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Abstract

Fairness in visual recognition is becoming a prominent

and critical topic of discussion as recognition systems are

deployed at scale in the real world. Models trained from data

in which target labels are correlated with protected attributes

(e.g., gender, race) are known to learn and exploit those

correlations. In this work, we introduce a method for training

accurate target classifiers while mitigating biases that stem

from these correlations. We use GANs to generate realistic-

looking images, and perturb these images in the underlying

latent space to generate training data that is balanced for

each protected attribute. We augment the original dataset

with this generated data, and empirically demonstrate that

target classifiers trained on the augmented dataset exhibit

a number of both quantitative and qualitative benefits. We

conduct a thorough evaluation across multiple target labels

and protected attributes in the CelebA dataset, and provide

an in-depth analysis and comparison to existing literature

in the space. Code can be found at https://github.

com/princetonvisualai/gan-debiasing.

1. Introduction

Large-scale supervised learning has been the driving force

behind advances in visual recognition. Recently, however,

there has been a growing number of concerns about the

disparate impact of these visual recognition systems. Face

recognition systems trained from datasets with an under-

representation of certain racial groups have exhibited lower

accuracy for those groups [9]. Activity recognition mod-

els trained on datasets with high correlations between the

activity and the gender expression of the depicted person

have over-amplified those correlations [46]. Computer vision

systems are statistical models that are trained to maximize

accuracy on the majority of examples, and they do so by ex-

ploiting the most discriminative cues in a dataset, potentially

learning spurious correlations. In this work, we introduce

a new framework for training computer vision models that

aims to mitigate such concerns, illustrated in Figure 1.

One proposed path for building ‘fairer’ computer vision

Figure 1: Training a visual classifier for an attribute (e.g., hat) can be

complicated by correlations in the training data. For example, the presence

of hats can be correlated with the presence of glasses. We propose a dataset

augmentation strategy using Generative Adversarial Networks (GANs) that

successfully removes this correlation by adding or removing glasses from

existing images, creating a balanced dataset.

systems is through a ‘fairer’ data collection process. Works

such as [9, 43] propose techniques for better sampling data to

more accurately represent all people. Creating a perfectly bal-

anced dataset, however, is infeasible in many cases. With the

advances in Generative Adversarial Networks (GANs) [17],

several works propose using generated data to augment

real-world datasets [12, 35, 42]. These methods have been

growing in computational and algorithmic complexity (e.g.,

[35, 42] adding multiple loss functions to GAN training),

necessitating access to a sufficient number of inter-sectional

real-world samples. In contrast, we demonstrate a simple

and novel data augmentation technique that uses a single

GAN trained on a biased real-world dataset.

Illustrative example: Consider our example from Figure 1.

Our goal is to train a visual recognition model that recog-

nizes the presence of an attribute, such as wearing a hat.

Suppose in the real world wearing a hat is correlated with

wearing glasses—for example, because people often wear

both hats and sunglasses outside and take them off inside.

This correlation may be reflected in the training data, and a

classifier trained to recognize a hat may rely on the presence

of glasses. Consequently, the classifier may fail to recognize

a hat in the absence of glasses, and vice versa.

We propose using a GAN to generate more images with

hats but not glasses and images with glasses but not hats,

such that WearingHat is de-correlated from Glasses in

the training data, by making perturbations in the latent space.

Building on work by Denton et al. [14], which demonstrates
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Figure 2: Consider a GAN trained on a biased real-world dataset of faces

where the presence of hats is correlated with the presence of glasses. Naively

moving in a direction that adds glasses also adds a hat (Top). We learn a

direction in the latent space that allows us to add glasses, while not adding a

hat (Bottom). Note that attributes apart from the target attribute can change.

a method for learning interpretable image manipulation di-

rections, we propose an improved latent vector perturba-

tion method that allows us to preserve the WearingHat

attribute while changing the Glasses attribute (Figure 2).

Protected attributes: Our goal is to examine and mitigate

biases of sensitive attributes such as gender expression, race,

or age in visual classifiers. However, visual manipulations or

explicit classifications along these dimensions have the po-

tential to perpetuate harmful stereotypes (see [23]). Hence

in our illustrations, we use Glasses as the protected at-

tribute, as it has a clear visual signal. In the quantitative

experimental results, we report our findings on the more

sensitive protected attributes of gender expression and age.

Contributions: We propose a method for perturbing vectors

in the GAN latent space that successfully de-correlates target

and protected attributes and allows for generating a de-biased

dataset, which we use to augment the real-world dataset. At-

tribute classifiers trained with the augmented dataset achieve

quantitative improvements in several fairness metrics over

both baselines and prior work [35, 36, 41], while maintain-

ing comparable average precision. Furthermore, we analyze

the CelebA [28] attributes with respect to label character-

istics1, discriminability, and skew, and discuss how these

factors influence our method’s performance. We also evalu-

ate our design choices with ablation studies and the results

demonstrate the effectiveness of our augmentation method.2

2. Related Work

De-biasing models: The effect of gender and racial bias

on AI models has been well documented [8, 9, 22, 40, 41].

Models trained on biased data sometimes even amplify the

existing biases [46]. Tools such as AI Fairness 360 [6] and

REVISE [38] surface such biases in large-scale datasets and

enable preemptive analysis. In parallel, various work pro-

pose methods for mitigating unwanted dataset biases from

influencing the model. Oversampling techniques [7, 15] du-

plicate minority samples in imbalanced data to give them

1We observe several discrepancies in the CelebA [28] attribute labels

and categorize the attributes into three categories: inconsistently labeled,

gender-dependent, and gender-independent.
2Code for all our experiments can be found at https://github.

com/princetonvisualai/gan-debiasing.

higher weight in training. Some work propose to mitigate

bias through adversarial learning [40, 45] or through learn-

ing separate classifiers for each protected attribute [33, 41].

Other work improve fairness by introducing constraints [29]

or regularization terms [3] during training. Contrary to these

algorithmic approaches, our work aims to mitigate biases by

training the model with a generated de-biased dataset.

Generating and perturbing images using GANs: Genera-

tive Adversarial Network (GAN) [17] is a popular class of

generative models composed of a generator and a discrimina-

tor trained in an adversarial setting. Over the past few years,

a number of works [18, 24, 25, 27, 34] improved GANs to

generate more realistic images with better stability. Shen et

al. [37] show that the latent space of GANs have semantic

meaning and demonstrate facial attributes editing through la-

tent space manipulation. Denton et al. [14] propose a method

to evaluate how sensitive a trained classifier is to such image

manipulations, and find several attributes that affect a smili-

ing classifier trained on CelebA. Balakrishnan et al. [4] use

GANs to generate synthetic images that differ along specific

attributes while preserving other attributes, and use them to

measure algorithmic bias of face analysis algorithms. Un-

like [4, 14] who use the GAN-generated images to evaluate

models, our work uses these generated images to train better

attribute classification models.

Using GANs to augment datasets: Several works use

GANs to augment datasets for low-shot [20] and long-

tail [48] recognition tasks, whereas our work focuses specifi-

cally on de-biasing classifiers affected by dataset bias. More

related to our work are [12, 35, 36] which leverage GANs to

generate less biased data. Choi et al. [12], given access to a

small, unlabeled, and unbiased dataset, detect bias in a large

and potentially biased dataset, and learn a generator that gen-

erates unbiased data at test time. Sattigeri et al. [35] train a

GAN with a modified loss function to achieve demographic

parity or equality of odds in the generated dataset. Shar-

manska et al. [36] use an image-to-image translation GAN

to generate more minority samples and create a balanced

dataset. While [12, 35, 36] require training a new GAN for

each bias they want to correct, our method uses a single

GAN trained on a biased dataset to augment all attributes.

3. Method

We study a class of problems where a protected at-

tribute is correlated with a target label in the data X , in-

fluencing target label prediction. Let t be the target label

(e.g., WearingHat in the running example from Figure 1)

and g be the protected attribute (e.g., gender expression or

Glasses from our running example) with t, g ∈ {−1, 1}.

To mitigate the effect of unwanted dataset bias, we aim to

generate a balanced set of synthetic images Xsyn where the

protected attribute and target label are de-correlated.
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Figure 3: (Top left) Our latent vector perturbation method. For each z

sampled from the latent space of a trained GAN, we compute z
′ such

that its target attribute score remains the same (according to wt) while

its protected attribute score is negated (according to wg). (Top right) We

add images G(z) and G(z′) to our training set, and train a target attribute

classifier on both the real-world data and the generated de-biased data.

Concretely, let ft be a function from images to binary la-

bels that approximates the target label t, and fg be a function

from images to binary labels that approximates the protected

attribute g. We learn these classifiers in a supervised fashion

with the original data.3 We now want to generate synthetic

data Xsyn with the property that for x ∈ Xsyn:

P [ft(x) = 1|fg(x) = 1] = P [ft(x) = 1] , (1)

such that attributes t and g are de-correlated.

De-biased dataset creation: To create Xsyn, we use a GAN

trained on real images X whose generator G generates a

synthetic image x from a random latent vector z ∈ Z . We

can assign semantic attribute labels to these images using the

learned functions ft(x) and fg(x). However, as the GAN

inherits correlations from its training data, a random sam-

pling of z will produce an Xsyn with similar correlations and

biases as X . Hence, we propose a latent vector perturbation

method that allows us to generate a de-biased Xsyn.

We sample a random set of latent vectors Z ⊂ Z (inherit-

ing the biases) and train classifiers ht, hg : Z → [−1, 1] in

the latent space that approximate ft ◦G and fg ◦G, respec-

tively. That is, we train classifiers ht with input z and output

ft(G(z)), and hg with input z and output fg(G(z)).
Given a vector z, we generate a complementary vector

z
′ with the same (predicted) target label but the opposite

(predicted) protected attribute label, or

ht(z
′) = ht(z), hg(z

′) = −hg(z). (2)

We note that this data generation method is agnostic to the

type of classifier used to compute h.

In our work, we assume that the latent spaces is approx-

imately linearly separable in the semantic attributes, as ob-

served and empirically validated by Denton et al. [14]. In

3ft is equivalent to the baseline classifier in Section 4.1.

this case, ht and hg can be represented as linear models

(hyperplanes) wt and wg with intercepts bt and bg for the

target and protected attributes respectively. We can derive a

closed-form solution for z′ as4

z
′ = z−2

(

wg
T
z+ bg

1− (wg
T
wt)2

)

(

wg − (wg
T
wt)wt

)

. (3)

This latent vector perturbation method is illustrated in Fig-

ure 3 (Top left). A similar idea of hyperplane projection was

presented in Zhang et al. [45], although for a different goal

of adversarial training. The sampling process results in a

complementary image pair:

• x = G(z) with target label ft(G(z)) and protected at-

tribute label fg(G(z))

• x
′ = G(z′) with target label ft(G(z)) and protected at-

tribute label −fg(G(z)),

creating de-biased data Xsyn. We train our target attribute

classifier with X and Xsyn, as shown in Figure 3.

We label the generated images x and x
′ both with ft(x)

because it allows us to capture the target attribute labels bet-

ter than using ft(x) and ft(x
′). It is likely that the accuracy

of ft is higher for the overrepresented group, and x will

more often belong to the overrepresented group and x
′ to the

underrepresented group. However, other design choices are

possible in our approach—for example, we could use ht(z)
and ht(z

′) instead (after thresholding appropriately) or only

use z for which ft(x) = ft(x
′). We compare these different

design choices experimentally in Section 4.2.

Advantages: Our data augmentation method has several

attractive properties:

1. We use a single GAN trained on the biased real-world

dataset to augment multiple target labels and protected

attributes. This is in contrast to prior works like [35, 12]

that require training a GAN for every pair of target and

protected attributes.

2. By augmenting samples z generated from (approxi-

mately) the original data distribution the GAN was trained

on and maintaining their target attribute scores, our

method preserves the intra-class variation of the images.

3. The samples z and z
′ are generated to simulate the inde-

pendence goal of Equation 1. By construction, z′ main-

tains z’s target label ft(G(z)) and takes on the opposite

protected attribute label −fg(G(z)).

4. Our method generalizes to multiple protected attributes

g. We demonstrate how our method can simultaneously

augment two protected attributes in Section 4.3 when we

compare our work to Sharmanska et al. [36].

4Derivations are in the supplementary material. ‖wt‖ = ‖wg‖ = 1.
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Figure 4: Examples of CelebA StraightHair labels. Some of these are

labeled as having StraightHair (1st, 3rd, 5th) and some as not (2nd,

4th, 6th). We deemed this attribute as inconsistently labeled.

4. Experiments

In this section, we study the effectiveness of our data

augmentation method on training fairer attribute classifiers.

We first describe our experiment setup and compare our

results to those of a baseline classifier. We then discuss how

different factors influence our method’s performance, and

finally compare our work to several prior works.

Dataset and attributes categorization: Given the task of

training attribute classifiers that are not dependent on gender

expression, we require a dataset that has target labels, as well

as gender expression labels. CelebA [28] is a dataset with

2,022,599 images of celebrity faces, each with 40 binary at-

tributes labels. We assume the Male attribute corresponds to

gender expression.5 Among the other 39 attributes, we use 26

of them that have between 1% and 99% fraction of positive

images for each gender expression.6 However, we noticed

several discrepancies among the attribute labels, and decided

to categorize the attributes into three categories: inconsis-

tently labeled, gender-dependent, and gender-independent.

We categorized attributes as inconsistently labeled when

we visually examined sets of examples and found that

we often disagreed with the labeling and could not distin-

guish between positive and negative examples. This cat-

egory includes StraightHair shown in Figure 4, as

well as BigLips, BigNose, OvalFace, PaleSkin,

and WavyHair.7 While we report results on these attributes

for completeness in Section 4.1, classifiers trained on these

attributes may behave erratically.

Of the remaining attributes with more consistent labeling,

we found that some attribute labels are gender-dependent.

That is, images are labeled to have (or not have) these

attributes based on the perceived gender. For example in

5Consistent with the dataset annotation and with the literature, we adopt

the convention of using Male as our protected attribute. It is not clear if this

label denotes assigned sex at birth, gender identity, or gender expression

(socially perceived gender). Since the images were labeled by a professional

labeling company [28], we assume that the annotation refers to the perceived

gender, or gender expression. Moreover, this attribute is annotated in a

binary fashion. We would like to point out that none of these attributes

(assigned sex at birth, gender identity, nor gender expression) are binary,

however, we use these labels as is for our goal of de-biasing classifiers.
6We don’t use Blurry as it has very few positive images (≈ 5%). We

don’t use WearingNecklace as the cropped images used in the GAN

from [16] don’t display the neck.
7We note that for BigNose, we found that while there were some

images that were easy to classify as having a big nose, or not having a

big nose, most images were between these two extremes, and we believe

that different annotators marked these ‘in-between’ images differently. The

same is true for the attribute BigLips.

Figure 5: Examples of CelebA Young labels. The first three images are

labeled Male, Young while the last three images are labeled not Male,

not Young, even though the first three appear older than the last three.

We deemed this attribute as gender-dependent.

Figure 5, we observe that the images labeled as Young

and Male appear much older than the images labeled

as Young and not Male. Other attributes in this cate-

gory are ArchedBrows, Attractive, BushyBrows,

PointyNose and RecedingHair.

The gender-independent attribute labels appear to be rea-

sonably consistent among annotators, and do not appear to

depend on the gender expression. We classified 14 attributes

into this category: Bangs, BlackHair, BlondHair,

BrownHair, Chubby, Earrings, EyeBags,

Glasses, GrayHair, HighCheeks, MouthOpen,

NarrowEyes, Smiling, and WearingHat. While

we use the label ‘gender-independent’ we note that these

attributes can still be correlated with gender expression—for

example Earrings are much more common among

images labeled as not Male than those labeled as Male.

Implementation details: To generate images, we use a Pro-

gressive GAN [24] with a 512-D latent space trained on the

CelebA [28] training set from the PyTorch GAN Zoo [16].

We use 10,000 synthetic images, labeled with baseline at-

tribute classifiers, and learn hyperplanes (ht, hg) in the latent

space with scikit-learn’s [31] linear SVM implementation.

For all attribute classifiers, we use ResNet-50 [21] pre-

trained on ImageNet [32] as the base architecture. We replace

the linear layer in ResNet with two linear layers with the

hidden layer of size 2,048. Dropout and ReLU are applied

between these. The inputs are 64×64 images and their target

attribute labels. We train all models with the binary cross

entropy loss for 20 epochs with a batch size of 32. We use

the Adam [26] optimizer with a learning rate of 1e-4. We

save the model with the smallest loss on a validation set that

has the same distribution as the training set.

The baseline model is trained on the CelebA training set

X with 162,770 images. Our model is trained on X and the

balanced synthetic dataset Xsyn (160,000 pairs of images).8

Results are reported on the CelebA test set unless noted

otherwise. Error bars are 95% confidence intervals estimated

through bootstrapping. We note that we use a single GAN to

construct the de-biased dataset for each target attribute, and

then train separate classifiers for each target attribute. We

also emphasize that protected attribute labels are only used

in learning hg and in evaluation.

Evaluation Metrics: We use average precision (AP) to

8We trained classifiers using different number of synthetic pairs for 4

different attributes, and found that AP stabilizes after 160,000 pairs, which

is what we used to train our classifiers.
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measure the accuracy of the classifiers. AP is a threshold-

invariant accuracy metric that summarizes the precision and

recall curve. We use this metric to ensure that our models

learn a reasonable classification rule. AP, however, does not

capture a classifier’s behavior on different protected classes,

and in fact, we expect to see a slight dip in overall AP when

our model improves on some of the fairness metrics.

Multiple metrics have been proposed to measure fairness

of a model [19, 44, 46, 10, 11] and each of these measures a

different notion of fairness. In our work, we use three metrics

for comprehensive understanding. First, we measure the

difference in equality of opportunity (DEO), i.e. the absolute

difference between the false negative rates for both gender

expression, as in Lokhande et al. [29]9.

As our second fairness metric, we use the bias amplifica-

tion (BA) metric proposed by Wang and Russakovsky [39].

Intuitively, BA measures how much more often a target at-

tribute is predicted with a protected attribute than the ground

truth value. Let Pt|g be the fraction of images with protected

attribute g that have target attribute t, Pt̂|g be the fraction of

images with protected attribute g that are predicted to have

target attribute t, Pt,g be the fraction of images with target t

and protected attribute g, and Pt and Pg be the fraction of

images with attribute t and g respectively. For each pair of

target and protected attribute values, we add (Pt|g − Pt̂|g)
if Pt,g > PtPg and −(Pt|g − Pt̂|g) otherwise. A negative

value implies that bias now exists in a different direction

than in the training data.

Both DEO and BA fluctuate based on the chosen classifi-

cation threshold. Hence, as our final fairness metric, we use

a threshold-invariant metric that measures the divergence

between score distributions (KL) [11] defined as follows:

Suppose sg,t represents a smoothed histogram of classifier

scores of a certain protected attribute label and a target la-

bel, appropriately normalized as a probability distribution

of the scores. For each target attribute label t, we measure

KL
[

sg=−1,t‖sg=1,t

]

+ KL
[

sg=1,t‖sg=−1,t

]

. That is, we

measure the divergence of g=−1 and g=1 score distribu-

tions, separately for positive and negative attribute samples.

This is a stricter notion of equalized odds[19].

4.1. Comparison with the baseline

To start, we compare our model (i.e. target classifiers

trained using both the balanced synthetic datasets Xsyn and

the real dataset X ) with a baseline model trained using just

X . In Table 1, we show results on the four metrics, averaged

for each of the three attribute categories. As expected, our

model performs better on all three fairness metrics, DEO,

9In our experiments, we choose a calibrated threshold on the validation

set, i.e, a threshold that ensures that we make the same number of positive

predictions as the ground truth, to compute both DEO and BA. We tried

other ways of choosing the threshold, such as choosing the one that gives

the best F1 score on a validation set, and while the values varied, they did

not change our findings.

Attr. type
AP ↑ DEO ↓

Baseline Ours Baseline Ours

Incons. 66.3 ± 1.8 65.2 ± 1.9 21.5 ± 4.4 16.5 ± 4.2

G-dep 78.6 ± 1.4 77.8 ± 1.4 25.7 ± 3.5 23.4 ± 3.6

G-indep. 83.9 ± 1.5 83.0 ± 1.6 16.7 ± 5.0 13.9 ± 5.2

Attr. type
BA ↓ KL ↓

Baseline Ours Baseline Ours

Incons. 2.1 ± 0.6 0.5 ± 0.6 1.7 ± 0.3 1.3 ± 0.4

G-dep 2.3 ± 0.5 1.6 ± 0.5 1.3 ± 0.2 1.2 ± 0.2

G-indep. 0.3 ± 0.6 0.0 ± 0.5 1.1 ± 0.5 0.9 ± 0.6

Table 1: Comparison of our model (i.e. attribute classifier trained with

our data augmentation method) to the baseline model. Arrows indicate

which direction is better. Numbers are averages over all attributes within the

specific category. As expected, we have slightly lower AP than the baseline,

but perform better on the three fairness metrics, DEO, BA, and KL.

BA and KL, while maintaining comparable AP. For gender-

independent attributes, AP drops from 83.9 to 83.0, while

DEO improves from 16.7 to 13.9, BA improves from 0.3 to

0.0 and KL improves from 1.1 to 0.9. For gender-dependent

attributes, the fairness metrics improve over the baseline, but

the improvements are smaller compared to those of gender-

independent attributes. Later in Section 5, we demonstrate

an extension of our augmentation method with an improved

performance on the gender-dependent attributes.

Additionally, we conduct score change evaluations sug-

gested by Denton et al. [14] and measure the change in target

attribute score as we perturb the protected attribute in im-

ages. Specifically, we measure the classifier score difference

between G(z) and G(z′). This evaluation helps understand

how the protected attribute influences a trained classifier’s

output. We find that the model trained with our augmenta-

tion method consistently has a smaller change in score than

the baseline: 0.09 vs. 0.12 for inconsistently labeled, 0.07

vs. 0.11 for gender-dependent, and 0.06 vs. 0.09 for gender-

independent attributes. We also observe that the baseline

score changes are higher when we try to construct under-

represented samples. Consider the attribute ArchedBrows

where only 2.3% of the training set images are labeled to

have ArchedBrows, and appear masculine. When we con-

struct a z
′ with this target and protected value, the baseline

classifier’s score changes by 0.41. On the other hand, when

we try to construct an image that is without ArchedBrows

and appears feminine, which comprises 33.7% of the train-

ing set, the baseline classifier score only changes by 0.094.

This could be due to the errors that the baseline classifier

makes on underrepresented images during synthetic image

labeling, or could imply that underrepresented attributes are

harder to maintain during image manipulations.

We next examine several factors that could influence our

method, including how easy the protected attribute is to learn

compared to the target attribute and how data skew affects

our method. We discuss the former here and provide more

information about the latter in the supplementary material.

Discriminability of attributes: Nam et al. [30] recently ob-
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Protected

Attribute

Improvement over baseline ↑
DEO BA KL

Easy Hard Easy Hard Easy Hard

Glasses (0,19) – 4.1 – 0.9 – 0.0

Gender (2, 17) 0.8 3.2 0.0 0.4 -0.2 0.2

Young (15, 4) -0.2 2.1 0.2 1.0 -0.2 0.0

Table 2: Improvement over baseline for different fairness metrics when using

different protected attributes. Next to the protected attribute are numbers of

attributes that are ‘easier’ and ‘harder’ to learn, compared to the protected

attribute. Columns ‘Easy’ (‘Hard’) show the averages of all non-inconsistent

target attributes that are easier (harder) for a classifier to learn. We note that

our method works better when the target attribute is ‘harder’ to learn.

served that correlations among attributes affect a classifier

only if the protected attribute is ‘easier’ to learn than the

target attribute. Inspired by their observation, we conduct a

two-step experiment to understand how the relative discrim-

inability of attributes affects our method’s effectiveness.

First, we put a pair of CelebA attributes in competition

to assess their relative discriminability. Experiment details

are in the supplementary material. We find that gender ex-

pression is one of the easiest attributes to learn (Gender

is easier than all but Glasses and WearingHat), which

may be why gender bias is prevalent in many models. On

the other hand, Young is relatively hard for a model to learn

(Young is harder to learn than all but 4 other attributes), so

its correlation with other attributes may not be as influential.

Next, to understand how the relative discriminability of

attributes affects our method’s performance, we train tar-

get attribute classifiers for gender-dependent and gender-

independent attributes, using Young and Glasses as pro-

tected attributes. In Table 2, we report our method’s im-

provement over baseline in the three fairness metrics. For

each protected attribute, we report the average improvement

separately for ‘easier’ and ‘harder’ target attributes. While

training with our augmentation method generally outper-

forms the baseline on the three fairness metrics, as expected,

the improvement is greater for target attributes that are harder

to learn than the protected attribute, for example, for Young,

the improvement in DEO over baseline is -0.2 for easy target

attributes, and 2.1 for hard target attributes.

Skew of the dataset: The skew of a target attribute t is mea-

sured following the literature [41] as
max(P

−1,P1)
P

−1+P1

where P−1

is the number of images with t=1 and protected attribute

label g=− 1, and P1 is the number of images with t=1 and

protected attribute label g=1. We find that our augmentation

method is most effective on attributes with low to moderate

skew. Full details are in the supplementary material.

4.2. Ablation studies

We now examine the design choices made in our method.

Removal of z
′ samples: First, we evaluate the effect of

G(z′) on the classifier. We train a classifier with just G(z)
and the real dataset X , and compare its performance against

the performance of our model, trained with G(z), G(z′),

Perturbation
AP ↑

G-dep G-indep

z′g,0 74.0 79.9

z′g 69.6 77.3

z′0 74.4 79.8

z′ (ours) 76.0 81.4

Figure 6: Comparison of different perturbation choices. We train attribute

classifiers using only synthetic images generated from the perturbations,

and measure the mean AP over all target attributes on the validation set.

The classifier trained with z
′ (our choice) has the highest AP.

and X on the gender-dependent and gender-independent

attributes. While the new classifier’s AP is higher than that

of our model (82.9 vs. 82.6), all fairness metrics are worse:

DEO is higher (19.7 vs. 16.1), BA is higher (1.1 vs. 0.5) and

KL is higher (1.6 vs 1.3). All numbers were calculated on

the validation set. In fact, it performs worse on the fairness

metrics than the baseline model trained on X . This result

suggests that simply synthesizing more images with a GAN

and adding them to the training data does not improve the

model but rather hurts performance. Possible reasons include

the image and label noise of G(z) and the skew of G(z)
being worse than the original data the GAN was trained on.

The fairness metrics improve only when we add G(z′), and

make the training data more balanced.

Choice of z′: Next, we evaluate our choice of z′ through

examining a number of alternative perturbation choices visu-

alized in Figure 6. We train classifiers on just the generated

data for gender-dependent and gender-independent attributes

and compare the overall AP on the validation set. As ex-

pected, training with z
′ (our choice) has the highest AP.

Filtering z’s and using different labels for synthetic im-

ages: Since we hallucinate labels for the synthetic images,

some of these labels may be incorrect and harm our classifier.

We try three different ways of addressing this issue: First, we

try learning hyperplanes with different fractions of positive

and negative samples. We find that while this improves the

hyperplane accuracy, the downstream classifiers trained with

samples generated using different hyperplanes have similar

performances. For the second and third methods, we use

the original hyperplanes learned in our method, but vary the

vectors/labelling used. We remove points that are incorrectly

classified by the baseline classifier after perturbing the la-

tent vector from z to z
′, i.e, we remove all points wherein

ft(G(z)) 6= ft(G(z′)), and use the remaining synthetic im-

ages and the real dataset to train the classifiers. Third, we

label the synthetic images G(z) and G(z′) with ht(z), and

use these labels to train the classifiers. We compare their

performance to our method on the validation set. We find

that these two methods result in a slight drop in AP (79.8

when using ht scores, 82.1 when removing incorrectly clas-

sified points, and 82.6 for our method), as well as a small

drop in the fairness metrics (the average DEO is 18.1 when

using ht scores, 17.4 when removing incorrectly classified
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Fairness GAN [35] Ours

Dem. Par. Eq. Opp. (Synthetic only)

Gender exp. g g=−1 g=1 g=−1 g=1 g=−1 g=1
FPR ↓ 0.52 0.26 0.42 0.17 0.22 0.39

FNR ↓ 0.18 0.41 0.21 0.44 0.06 0.27

Error ↓ 0.30 0.28 0.29 0.23 0.21 0.18

Error Rate ↓ 0.22 0.29 0.20

Table 3: Comparison of the Attractive classifier trained using synthetic

data from Fairness GAN [35] and the classifier trained using our pair-

augmented synthetic data. The latter (ours) outperforms on most metrics.

points, and 16.1 for our method), suggesting that our current

labeling of the synthetic images works well. Full results are

in the supplementary material.

4.3. Comparison with prior work

In this section, we compare our method to few recent

works [35, 36, 41]. One of the current challenges in the

space of AI fairness is the lack of standardized benchmarks

and metrics. While some of this stems from the complex-

ity of the problem at hand (where it is difficult and even

counter-productive to use a single fairness definition), in

the computer vision community, we believe that more effort

should be made to provide thorough comparison between

methods. Each work we consider here uses slightly different

evaluation protocols and benchmarks. We made comparisons

to the best of our ability, and hope that our work helps enable

more standardization and empirical comparisons.

Fairness GAN: Sattigeri et al. [35] use GANs to create

datasets that achieve either demographic parity (Dem. Par.)

or equality of opportunity (Eq. Opp.). They train classifiers

for the Attractive attribute on just the generated data,

using gender expression as the protected attribute. We train

classifiers with our pair-augmented synthetic data to mimic

the conditions of Fairness GAN, and evaluate both on the

CelebA test data. Comparison results are in Table 3. Our

model performs better on most metrics, even though we use

a single GAN to augment all attributes.

Contrastive examples generated by image-to-image

translation GANs: Sharmanska et al. [36] propose a dif-

ferent method for balancing a biased dataset using Star-

GAN [13], a class of image-to-image translation GANs.

They use two protected attributes, age and gender expres-

sion, and create a balanced dataset by creating contrastive

examples, i.e. images of different ages and gender, for each

image in the training set. They train a Smiling classifier

with the augmented dataset, and propose making a prediction

at test time only when the classifier makes the same predic-

tion on the image and their contrastive examples. We ex-

tend our method to incorporate multiple protected attributes,

and use gradient descent to find three points {z′i}i∈{1,2,3}

in the latent space that preserve the target attribute score

and flip either the gender expression score, the age score,

or both. This process gives us three synthetic images per

training image, with which we train a Smiling classifier.

Skew Method AP ↑ DEO ↓ BA ↓ KL ↓
Low/ Dom. Ind. 83.4 ± 1.3 7.0 ± 3.1 -0.1 ± 0.5 0.8 ± 0.7

Mod. Ours 81.4 ± 1.5 6.0 ± 3.0 -0.1 ± 0.5 0.3 ± 0.1

High
Dom. Ind. 80.7 ± 1.6 14.9 ± 5.6 -0.4 ± 0.5 0.8 ± 1.0

Ours 80.4 ± 1.5 23.9 ± 5.5 0.9 ± 0.4 1.5 ± 0.6

Table 4: Comparison of our method with domain independent training [41].

Numbers reported are the mean over all gender-dependent and gender-

independent attributes on the test set. We note that we perform better than

domain-independent training for attributes with low to moderate skew.

Method AP ↑ DEO ↓ BA ↓ KL ↓
Weighted 79.6 ± 1.6 5.7 ± 4.2 -2.8 ± 0.5 0.5 ± 0.4

Adversarial 81.3 ± 1.6 23.9 ± 4.4 1.5 ± 0.5 0.6 ± 0.5

Ours 81.5 ± 1.5 16.7 ± 4.7 0.5 ± 0.5 1.0 ± 0.5

Table 5: Comparison of our method with weighted and adversarial training

from [41]. Numbers reported are the mean over all gender-dependent and

gender-independent attributes on the test set. We note that the weighted

model overall performs better on the fairness metrics, however, the large

negative BA suggests that the model now has bias in the opposite direction,

to the extent that the AP drops. The adversarial model performs significantly

worse than ours on DEO and BA, and marginally better on KL.

To ensure that the error rates are similar across all four

protected groups—(Young, Male), (Young, not Male),

(not Young, Male), (not Young, not Male)—they

measure the the mean difference in the false positive and

false negative rates between all pairs of protected groups. We

reproduce their method to ensure that the results are reported

on the same test set. We find that our model performs better

in terms of the mean difference in FNR (0.34 versus their

0.54) and FPR (0.23 compared to their 0.46).

Effective training strategies for bias mitigation: Wang et

al. [41] quantitatively compare different techniques for bias

mitigation, including weighted training [7, 15], adversarial

training with losses inspired by [2, 45], and their proposed

domain discriminative and domain independent training. We

compare our method to their best performing domain inde-

pendent training method where they learn separate classifiers

for each protected attribute class and combine them to lever-

age any shared information. We report results for all gender-

dependent and gender-independent attributes in Table 4. We

find that our method performs better for attributes with low to

moderate skew (<0.7)—DEO is 6.0 compared to 7.0, KL is

0.3 compared to 0.8—whereas domain independent training

performs better for attributes with high skew—DEO is 23.9

compared to 14.9, KL is 1.5 compared to 0.8. This result

is consistent with our earlier observation that our method

works well for low to moderately skewed datasets. Wang et

al also use a simpler weighted training method that reweights

samples such that the protected attribute classes have equal

weight and an adversarial training method that uses a mini-

max objective to maximize the classifier’s accuracy on the

objective while minimizing an adversary’s ability to pre-

dict the protected attribute from the learned features. For

weighted and adversarial training methods, we report results

in Table 5. We find that while the weighted model overall

performs well on the fairness metrics, it has a strongly nega-

tive BA (-2.7 versus our 0.5) indicating that bias is now in
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Figure 7: Computing z
′ when the target attribute hyperplanes for each

protected attribute class are very different.

the opposite direction, and a low AP (79.6 versus our 81.5)

suggesting that it makes incorrect predictions to reduce bias.

For adversarial training, our method does better overall, with

lower DEO (16.7 versus 23.9) and lower BA (0.5 versus 1.5).

5. Extensions of our method

In this final section, we study two natural extensions of

our method: using domain-dependent hyperplanes in place

of the current domain-independent hyperplanes, and directly

augmenting a real image dataset with GAN-inversion.

Domain-dependent hyperplanes: Our method implicitly

assumes the learned hyperplane wt behaves equally well

for all z, irrespective of the value of fg(G(z)). However, for

gender-dependent attributes, the hyperplane learned using

samples with fg(G(z))=1 may be very different from that

learned using samples with fg(G(z))=−1.

For these attributes, we extend our method to learn per-

domain target attribute hyperplanes: wt1 , bt1 for points with

fg(G(z))=1 and wt
−1
, bt

−1
for points with fg(G(z))=− 1.

For z with fg(G(z))=1, we find z
′ such that

w
T
t
−1
(z′) + bt

−1
= w

T
t1
(z) + bt1 , and

wg
T
z
′ + bg = −wg

T (z)− bg
(4)

as shown in Figure 7. In order to compute z
′ that satisfies

the above constraints, while minimizing ||z− z
′||2, we note

that all constraints are linear, hence the feasible region is the

intersection of several hyperplanes. Starting from a point in

this region, in each iteration, we find a new location of the

point using gradient descent, then project it back onto the

feasible region to maintain the constraints.

If wt1 and wt
−1

are similar, these constraints are the

same as Equation 2 and this method of computing z
′ col-

lapses to the first. We compare results of training a classi-

fier that is augmented with images computed with domain-

independent hyperplanes and with that using images com-

puted with domain-dependent hyperplanes for all gender-

dependent and gender-independent attributes over the val-

idation set. We find that for gender-dependent attributes,

using domain-dependent hyperplanes improves the fairness

metrics considerably (DEO reduces from 21.4 to 17.2, BA

reduces from 1.5 to 0.4, KL reduces from 1.2 to 1.0), without

losing accuracy. However, for gender-independent attributes,

Attr. type
AP ↑ DEO ↓

Dom-ind Dom-dep Dom-indep Dom-dep

G-dep 78.1 ± 1.5 78.1 ± 1.4 21.4 ± 4.0 17.2 ± 4.0

G-indep 84.5 ± 1.5 84.6 ± 1.6 13.9 ± 4.3 13.1 ± 4.6

Attr. type
BA ↓ KL ↓

Dom-indep Dom-dep Dom-indep Dom-dep

G-dep 1.5 ± 0.5 0.4 ± 0.5 1.2 ± 0.2 1.0 ± 0.3

G-indep 0.1 ± 0.4 0.2 ± 0.4 0.9 ± 0.5 0.9 ± 0.6

Table 6: Comparison of classifiers that use domain-dependent hyperplanes

vs. domain-independent hyperplanes to compute z′. We see a significant

improvement among Gender-dependent attributes when we use Domain-

dependent hyperplanes. Numbers are reported on the validation set.

AP ↑ DEO ↓ BA ↓ KL ↓
Without 82.6 ± 1.5 1.5 ± 2.3 1.3 ± 0.4 1.0 ± 0.5

With inv. 82.4 ± 1.5 1.4 ± 2.3 1.3 ± 0.4 1.0 ± 0.5

Table 7: Comparison of our classifiers (without) to classifiers trained us-

ing data augmented with a GAN-inversion module (with inv.). Numbers

reported are the mean over all gender-dependent and gender-independent

attributes on the validation set. We do not see an appreciable improvement.

we do not see significant improvement, suggesting that wt

is similar to both wt1 and wt
−1

. Full results are in Table 6.

Augmenting real images with GAN-inversion: Our

method operates in the GAN latent space and can only aug-

ment images that are generated from latent vectors, and so,

only the GAN-generated images. Recently, several GAN-

inversion methods have been proposed [1, 5, 47]. These

methods invert a real image xreal ∈ X to a vector zinv in

the latent space of a trained GAN. Using Zhu et al. [47], we

tried directly augmenting the original dataset by perturbing

zinv to z
′
inv with our method, creating x

′
real=G(z′inv) with

the same target label and the opposite protected label of

xreal. When we trained classifiers with datasets augmented

in this way, however, we did not see an appreciable improve-

ment, despite the more complex procedure (Table 7).

6. Conclusions

We introduced a GAN-based data augmentation method

for training fairer attribute classifiers when correlations be-

tween the target label and the protected attribute (such as

gender expression) might skew the results. We report results

across a large number of attributes and metrics, including

comparisons with existing techniques. We also analyze in

detail when our method is the most effective. Our findings

show the promise of augmenting data in the GAN latent

space in a variety of settings. We hope our detailed analyses

and publicly available code serve as a stepping stone for

future explorations in this very important space.
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