set of candidate triangles that we use in a final tri-

angle selection step to obtain a near-manifold mesh. We

base our selection criteria on our DSEs by observing that

a triangulation is manifold exactly if all triangles are part

of three DSEs (see Figure 4). Therefore, we divide our tri-

angles into three confidence bins. Triangles that appear in

Table 1. Quantitative results on the FAMOUSTHINGI testset. We

compare the percentage of non-watertight edges (NW), the Cham-

fer distance (CD) and normal reconstruction error in degrees (NR).

Method NW (%) CD ∗1
e−2 NR

ball pivoting 25.7 0.524 6.59
PointTriNet [42] 17.2 0.337 6.24

RVE [10] 9.2 0.344 15.71
IER meshing [35] 5.3 0.343 6.30

α-shapes 3% 2.5 0.939 28.50
α-shapes 5% 1.7 1.064 17.69

Ours 0.4 0.326 5.23

three different DSEs will be considered the most likely to

appear in a manifold triangulation. And triangles that ap-

pear only once are considered least likely. Finally, we use

the triangle selection process proposed in [35] to produce a

triangulation based on our priority queue.

4. Results

We evaluate our method by comparing the quality and

accuracy of our reconstructed meshes to the current state-

of-the-art.

Dataset Since our networks are trained on individual

patches, our method is able to train successfully from a

small training set of shapes. Each shape provides a large set

of patches as training samples. We create a dataset with a

total of 91 shapes chosen from Thingi10k [48] and the PCP-

Net [27] dataset, that we call FAMOUSTHINGI, since the

PCPNet dataset contains several shapes that are well-known

in the graphics and vision literature. Each shape is sam-

pled uniformly with 10k points. We compute ground truth

log maps at each point using the recent method by Sharp et

al. [43]. The training set contains 56 of these shapes and the

remaining shapes are used for evaluation. Example shapes

and more details are given in the supplementary.

4.1. Comparison to Baselines

We compare our method to recent state of the art learning

based methods for point-set triangulation, as well as to more

classical methods.

Ball pivoting [6] and α-shapes [20]. These two classic

techniques use the concept of rolling a ball on the surface to

deduce connectivity at points of contact. For ball-pivoting,

the ball radius is automatically guessed as the bounding box

diagonal divided by the square root of the vertex count. For

α-shapes, we report two different choices of the radius pa-

rameter α, as 3% and 5% of the bounding box diagonal.
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α-Shapes (5%) Ball Pivoting RVE PointTriNet IER Meshing Ours

19.1% / 0.26 / 15.4

17.3% / 0.47 / 7.9

16.7% / 0.35 / 7.5

18.3% / 0.47 / 9.2

17.6% / 0.30 / 18.3

10.6% / 0.52 / 8.7

7.9% / 0.37 / 7.6

10.2% / 0.51 / 9.4

2.5% / 0.26 / 14.2

0.4% / 0.46 / 7.0

0.3% / 0.34 / 6.7

2.6% / 0.47 / 8.1

30.7% / 0.31 / 24.4

18.5% / 0.60 / 14.4

12.0% / 0.35 / 9.8

29.2% / 0.69 / 19.7

17.4% / 0.46 / 16.6

53.8% / 0.97 / 9.3

26.7% / 0.49 / 7.7

58.6% / 1.06 / 10.4

0.0% / 0.98 / 10.7

0.0% / 1.25 / 7.2

0.1% / 1.09 / 8.3

0.0% / 2.49 / 11.4

NW / CD (*1e-2) / NR NW / CD (*1e-2) / NR NW / CD (*1e-2) / NRNW / CD (*1e-2) / NRNW / CD (*1e-2) / NRNW / CD (*1e-2) / NR

Figure 5. Qualitative comparison. We compare four meshes reconstructed by our method to the results of five current methods. Non-

manifold triangles are marked in red and we show both the percentage of non-watertight edges (NW) and the Chamfer distance multiplied

by 100 (CD) below each shape. Note that classical non-data-driven methods struggle to separate thin surfaces and data-driven methods

have significantly more non-manifold triangles.

Restricted Voronoi estimation [10] (RVE) This method

is the closest existing baseline to our method. It estimates

Voronoi cells restricted to the surface by projecting local

patches to local tangent planes. Note that this method re-

quires normal information that we estimate from the input

point cloud.

PointTriNet [42] and IER meshing [35] We compare

our method to two recent learning based methods for tri-

angulating point clouds. We retrain PointTriNet on our

dataset. Intrinsic-Extrinsic Ratio Guidance Meshing (IER

meshing), however, needs a larger amount of data to train

and overfits on our dataset. Since it is not patch based, it

needs a larger variety of shapes to train. We use the pre-

trained model provided by the authors, that was trained the

larger ShapeNet dataset.

Metrics We compare to these methods using two metrics

for the mesh quality and two metrics for the mesh accuracy.

As mesh quality measures, we use the percentage of non-

watertight edges (NW) and the standard deviation (Aσ) of

triangle angles in the mesh. Note that due to the triangle

selection step, all the produced edges are manifold (have

one or two adjacent triangles) but the edges can be open.

An angle of 60 degrees corresponds to equilateral triangles,

while skinny triangles have more extreme angles.

As a measure of the surface reconstruction accuracy, we

use the Chamfer Distance [4, 22] (CD) between a dense

point set PM sampled on the reconstructed surface and a
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dense point set P
Ŝ

sampled on the ground truth surface:

CD(PM , P
Ŝ
) =

1

N

∑

pi∈PM

min
qj∈P

Ŝ

‖pi − qj‖2 +

1

N

∑

qj∈P
Ŝ

min
pi∈PM

‖qj − pi‖2

We also compare the normal reconstruction error (NR). At

each vertex of the mesh we measure the angle difference

in degrees between the ground truth normal and the normal

obtained from our reconstructed mesh.

Quantitative Comparison In Table 4, we show a quan-

titative comparison between our method and the baselines.

Our method yields lower chamfer distance, and less non-

manifold edges, showing we both better-approximate the

surface while at the same time outputting a triangulation

with far less non-manifold artifacts. Indeed, only the classic

technique of α-shapes manages to come close to our degree

of manifoldness, at the cost of lower accuracy, due to filling

in concave surface regions (see examples in Figure 5).

In Figure 7, we evaluate the quality of the generated tri-

angles by considering the histogram of triangle angles. The

standard deviation of each method is given next to its name.

Our method yields superior triangle quality to all learning-

based methods, and to all classic techniques except for ball-

pivoting, which achieves better triangle quality by sacrific-

ing manifoldness to a large degree.

Qualitative Comparison We show qualitative results in

Figure 5, on 4 meshes of our FAMOUSTHINGI dataset.

Non-manifold triangles are visualized in red, with the per-

centage of non-manifold triangles, as well as the Cham-

fer distance error, written beneath each result. The fig-

ure gives a very clear visual insight to the numbers from

Table 4: the classic techniques work in a non-adaptive

way which enables them to produce meshes with mostly-

manifold edges, but they cannot handle thin and tight struc-

tures, like the scaffolds of the tower. In contrast, the

learning-based methods are more local and can handle the

concavities in, e.g., the wheel, but fall short on produc-

ing manifold triangulations. Our method, combining the

robustness of classic Delaunay triangulation, with modern,

data-driven learning techniques, manages to produce trian-

gulations that both respect the original fine geometry and

have less non-manifoldness.

We show additional results on five shapes of the

ShapeNet dataset [11] in Figure 6. Compared to the two

data-driven methods PointTriNet and IER Meshing, we im-

prove upon the manifoldness, especially in regions with de-

tailed geometry and high curvature, like the edge of the ta-

ble, or the backrest of the chair. The results show a simi-

lar trend as in our FAMOUSTHINGI dataset. Note that IER

PointTriNet IER Meshing Ours

Figure 6. Qualitative comparison on ShapeNet [11]. We compare

with the two data-driven methods PointTriNet and IER Meshing

on five shapes taken from five different categories of the ShapeNet

dataset. Our approach results in more manifold meshes, especially

in detailed areas like the backrest of the chair.

meshing is trained on the ShapeNet dataset while Point-

TriNet and our method are trained on FAMOUSTHINGI

dataset, demonstrating the ability of our method to gener-

alize to unseen data. We show quantitative and qualitative

results on the ShapeNet dataset in the supplementary.

Limitations Finding a geometrically complex surface,

like on parts of the Eiffel tower in Figure 5, can be diffi-

cult. In such cases, the geodesic neighbors or logmap net-

works may misclassify/misplace some points. Moreover,

thin parts of a model are particularly challenging. We can

handle these cases better than existing works (Lego piece

of Figure 5, or the plane wing in Figure 6. More extreme

cases, like the leafs of a plant, would require training on a

dataset where these cases are more common.

Non uniform sampling We evaluate our method on non

uniformly sampled point clouds. In particular we sam-

ple points following a probability gradient along the y-axis

(horizontal). We observe in Figure 1 (bottom) that our

method performs better than other learning-based baselines.

Note that PointTriNet, IER Meshing and our method have

not been retrained on a non-uniformly sampled dataset. We

provide further evaluation on non uniformly sampled point

clouds in the supplementary.
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Figure 7. Distribution of triangle angles in the reconstructed

meshes. Our method produces better shaped triangles than all

other methods except for ball pivoting which sacrifices mesh man-

ifoldness. We show the angle variance next to each method.

Table 2. Ablation study over the components of our method. Log

map alignment, triangle selection as well as the the log map

parametrization improve manifoldness in the output meshes.

Method NW (%) CD ∗1
e−2 NR

Ours w/o align, select 22.51 0.326 7.26
Ours w/o select 10.98 0.348 6.86

Ours w/o log maps 1.18 0.334 5.93
Ours w/o align 1.07 0.325 5.19

Ours 0.40 0.326 5.22

4.2. Ablation study

We evaluate the impact of each step in our pipeline using

an ablation study, shown in Table 2. We remove one compo-

nent at a time and compute the percentage of non-watertight

edges (NW), Chamfer distance (CD) and normal recon-

struction error (NR) as described before. We first remove

the alignment of the logmaps of the delaunay triangulation,

which results in a slight degradation manifoldness. Next,

we evaluate the efficacy of our triangle selection process

by instead creating a mesh from all triangles in our Delau-

nay Surface Elements. This results in a significant drop in

manifoldness of the triangulation, since we do not achieve

perfect alignment of our logmaps. Dropping both the align-

ment and the selection results in a much more significant

decrease in manifoldness than just removing the selection –

this hints that the alignment is indeed producing more con-

sistent local DSE’s. Lastly, we replace the log maps with

simple 2D projections, to get the local patch parameteri-

zation along the approximated normal vector. Please note

that we still use the learned geodesic neighborhood. Man-

ifoldness deteriorates as well, showing the necessity of our

specific parameterization method. In particular, the 2D pro-

jection parametrization performs poorly for complex shapes

such as the Eiffel tower (NW: 5.59% (w/o logmaps), 2.48%
(Ours)) or Trilego (NW: 5.59% (w/o logmaps) NW: 1.64%
(Ours)) shapes. Note that the Chamfer distance is not sig-

nificantly increased by the removal of any component from

our pipeline, as our method’s locality prevents strong errors

in the surface location by design, due to considering only

the learned geodesic neighborhoods of the surface.

5. Conclusion

We presented Delaunay Surface Elements for robust sur-

face reconstruction from points sets. In the process, we

combine the best of two worlds: 2D Delaunay triangulation

from classical computational geometry which comes with

guarantee about mesh quality and manifoldness; and local

logmaps learned using networks, followed by synchoniza-

tion to get local data-driven 2D projection domains to han-

dle non-planar regions. We demonstrated that the method

can be trained with very limited training data and produces

near-manifold triangulations that respect the original point

set and have a higher mesh quality than the state-of-the-art.

In the proposed method, the final mesh extraction is done

via a non-differentiable growing approach. In the future,

it would be interesting to also learn the triangle selection

via a network. This could enable a truly end-to-end opti-

mization and allow us to optimize for context-specific point

distributions accounting for data-priors (e.g., sharp edges)

and scanner characteristics. Another direction would be to

consider weighted Delaunay triangulations that provide ad-

ditional freedom to local triangulations.
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