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Abstract

Existing works on visual counting primarily focus on one

specific category at a time, such as people, animals, and

cells. In this paper, we are interested in counting every-

thing, that is to count objects from any category given only a

few annotated instances from that category. To this end, we

pose counting as a few-shot regression task. To tackle this

task, we present a novel method that takes a query image

together with a few exemplar objects from the query image

and predicts a density map for the presence of all objects of

interest in the query image. We also present a novel adapta-

tion strategy to adapt our network to any novel visual cate-

gory at test time, using only a few exemplar objects from the

novel category. We also introduce a dataset of 147 object

categories containing over 6000 images that are suitable

for the few-shot counting task. The images are annotated

with two types of annotation, dots and bounding boxes, and

they can be used for developing few-shot counting models.

Experiments on this dataset shows that our method outper-

forms several state-of-the-art object detectors and few-shot

counting approaches. Our code and dataset can be found

at https://github.com/cvlab-stonybrook/

LearningToCountEverything.

1. Introduction

Humans can count objects from most of the visual object

categories with ease, while current state-of-the-art compu-

tational methods [29, 48, 55] for counting can only handle

a limited number of visual categories. In fact, most of the

counting neural networks [4, 48] can handle a single cate-

gory at a time, such as people, cars, and cells.

There are two major challenges preventing the Com-

puter Vision community from designing systems capable of

counting a large number of visual categories. First, most

of the contemporary counting approaches [4, 48, 55] treat

counting as a supervised regression task, requiring thou-

sands of labeled images to learn a fully convolutional re-

gressor that maps an input image to its corresponding den-

sity map, from which the estimated count is obtained by

summing all the density values. These networks require dot

Figure 1: Few-shot counting—the objective of our work.

Given an image from a novel class and a few exemplar ob-

jects from the same image delineated by bounding boxes,

the objective is to count the total number of objects of the

novel class in the image.

annotations for millions of objects on several thousands of

training images, and obtaining this type of annotation is a

costly and laborious process. As a result, it is difficult to

scale these contemporary counting approaches to handle a

large number of visual categories. Second, there are not any

large enough unconstrained counting datasets with many

visual categories for the development of a general count-

ing method. Most of the popular counting datasets [14–

16, 43, 49, 55] consist of a single object category.

In this work, we address both of the above challenges. To

handle the first challenge, we take a detour from the existing

counting approaches which treat counting as a typical fully

supervised regression task, and pose counting as a few shot

regression task, as shown in Fig. 1. In this few-shot setting,

the inputs for the counting task are an image and few exam-

ples from the same image for the object of interest, and the

output is the count of object instances. The examples are

provided in the form of bounding boxes around the objects

of interest. In other words, our few shot counting task deals

with counting instances within an image which are simi-

lar to the exemplars from the same image. Following the

convention from the few-shot classification task [9, 20, 46],

the classes at test time are completely different from the

ones seen during training. This makes few-shot counting

very different from the typical counting task, where the

training and test classes are the same. Unlike the typical

counting task, where hundreds [55] or thousands [16] of la-

beled examples are available for training, a few-shot count-

ing method needs to generalize to completely novel classes
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using only the input image and a few exemplars.

We propose a novel architecture called Few Shot

Adaptation and Matching Network (FamNet) for tackling

the few-shot counting task. FamNet has two key compo-

nents: 1) a feature extraction module, and 2) a density pre-

diction module. The feature extraction module consists of

a general feature extractor capable of handling a large num-

ber of visual categories. The density prediction module

is designed to be agnostic to the visual category. As will

be seen in our experiments, both the feature extractor and

density prediction modules can already generalize to the

novel categories at test time. We further improve the per-

formance of FamNet by developing a novel few-shot adap-

tation scheme at test time. This adaptation scheme uses the

provided exemplars themselves and adapts the counting net-

work to them with a few gradient descent updates, where the

gradients are computed based on two loss functions which

are designed to utilize the locations of the exemplars to the

fullest extent. Empirically, this adaptation scheme improves

the performance of FamNet.

Finally, to address the lack of a dataset for develop-

ing and evaluating the performance of few-shot counting

methods, we introduce a medium-scale dataset consisting

of more than 6000 images from 147 visual categories. The

dataset comes with dot and bounding box annotations, and

is suitable for the few-shot counting task. We name this

dataset Few-Shot Counting-147 (FSC-147).

In short, the main contributions of our work are as fol-

lows. First, we pose counting as a few-shot regression task.

Second, we propose a novel architecture called FamNet for

handling the few-shot counting task, with a novel few-shot

adaptation scheme at test time. Third, we present a novel

few-shot counting dataset called FSC-147, comprising of

over 6000 images with 147 visual categories.

2. Related Works

In this work, we are interested in counting objects of in-

terest in a given image with a few labeled examples from

the same image. Most of the previous counting methods

are for specific types of objects such as people [2, 5, 6, 23,

26, 27, 29, 32–34, 39, 42, 47, 50, 54, 55], cars [30], an-

imals [4], cells [3, 18, 53], and fruits [31]. These meth-

ods often require training images with tens of thousands or

even millions of annotated object instances. Some of these

works [34] tackle the issue of costly annotation cost to some

extent by adapting a counting network trained on a source

domain to any target domain using labels for only few in-

formative samples from the target domain. However, even

these approaches require a large amount of labeled data in

the source domain.

The proposed FamNet works by exploiting the strong

similarity between a query image and the provided ex-

emplar objects in the image. To some extent, it is simi-

lar the decade-old self-similarity work of Shechtman and

Irani [41]. Also related to this idea is the recent work of

Lu and Zisserman[28], who proposed a Generic Matching

Network (GMN) for class-agnostic counting. GMN was

pre-trained with tracking video data, and it had an explicit

adaptation module to adapt the network to an image domain

of interest. GMN has been shown to work well if several

dozens to hundreds of examples are available for adapta-

tion. Without adaptation, GMN does not perform very well

on novel classes, as will be seen in our experiments.

Related to few-shot counting is the few-shot detection

task (e.g., [8, 17]), where the objective is to learn a detector

for a novel category using a few labeled examples. Few-

shot counting differs from few-shot detection in two pri-

mary aspects. First, few-shot counting requires dot anno-

tations while detection requires bounding box annotations.

Second, few-shot detection methods can be affected by se-

vere occlusion whereas few-shot counting is tackled with

a density estimation approach [22, 55], which is more ro-

bust towards occlusion than the detection-then-counting ap-

proach because the density estimation methods do not have

to commit to binarized decisions at an early stage. The ben-

efits of the density estimation approach has been empiri-

cally demonstrated in several domains, especially for crowd

and cell counting.

Also related to our work is the task of few-shot image

classification [9, 19, 21, 35, 40, 46]. The few-shot classifi-

cation task deals with classifying images from novel cate-

gories at test time, given a few training examples from these

novel test categories. The Model Agnostic Meta Learning

(MAML) [9] based few-shot approach is relevant for our

few-shot counting task, and it focuses on learning parame-

ters which can adapt to novel classes at test time by means

of few gradient descent steps. However, MAML involves

computing second order derivatives during training which

makes it expensive, even more so for the pixel level predic-

tion task of density map prediction being considered in our

paper. Drawing inspiration from these works, we propose a

novel adaptation scheme which utilizes the exemplars avail-

able at test time and performs a few steps of gradient de-

scent in order to adapt FamNet to any novel category. Un-

like MAML, our training scheme does not require higher

order gradients at training time. We compare our approach

with MAML, and empirically show that it leads to better

performance and is also much faster to train.

3. Few-Shot Adaptation & Matching Network

In this section, we describe the proposed FamNet for

tackling the few-shot counting task.

3.1. Network architecture

Fig. 2 depicts the pipeline of FamNet. The input to the

network is an image X ∈ ℜH×W×3 and a few exemplar
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Figure 2: Few-shot adaptation & matching Network takes as input the query image along with few bounding boxes

depicting the object of interest, and predicts the density map. The count is obtained by summing all the pixel values in the

density map. The adaptation loss is computed based on the bounding box information, and the gradients from this loss are

used to update the parameters of the density prediction module. The adaptation loss is only used during test time.

bounding boxes depicting the object to be counted from the

same image. The output of the network is the predicted

density map Z ∈ ℜH×W , and the count for the object of

interest is obtained by summing over all density values.

FamNet consists of two key modules: 1) a multi-scale

feature extraction module, and 2) a density prediction mod-

ule. We design both of these modules so that they can han-

dle novel categories at test time. We use an ImageNet-

pretrained network [12] for the feature extraction, since

such networks can handle a broad range of visual categories.

The density prediction module is designed to be agnostic

to the visual categories. The multi-scale feature extraction

module consists of the first four blocks from a pre-trained

ResNet-50 backbone [12] (the parameters of these blocks

are frozen during training). We represent an image by the

convolutional feature maps at the third and fourth blocks.

We also obtain the multi-scale features for an exemplar by

performing ROI pooling on the convolutional feature maps

from the third and fourth Resnet-50 blocks.

To make the density prediction module agnostic to the

visual categories, we do not use the features obtained from

the feature extraction module directly for density predic-

tion. Instead, we only use the correlation map between the

exemplar features and image features as the input to the den-

sity prediction module. To account for the objects of interest

at different scales, we scale the exemplar features to differ-

ent scales, and correlate the scaled exemplar features with

the image features to obtain multiple correlation maps, one

for each scale. For all of our experiments, we use the scales

of 0.9 and 1.1, along with the original scale. The correla-

tion maps are concatenated and fed into the density predic-

tion module. The density prediction module consists of five

convolution blocks and three upsampling layers placed af-

ter the first, second, and third convolution layers. The last

layer is a 1×1 convolution layer, which predicts the 2D den-

sity map. The size of the predicted density map is the same

as the size of the input image.

3.2. Training

We train the FamNet using the training images of our

dataset. Each training image contains multiple objects of

interest, but only the exemplar objects are annotated with

bounding boxes and the majority of the objects only have

dot annotations. It is, however, difficult to train a density es-

timation network with the training loss that is defined based

on the dot annotations directly. Most existing works for vi-

sual counting, especially for crowd counting [55], convolve

the dot annotation map with a Gaussian window of a fixed

size, typically 15×15, to generate a smoothed target density

map for training the density estimation network.

Our dataset consists of 147 different categories, where

there is huge variation in the sizes of the objects. There-

fore, to generate the target density map, we use Gaussian

smoothing with adaptive window size. First, we use dot an-

notations to estimate the size of the objects. Given the dot

annotation map, where each dot is at an approximate center

of an object, we compute the distance between each dot and

its nearest neighbor, and average these distances for all the

dots in the image. This average distance is used as the size

of the Gaussian window to generate the target density map.

The standard deviation of the Gaussian is set to be a quarter

of the window size.

To train FamNet, we minimize the mean squared error

between the predicted density map and the ground truth

density map. We use Adam optimizer with a learning rate

of 10−5, and batch size of 1. We resize each image to a

fixed height of 384, and the width is adjusted accordingly

to preserve the aspect ratio of the original image.
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3.3. Test­time adaptation

Since the two modules of the FamNet are not dependent

on any object categories, the trained FamNet can already be

used for counting objects from novel categories given a few

exemplars. In this section, we describe a novel approach to

adapt this network to the exemplars, further improving the

accuracy of the estimated count. The key idea is to harness

the information provided by the locations of the exemplar

bounding boxes. So far, we have only used the bounding

boxes of the exemplars to extract appearance features of the

exemplars, and we have not utilized their locations to the

full extent.

Let B denote the set of provided exemplar bounding

boxes. For a bounding box b ∈ B, let Zb be the crop from

the density map Z at location b. To harness the extra infor-

mation provided by the locations of the bounding boxes B,

we propose to consider the following two losses.

Min-Count Loss. For each exemplar bounding box b, the

sum of the density values within Zb should be at least one.

This is because the predicted count is taken as the sum of

predicted density values, and there is at least one object at

the location specified by the bounding box b. However, we

cannot assert that the sum of the density values within Zb to

be exactly one, due to possible overlapping between b and

other nearby objects of interest. This observation leads to

an inequality constraint: ||Zb||1 ≥ 1, where ||Zb||1 denotes

the sum of all the values in Zb. Given the predicted density

map and the set of provided bounding boxes for the exem-

plars, we define the following Min-Count loss to quantify

the amount of constraint violation:

LMinCount =
∑

b∈B

max(0, 1− ||Zb||1). (1)

Perturbation Loss. Our second loss to harness the po-

sitional information provided by the exemplar bounding

boxes is inspired by the success of tracking algorithms

based on correlation filter [13, 44, 51]. Given the bound-

ing box of an object to track, these algorithms learn a filter

that has highest response at the exact location of the bound-

ing box and lower responses at perturbed locations. The

correlation filter can be learned by optimizing a regression

function to map from a perturbed location to a target re-

sponse value, where the target response value decreases ex-

ponentially as the perturbation distance increases, usually

specified by a Gaussian distribution.

In our case, the predicted density map Z is essentially

the correlation response map between the exemplars and the

image. To this end, the density values around the location of

an exemplar should ideally look like a Gaussian. Let Gh×w

be the 2D Gaussian window of size h×w. We define the

perturbation loss as follows:

LPer =
∑

b∈B

||Zb −Gh×w||
2

2
. (2)

The combined adaptation Loss. The loss used for test-

time adaptation is the weighted combination of the Min-

Count loss and the Perturbation loss. The final test time

adaptation loss is given as

LAdapt = λ1LMinCount + λ2LPer, (3)

where λ1 and λ2 are scalar hyper parameters. At test time,

we perform 100 gradient descent steps for each test image,

and optimize the joint loss presented in Eq. (3). We use the

learning rate 10−7. The values for λ1 and λ2 are 10−9 and

10−4 respectively. The learning rate, the number of gradi-

ent steps, λ1, and λ2, are tuned based on the performance on

the validation set. The values of λ1, and λ2 seem small, but

this is necessary to make the adaptation loss to have similar

magnitude to the training loss. Even though the training loss

is not used for test time adaptation, it is important for the

losses and their gradients to have similar magnitudes. Oth-

erwise, the gradient update steps of the adaptation process

will either do nothing or move away far from the parameters

learned during training.

Note that the adaptation loss is only used at test time.

During training of FamNet, this loss is redundant because

the proposed training loss, based on mean squared errors

computed over all pixel locations, already provides stronger

supervision signal than the adaptation loss.

4. The FSC-147 Dataset

To train the FamNet, we need a dataset suitable for

the few-shot counting task, consisting of many visual cate-

gories. Unfortunately, existing counting datasets are mostly

dedicated for specific object categories such as people, cars,

and cells. Meanwhile, existing multi-class datasets do not

contain many images that are suitable for visual count-

ing. For example, although some images from the COCO

dataset [25] contains multiple instances from the same ob-

ject category, most of the images do not satisfy the condi-

tions of our intended applications due to the small number

of object instances or the huge variation in pose and appear-

ance of the object instances in each image.

Since there was no dataset that was large and diverse

enough for our purpose, we collected and annotated images

ourselves. Our dataset consists of 6135 images across a di-

verse set of 147 object categories, from kitchen utensils and

office stationery to vehicles and animals. The object count

in our dataset varies widely, from 7 to 3731 objects, with

an average count of 56 objects per image. In each image,

each object instance is annotated with a dot at its approxi-

mate center. In addition, three object instances are selected
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(b) Number of images in several ranges of

object count.

Annotation type

Dataset Images Categories Dot Bounding Box

UCF CC 50 [15] 50 1 ✓ ✗

Shanghaitech [55] 1198 1 ✓ ✗

UCF QNRF [16] 1535 1 ✓ ✗

NWPU [49] 5109 1 ✓ ✗

JHU Crowd [43] 4372 1 ✓ ✓

CARPK [14] 1448 1 ✓ ✓

Proposed 6135 147 ✓ ✓

(c) Comparison with popular counting datasets.

Figure 3: Categories & no. of images per category, object counts, and comparison with other counting datasets

randomly as exemplar instances; these exemplars are also

annotated with axis-aligned bounding boxes. In the follow-

ing subsections, we will describe how the data was collected

and annotated. We will also report the detailed statistics and

how the data was split into disjoint training, validation, and

testing sets.

4.1. Image Collection

To obtain the set of 6135 images for our dataset, we

started with a set of candidate images obtained by keyword

searches. Subsequently, we performed manual inspection

to filter out images that do not satisfy our predefined condi-

tions as described below.

Image retrieval. We started with a list of object cate-

gories, and collected 300–3000 candidate images for each

category by scraping the web. We used Flickr, Google,

and Bing search engines with the open source image scrap-

pers [7, 45]. We added adjectives such as many, multiple,

lots of, and stack of in front of the category names to create

the search query keywords.

Manual verification and filtering. We manually inspected

the candidate images and only kept the suitable ones satis-

fying the following criteria:

1. High image quality: The resolution should be high

enough to easily differentiate between objects.

2. Large enough object count: The number of objects of

interest should be at least 7. We are more interested in

counting a large number of objects, since humans do

not need help counting a small number of objects.

3. Appearance similarity: we selected images where ob-

ject instances have somewhat similar poses, texture,

and appearance.

4. No severe occlusion: in most cases, we removed can-

didate images where severe occlusion prevents humans

from accurately counting the objects.

4.2. Image Annotation

Images in the dataset were annotated by a group of an-

notators using the OpenCV Image and Video Annotation

Tool [1]. Two types of annotation were collected for each

image, dots and bounding boxes, as illustrated in Fig. 4.

For images containing multiple categories, we picked only

one of the categories. Each object instance in an image

was marked with a dot at its approximate center. In case

of occlusion, the occluded instance was only counted and

annotated if the amount of occlusion was less than 90%.

For each image, we arbitrarily chose three objects as exem-

plar instances and we drew axis-aligned bounding boxes for

those instances.

4.3. Dataset split

We divided the dataset into train, validation, and test sets

such that they do not share any object category. We ran-

domly selected 89 object categories for the train set, and 29

categories each for the validation and test sets. The train,

validation, and test sets consist of 3659, 1286 and 1190 im-

ages respectively.

4.4. Data Statistics

The dataset contains a total of 6135 images. The aver-

age height and width of the images are 774 and 938 pix-

els, respectively. The average number of objects per im-

age is 56, and the total number of objects is 343,818. The

minimum and maximum number of objects for one image

are 7 and 3701, respectively. The three categories with the

highest number of objects per image are: Lego (303 ob-
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Val Set Test Set

Method MAE RMSE MAE RMSE

Mean 53.38 124.53 47.55 147.67

Median 48.68 129.70 47.73 152.46

FR few-shot detector [17] 45.45 112.53 41.64 141.04

FSOD few-shot detector [8] 36.36 115.00 32.53 140.65

Pre-trained GMN [28] 60.56 137.78 62.69 159.67

GMN [28] 29.66 89.81 26.52 124.57

MAML [9] 25.54 79.44 24.90 112.68

FamNet (Proposed) 23.75 69.07 22.08 99.54

Table 1: Comparing FamNet to two simple baselines

(Mean, Median) and four stronger baseline (Feature

Reweighting (FR) few-shot detector, FSOD few-shot de-

tector, GMN and MAML), these are few-shot methods that

have been adapted and trained for counting. FamNet has the

lowest MAE and RMSE on both val and test sets.

jects/image), Brick (271), and Marker (247). The three cat-

egories with lowest number of objects per image are: Su-

permarket shelf (8 objects/image), Meat Skewer (8), and

Oyster (11). Fig. 3b is a histogram plot for the number of

images in several ranges of object count.

5. Experiments

5.1. Performance Evaluation Metrics

We use Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE) to measure the accuracy of a count-

ing method. MAE and RMSE are commonly used met-

rics for counting task [29, 32, 55], and they are de-

fined as follows. MAE = 1

n

∑n

i=1
|ci − ĉi|;RMSE =

√

1

n

∑n

i=1
(ci − ĉi)2, where n is the number of test images,

and ci and ĉi are the ground truth and predicted counts.

5.2. Comparison with Few­Shot Approaches

We compare the performance of FamNet with two triv-

ial baselines and four competing few-shot methods. The

two trivial baseline methods are: (1) always output the av-

erage object count for training images; (2) always output

the median count for the training images. We also imple-

ment stronger methods for comparison, by adapting several

few-shot methods for the counting task and training them

on our training data. Specifically, we adapt the following

approaches for counting: the state-of-the-art few-shot de-

tectors [8, 17], the Generic Matching Network (GMN) [28],

and Model Agnostic Meta Learning (MAML) [9]. We im-

plement MAML using the higher library [10], which is a

meta learning library supporting higher order optimization.

The training procedure of MAML involves an inner op-

timization loop, which adapts the network to the specific

test classes, and an outer optimization loop which learns

Val-COCO Set Test-COCO Set

Method MAE RMSE MAE RMSE

Faster R-CNN 52.79 172.46 36.20 79.59

RetinaNet 63.57 174.36 52.67 85.86

Mask R-CNN 52.51 172.21 35.56 80.00

FamNet (Proposed) 39.82 108.13 22.76 45.92

Table 2: Comparing FamNet with pre-trained object de-

tectors, on counting objects from categories where there are

pre-trained object detectors.

meta parameters that facilitate faster generalization to novel

tasks. At test time, only the inner optimization is performed.

We use the LAdapt loss defined in Eq. (3) for the inner op-

timization loop, and the MSE loss over the entire dot anno-

tation map for the outer optimization loop.

As can be seen in Table 1, FamNet outperforms all the

other methods. Surprisingly, the pre-trained GMN does not

work very well, even though it is a class agnostic count-

ing method. The GMN model trained on our training data

performs better than its pre-trained version; and this demon-

strates the benefits of our dataset. The state-of-the-art few-

shot detectors [8, 17] perform relatively poor, even when

they are trained on our dataset. With these results, we are

the first to show the empirical evidence for the inferiority

of the detection-then-counting approach compared to the

density estimation approach (GMN, MAML, FamNet) for

generic object counting. However, this is not new for the

crowd counting research community, where the density esti-

mation approach dominates the recent literature [55], thanks

to its robustness to occlusion and the freedom of not having

to commit to binarized decisions at an early stage. Among

the competing approaches, MAML is the best method of all.

This is perhaps because MAML is a meta learning method

that leverages the advantages of having the FamNet archi-

tecture as its core component. The MAML way of training

this network leads to a better model than GMN, but it is

still inferior to the proposed FamNet together with the pro-

posed training and adaptation algorithms. In terms of train-

ing time per epoch, FamNet is around three times faster than

MAML, because it does not require any higher order gradi-

ent computation like MAML.

5.3. Comparison with Object Detectors

One approach for counting is to use a detector to de-

tect objects and then count. This approach only works for

certain categories of objects, where there are detectors for

those categories. In general, it requires thousands of ex-

amples to train an object detector, so this is not a practi-

cal method for general visual counting. Nevertheless, we

evaluate the performance of FamNet on a subset of cate-

gories from the validation and test sets that have pre-trained

object detectors on the COCO dataset. We refer to these
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Figure 4: Few annotated images from the dataset. Dot and box annotations are shown in red and blue respectively. The

number of objects in each image varies widely, some images contain a dozen of objects while some contains thousands.

Number of Exemplars MAE RMSE

1 26.55 77.01

2 24.09 72.37

3 23.75 69.07

Table 3: Performance of FamNet on the validation data as

the number of exemplars increases. FamNet can provide a

reasonable count estimate even with a single exemplar, and

the estimate becomes more accurate with more exemplars.

subsets as Val-COCO and Test-COCO, which comprise of

277 and 282 images respectively. Specifically, we com-

pare FamNet with FasterRCNN [37], MaskRCNN [11], and

RetinaNet [24]. All of these pretrained detectors are avail-

able in the Detectron2 library [52]. Table 2 shows the com-

parison results. As can be seen, FamNet outperforms the

pre-trained detectors, even on object categories where the

detectors have been trained with thousands of annotated ex-

amples from the COCO dataset.

Components Combinations

Multi-scale image feature ✗ X X X

Multi-scale exemplar feature ✗ ✗ X X

Test time adaptation ✗ ✗ ✗ X

MAE 32.70 27.80 24.32 23.75

RMSE 104.31 93.53 70.94 69.07

Table 4: Analyzing the components of FamNet. Each of

the components of FamNet adds to the performance.

5.4. Ablation Studies

We perform ablation studies on the validation set of FSC-

147 to analyze: (1) how the counting performance changes

as the number of exemplars increases, and (2) the benefits

of different components of FamNet.

In Table 3, we analyze the performance of FamNet as the

number of exemplars is varied between one to three dur-

ing the testing of FamNet. We see that FamNet can work

even with one exemplar, and it outperforms all the com-

peting methods presented in Table 1 with just 2 exemplars.

Not surprisingly, the performance of FamNet improves as

the number of exemplars is increased. This suggests that

an user of our system can obtain a reasonable count even

with a single exemplar, and they can obtain a more accurate

count by providing more exemplars.

In Table 4, we analyze the importance of the key compo-

nents of FamNet: multi-scale image feature map, the multi-

scale exemplar features, and test time adaptation. We train

models without few/all of these components on the train-

ing set of FSC-147, and report the validation performance.

We notice that all of the components of FamNet are impor-

tant, and adding each of the component leads to improved

results.

5.5. Counting category­specific objects

FamNet is specifically designed to be general, being able

to count generic objects with only a few exemplars. As

such, it might not be fair to demand it to work extremely

well for a specific category, such as counting cars. Cars are

popular objects that appear in many datasets and this cat-

egory is the explicit or implicit target for tuning for many

networks, so it would not be surprising if our method does

not perform as well as other customized solutions. Having

said that, we still investigate the suitability of using FamNet

to count cars from the CARPK dataset [14], which consists

of overhead images of parking lots taken by downward fac-

ing drone cameras. The training and test set consists of 989
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Method MAE RMSE

YOLO [14, 36] 48.89 57.55

Faster RCNN [14, 38] 47.45 57.39

One-look Regression [14, 30] 59.46 66.84

Faster RCNN [14, 38](RPN-small) 24.32 37.62

Spatially Regularized RPN [14] 23.80 36.79

GMN [28] 7.48 9.90

FamNet– (pre-trained) 28.84 44.47

FamNet+ (trained with CARPK data) 18.19 33.66

Table 5: Counting car performance on the CARPK

dataset. FamNet– is a FamNet model, that is trained with-

out any CARPK images nor images from the car category

of FSC-147. Other methods use the entire CARPK train

set. Pre-trained FamNet– outperforms three of of the previ-

ous approaches. FamNet+, yields even better performance.

and 459 images respectively. There are around 90,000 in-

stances of cars in the dataset.

We experiment with two variants of FamNet: a pre-

trained model and a model trained on CARPK dataset.

The pre-trained FamNet model is called FamNet–, which is

trained on FSC-147, without using the data from CARPK or

the car category from FSC-147. The FamNet model trained

with training data from CARPK is called FamNet+, and it is

trained as follows. We randomly sample a set of 12 exem-

plars from the training set, and use these as the exemplars

for all of the training and test images. We train FamNet+
on the CARPK training set. Table 5 displays the results of

several methods on this CARPK dataset. FamNet+ outper-

forms all methods except GMN [28]. GMN, unlike all the

other approaches, uses extra training data from the ILSVRC

video dataset which consists of video sequences of cars.

Perhaps this may be why GMN works particularly well on

CARPK.

5.6. Qualitative Results

Fig. 5 shows few images and FamNet predictions. The

first three are success cases,and the last is a failure case. For

the fourth image, FamNet confuses portions of the back-

ground as being the foreground, because of similarity in ap-

pearance between the background and the object of interest.

Fig. 6 shows a test case where test time adaptation improves

on the initial count by decreasing the density values in the

dense regions.

6. Conclusions

In this paper, we posed counting as a few-shot regres-

sion task. Given the non-existence of a suitable dataset for

the few-shot counting task, we collected a visual counting

dataset with relatively large number of object categories and

Image Prediction

GT Count: 263 Pred Count: 280

GT Count: 77 Pred Count: 77

GT Count: 47 Pred Count: 46

GT Count: 77 Pred Count: 192

Figure 5: Predicted density maps and counts of FamNet.

Image Pre Adapt. Post Adapt.

GT Count: 240 Count: 356 Count: 286

Figure 6: Test time adaptation. Shown are the initial den-

sity map (Pre Adapt) and final density map after adaptation

(Post Adapt). In case of over counting, adaptation decreases

the density values at dense locations.

instances. We also presented a novel approach for density

prediction suitable for the few-shot visual counting task. We

compared our approach with several state-of-art detectors

and few shot counting approaches, and showed that our ap-

proach outperforms all of these approaches.
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