
DeRF: Decomposed Radiance Fields

Daniel Rebain1, Wei Jiang1, Soroosh Yazdani4, Ke Li2,4, Kwang Moo Yi1, Andrea Tagliasacchi3,4

1University of British Columbia 2Simon Fraser University
3University of Toronto 4Google Research

Abstract

With the advent of Neural Radiance Fields (NeRF), neu-

ral networks can now render novel views of a 3D scene

with quality that fools the human eye. Yet, generating these

images is very computationally intensive, limiting their ap-

plicability in practical scenarios. In this paper, we pro-

pose a technique based on spatial decomposition capable

of mitigating this issue. Our key observation is that there

are diminishing returns in employing larger (deeper and/or

wider) networks. Hence, we propose to spatially decompose

a scene and dedicate smaller networks for each decomposed

part. When working together, these networks can render the

whole scene. This allows us near-constant inference time

regardless of the number of decomposed parts. Moreover, we

show that a Voronoi spatial decomposition is preferable for

this purpose, as it is provably compatible with the Painter’s

Algorithm for efficient and GPU-friendly rendering. Our

experiments show that for real-world scenes, our method

provides up to 3× more efficient inference than NeRF (with

the same rendering quality), or an improvement of up to

1.0 dB in PSNR (for the same inference cost).

1. Introduction

While high-quality rendering of virtual scenes has long

been associated with traditional computer graphics [16, 14],

there have been promising developments in using neural net-

works for photo-realistic rendering [21, 9, 11, 13]. These

neural rendering methods have the potential to reduce the

amount of human interaction that is needed to digitize the

real world. We believe the further development of neural

scene representations will increase the viability of 3D con-

tent creation in-the-wild and continue pushing neural render-

ing to higher levels of life-like detail.

Among existing neural rendering methods, those that

operate in 3D have lately drawn much interest [19, 9, 13].

Unlike those based on convolutional neural networks [6],

these methods do not operate in image-space, and rather

train volumetric representations of various types: they de-

Figure 1. We render a scene (a) from a decomposed neural repre-

sentation (b), consisting of a collection of spatially localized neural

networks. Each of these networks render a convex portion of the im-

age, and these are then composited into the output via the Painter’s

Algorithm. Depending on the level of decomposition, this can lead

to faster rendering, or to renderings that have the same runtime, but

contain sharper details. In (c), we decompose the scene into 16

parts, which leads to sharper details than (d), with similar runtime.

fine functions that can be queried in space during a volume

rendering operation. This is essential, as volume rendering

introduces an inductive bias towards rendering phenomena,

so that effects like occlusion and parallax are modeled by

construction, rather than being emulated by image-space

operations.

However, neural volume rendering is far from being a

fully developed technology. The two development axes are

14153

Figure 2. Diminishing returns – We sweep through network

architectures varying by depth and width to show how the gains

in quality diminish with increased capacity. The total number of

network parameters varies linearly with network depth (left) and

quadratically with the number of units in each layer (right). All

networks trained for 300k iterations on the NeRF “room” scene.

generality (removing assumptions about the input, hence al-

lowing their application to more general visual phenomena)

and performance (increasing the efficiency of training and/or

inference). In this paper, we focus on performance, and

specifically the inference performance. Hence, the natural

question then becomes “why are neural volume rendering

models so incredibly slow?” Let us consider Neural Radi-

ance Fields (NeRF) [13] as the cardinal example. These

method requires hundreds of MLP invocations per pixel to

compute the samples needed by volume rendering. This

results in an extremely compute-intensive inference process

needing ≈108 network evaluations and minutes of computa-

tion to render a one megapixel image on a modern NVIDIA

RTX 2080 Ti accelerator.

Naturally, to accelerate inference one could trade away

model capacity, but doing so naı̈vely results in lower render-

ing quality. However, as illustrated in Figure 2, there are

diminishing returns regarding how the capacity of neural

networks (i.e. number of layers or number of neurons per

layer) affects final rendering quality. We take advantage of

this phenomena and accelerate neural rendering by dividing

the scene into multiple areas (i.e. spatial decomposition), and

employing a small(er) networks in each of these areas.

Due to hardware limitations in the memory architecture of

accelerators, not all decompositions are appropriate. For ex-

ample, a random decomposition of the volume would result

in random sub-network invocations. Coalescing invocations

so that memory access are contiguous is possible, but in

our experiments we found the re-ordering operations are not

sufficiently fast, and any efficiency gain from using smaller

networks was lost. Hence, our question becomes “Can we

design a spatial decomposition that minimizes the chance

of random memory access?” We address this question by

noting that we can elegantly overcome these limitations if we

decompose space with Voronoi Diagrams [3, Ch. 7]. More

specifically, the convex cells of the Voronoi diagram can

be rendered independently, after which the Painter’s Algo-

rithm [3, Ch. 12] can be used to composite the final image.

We formulate our Voronoi decomposition to be differ-

entiable, and train end-to-end to find an optimal cell ar-

rangement. By doing so we increase the efficiency of the

rendering process by up to a factor of three without any loss

in rendering quality. Alternatively, with the same rendering

cost, we enhance the rendering quality by a PSNR of up to

1.0dB (recall that Peak Signal to Noise Ratio is expressed in

log-scale).

Contributions. To summarize, our main contributions are:

• We highlight the presence of diminishing returns for net-

work capacity in NeRF, and propose spatial decomposi-

tions to address this issue.

• We demonstrate how a decomposition based on Voronoi

Diagrams may be learned to optimally represent a scene.

• We show how this decomposition allows the whole scene

to be rendered by rendering each part independently, and

compositing the final image via Painter’s Algorithm.

• In comparison to the NeRF baseline, these modifications

result in improvement of rendering quality for the same

computational budget, or faster rendering of images given

the same visual quality.

2. Related Work

A large literature exists on neural rendering. We refer

the reader to a recent survey [20], and only cover the most

relevant techniques in what follows.

Image-space neural rendering. The simplest form of neu-

ral rendering resorts to image-to-image transformations via

convolutional neural networks [6]. This operation can be

aided by 3D reasoning [4, 17, 11, 23], producing an in-

termediate output that is then again fed to a CNN; regu-

lar grids [4, 17] or point clouds [11, 23] have both been

used for this purpose. As these works still rely on CNNs

to post-process the output, they have difficulty modeling

view-dependent effects, often resulting in visible artefacts.

Other, non-learned methods have also achieved impressive

results by synthesizing novel views directly from the content

of the input images [15, 2].

Neural volumetric rendering. Recently, researchers suc-

ceeded in integrating 3D inductive bias within a network

in a completely end-to-end fashion, hence removing the

need CNN post-processing. Instead, they rely on tracing

rays through a volume to render an image [18, 19]. While

these results pioneered the field, more compelling results

were achieved via the use of fixed-function volume render-

ing [9, 13]. In particular, and thanks to the use of positional

encoding, NeRF [13] is able to render novel views of a

scene from a neural representation with photo-realistic qual-

ity. Extensions of NeRF to dynamic lighting and appearance

exist [10], as well as early attempts at decomposing the com-

plexity of the scene into near/far components [25]. With an

14154

Figure 3. Framework – The DeRF architecture (left) consists of a set of independent NeRF (right) networks which are each responsible

for the region of space within a Voronoi cell defined by the decomposition parameters φ. The final color value for a ray is computed by

applying the volume rendering equation to each segment of radiance c and density σ, and alpha compositing together the resulting colors.

Figure 4. Decomposed radiance fields – We visualize each of the rendering heads individually. Note that as each head is rendered only the

weights of one neural network head needs to be loaded, hence resulting in optimal cache coherency while accessing GPU memory.

objective similar to ours, in Neural Sparse Voxel Fields [8],

the authors realize a 10× speed-up by discretizing the scene

and avoiding computation in empty areas; note this solution

is complementary to ours. It focuses on the sampling part of

the NeRF pipeline, and therefore can be used in conjunction

with what we propose.

3. Method

We review the fundamentals of NeRF in Section 3.1,

describe our decomposition-based solution in Section 3.2, its

practical realization with Voronoi Diagrams and the Painter’s

Algorithm in Section 3.3. We conclude by detailing our

training methodology in Section 3.4.

3.1. Neural radiance fields (NeRF)

To represent a scene, we follow the volume rendering

framework of NeRF [13]; see Figure 3 (right). Given a

camera ray r(t) = o + td corresponding to a single pixel,

we integrate the contributions of a 5D (3D space plus 2D

for direction) radiance field c(x,d) and spatial density σ(x)

along the ray:

C(r) =

∫ tf

tn

T (t) σ(r(t)) c(r(t),d) dt (1)

to obtain a the pixel color C(r). Here, tn and tf are the

near/far rendering bounds, and transmittance T (t) represents

the amount of the radiance from position t that will make it

to the eye, and is a function of density:

T (t) = exp

(

−

∫ t

tn

σ(r(s)) ds

)

(2)

The neural fields σ(x) and c(x,d) are trained to minimize

the difference between the rendered and observed pixel val-

ues Cgt over the set of all rays R from the training images:

Lradiance = Er∼R

[

‖C(r)− Cgt(r)‖
2

2

]

. (3)

Note how in neural radiance fields, a single neural network

is used to estimate σ(x) and c(x,d) for the entire scene.

However, as discussed in the introduction, it is advisable

14155

Figure 5. Compositing with the Painter’s algorithm – Visualization of the intermediate steps of the compositing process.

to use multiple smaller capacity neural networks (heads) to

compensate for diminishing returns in rendering accuracy.

3.2. Decomposed radiance fields (DeRFs)

We propose to model the radiance field functions σ(x)
and c(x,d) as a weighted sum of N separate functions, each

represented by a neural network (head); see Figure 3 (left).

Specifically, the NeRF model defines two directly learned

functions: σθ(x) and cθ(x,d), each defined for values of x

over the full space of R3, and modeled with a neural network

with weights θ. Conversely, in DeRF we write:

σ(x) =
∑N

n=1
wn

φ(x)σθn(x) (4)

c(x,d) =
∑N

n=1
wn

φ(x)cθn(x,d) (5)

where n denotes the head index, and wφ(x):R
3 7→R

N rep-

resents our decomposition via a learned function (with pa-

rameters φ) that is coordinatewise positive and satisfies the

property ‖wφ(x)‖1=1. Each head network is identical in

implementation to a single NeRF model.

Efficient scene decomposition. Note how in Eq. (5), when-

ever wn
φ(x)=0 there is no need for σθn(x) and cθn(x,d) to

be evaluated, as their contributions would be zero. Hence,

we train our decomposition wφ so that only one of the

N elements in {wn
φ(x)} is non-zero at any position in

space (i.e. we have a spatial partition). Because of this

property, for each x, only one head needs to be evaluated,

accelerating the inference process.

Balanced scene decomposition. As all of our heads have

similar representation power, it is advisable to decompose the

scene in a way that all regions represent a similar amount of

information (i.e. visual complexity). Toward this objective,

we first introduce Wφ(r) ∈ R
N to measure how much the

N heads contributes to a given ray:

Wφ(r) =

∫ tf

tn

T (t) σ(r(t)) wφ(r(t)) dt . (6)

and employ a loss function that enforces the contributions to

be uniformly spread across the various heads:

Luniform = ‖Er∼R [Wφ(r)]‖
2

2
. (7)

Minimizing this loss results in a decomposition which uti-

lizes all heads equally. To see this, let Wφ = Er∼R[Wφ(r)],
and let 1 ∈ R

N be the vector with all 1’s. Recall that since

‖wφ(x)‖1=1 and is coordinatewise positive, we get that

1 · wφ(x) = 1. Therefore, 1 · Wφ(r) will be independent

of φ, and hence 1 · Wφ will be a constant. Finally, by the

Cauchy-Schwartz inequality, we get that ‖1‖22‖Wφ‖
2
2 is min-

imized when Wφ is parallel to 1, which means that all heads

contribute equally.

3.3. Voronoi learnable decompositions

We seek a decomposition satisfying these requirements:

1. it must be differentiable, so that the decomposition can

be fine-tuned to a particular scene

2. the decomposition must be a spatial partition to unlock

efficient evaluation, our core objective

3. it must be possible to evaluate the partition in an

accelerator-friendly fashion

Towards this objective, we select a Voronoi Diagram as the

most suitable representation for our decomposition. We em-

ploy the solution proposed in [24], which defines, based on a

set φ ∈ R
N×3 of N Voronoi sites, a differentiable (i.e. soft)

Voronoi Diagram as:

wn
φ(x) =

e−β||x−φn||2

∑N

j=1 e
−β||x−φj ||2

(8)

14156

where β ∈ R
+ is a temperature parameter controlling the

softness of the Voronoi approximation. This decomposition

is: 1© differentiable w.r.t. its parameters φ, and has smooth

gradients thanks to the soft-min op in (8); 2© a spatial parti-

tion for β → ∞, and thanks to the defining characteristics

of the Voronoi diagram; 3© compatible with the classical

“Painter’s Algorithm”, enabling efficient compositing of the

rendering heads to generate the final image. An example of

the trained decomposition is visualized in Figure 4.

Painter’s Algorithm. This algorithm is one of the

most elementary rendering techniques; see [3, Ch. 12].

Figure 6. A simple scene

made of convex elements

that the Painter’s Algo-

rithm cannot render.

The idea is to render objects

independently, and draw them

on top of each other in order,

from back to front, to the out-

put buffer (i.e. image). Such

an ordering ensures that closer

objects occlude further ones.

This algorithm has only found

niche applications (e.g. render-

ing transparencies in real-time

graphics), but it encounters

failure cases when the front to

back ordering of objects in the

scene is non decidable; see a

simple example in the inset figure, where three convex ele-

ments form a cycle in the front/behind relation graph.

In our solution, the scene can be rendered part-by-part,

one Voronoi cell at a time, without causing memory cache in-

coherences, leading to better GPU throughput. We can then

composite the cell images back-to-front, via the Painter’s

Algorithm, to generate the final image; see Figure 5. How-

ever, we need to verify that Voronoi decompositions are

compatible with the Painter’s Algorithm.

On the correctness of the Voronoi Painter’s. Taking an

approach similar to [5], we prove that our Voronoi decom-

position is compatible with the Painter’s Algorithm. To do

so, we will show that for any Voronoi decomposition and a

camera located at Q, there is a partial ordering of the Voronoi

cells so that if V shows up before W in our ordering, then W

does not occlude any part of V (i.e. no ray starting from Q to

any point in V will intersect W). To this end, let P ⊂ R
n be

a set of points, and for each P ∈ P let VP be the Voronoi cell

attached to P . For any Q ∈ R
n define <Q on the Voronoi

cells of

VP ′ <Q VP if and only if d(P ′, Q) < d(P,Q), (9)

where d defines the distance between points. This clearly de-

fines a partial ordering on P . We now show that this partial

ordering is the desired partial ordering for the Painter’s Algo-

rithm. Let (x, x′) ∈ VP × VP ′ and let x′ = λx+ (1− λ)Q
for λ ∈ (0, 1) (i.e. x′ is on the line segment (x,Q)) and

hence parts of VP ′ is covering VP . We now need to show

that VP ′ <Q VP , or equivalently d(P ′, Q) < d(P,Q). Let

H = {z | d(z, P) < d(z, P ′)} (10)

be the halfspace of points closer to P . Note that d(x, P) <
d(x, P ′) (since x ∈ VP) and d(x′, P) > d(x′, P ′), and

hence x ∈ H and x′ 6∈ H . If Q ∈ H then the line seg-

ment (x,Q) will intersect the boundary of H twice, once

between (x, x′) and once between (x′, Q), which is not pos-

sible. Therefore Q 6∈ H , which implies d(P ′, Q) < d(P,Q)
as desired.

3.4. Training details

When training our model, we find that successful training

is only achieved when the decomposition function wφ is

trained before the network heads for density σθn and radi-

ance cθn . This allows the training of the primary model to

proceed without interference from shifting boundaries of the

decomposition. However, as shown in Eq. (6), the training

of wφ requires a density model σ. To resolve this problem,

we first train coarse networks σcoarse and ccoarse that apply

to the entire scene, before the networks heads σθn and cθn

are trained; this pre-training stage lasts ≈100k iterations in

our experiments. During the pre-training stage, to stabilize

training even further, we optimize θcoarse and φ separately,

respectively minimizing the reconstruction loss Lradiance

and uniformity loss Luniform. We found through experiment

that allowing Luniform to affect the optimization of θcoarse
inhibited the ability of the density network to properly learn

the scene structure, resulting in unstable training. Once wφ is

pre-trained, we keep φ fixed and train the per-decomposition

networks σθn and cθn with the Lradiance, as the Voronoi

sites are fixed, and Luniform is no longer is necessary. The

training process can be summarized as follows:

θ∗coarse = argmin
θcoarse

Lradiance(Cθcoarse) (11)

φ∗ = argmin
φ

Luniform(Wθ∗

coarse
,φ) (12)

{θ∗0 , ..., θ
∗
n} = argmin

{θ0,...,θn}

Lradiance(C{θ0,...,θn},φ∗) (13)

The first two steps can be implemented as simultaneous

optimizations to reduce training time, and form our pre-

training phase.

Controlling the temperature parameter. The soft-

Voronoi diagram formulation in (8) leads to differentiabil-

ity w.r.t the Voronoi sites (as otherwise gradients of the

weight function would be zero), but efficient scene decom-

position (Section 3.2) requires spatial partitions. Hence, we

define a scheduling for β over the training process. We start

at sufficiently low value so that wi(x) ≈ wj(x) for all i

and j. As the training progresses, we exponentially increase

β until it reaches a sufficiently high value (10e9 in our ex-

periments), so that the decomposition is indistinguishable

14157

Units 1 Head (�) 4 Heads (◦) 8 Heads (⋄)

PSNR ↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓

64 22.15 0.61 0.52 23.08 0.66 0.46 23.34 0.67 0.44

96 22.87 0.64 0.48 23.56 0.68 0.43 23.77 0.70 0.41

128 23.20 0.66 0.46 23.74 0.69 0.42 23.82 0.70 0.40

192 23.83 0.70 0.42 24.01 0.71 0.39 24.17 0.72 0.37

256 23.88 0.70 0.41 24.22 0.72 0.38 24.26 0.73 0.36

Figure 7. Quality vs. efficiency – Reconstruction quality versus run-time inference cost for the “fern” scene as the network capacity (number

of hidden units) is changed; the table report the data used to draw the diagrams. To make the computational requirements tractable, we

lower sample counts (128 per ray) and batch sizes (512) are used than for results reported in [13], and thus are not directly comparable. For

quantitative results for other scenes, please refer to the appendix.

from a (hard) Voronoi diagram; i.e. either wi(x) ≈ 1 or

wi(x) ≈ 0 for all i.

Parameter magnitude scaling. When using an optimizer

such as ADAM [7], the training process is not necessarily

invariant with respect to the magnitude of individual vari-

ables. As a result, when using a common optimizer state

for all trainable variables, we found that scaling the scene

coordinate system such that φ ∈ [−1, 1]N×3 was necessary

to prevent the training of the decomposition from oscillating

excessively or progressing too slowly.

4. Results

We now provide our empirical results. We first detail

the experimental setup in Section 4.1. We then present how

the theory of our method translates to practice, and how

our method performs under various computation loads in

Section 4.2. We then discuss other potential decomposition

strategies in Section 4.3.

4.1. Experimental setup

To validate the efficacy of our method, we use the “Real

Forward-Facing” dataset from NeRF [13]. The dataset is

composed of eight scenes, which includes 5 scenes originally

from [12], each with a collection of high-resolution images,

and corresponding camera intrinsics and extrinsics. As we

are interested in the relationship between rendering quality

and the computational budget in a practical scenario, we

focus on real images. For results on the NeRF [13] synthetic

and DeepVoxels [18] synthetic datasets, see appendix.

Units 1 Head 4 Heads 8 Heads

TFLOPs ↓ Time ↓ TFLOPs ↓ Time ↓ TFLOPs ↓ Time ↓

64 14.5 14.4 19.6 20.7 21.1 21.2

96 26.0 32.4 29.2 39.3 37.7 44.6

128 34.4 57.5 46.0 67.6 55.9 74.7

192 83.3 129.4 87.2 146.5 111.0 155.0

256 115.7 230.1 160.9 253.5 186.6 257.4

Table 1. Quantitative comparison of average TeraFLOPs and

seconds needed to generate a frame for the “fern” scene on an

NVIDIA v100 GPU; for both metrics smaller values are better.

Implementation. We implement our method in in Tensor-

Flow 2 [1]. Due to the large number of evaluation jobs, we

train with some quality settings reduced: we use a batch size

of 512 and 128 samples/ray. We train each model for 300k

iterations (excluding the decomposition pre-training). Other

settings (including the optimizer) are the same as reported in

NeRF [13]. The amount of time needed to complete training

jobs varies significantly depending on configuration, but a

representative example is the 8-head, 128-unit variant which

is comparable in quality to a single NeRF using the original

settings, and trains fully in 16 hours using two v100 GPUs.

4.2. Efficiency of DeRF

Theory vs. practice – Table 1. In theory the decomposi-

tion should not cause any significant increase in computa-

tion – the only increase would be to decompose and then

merge rendering results. We validate that this is in fact

the case by evaluating the number of rendered frames-per-

TeraFLOP (theoretical performance) as well as the number

14158

Figure 8. Qualitative comparison – A direct comparison of the results of a standard NeRF model with 256 hidden units (left), and a

16-head DeRF model with 128 units (right). The DeRF model has better performance and quality than the baseline while using networks

which each have one quarter the number of parameters. In other words, despite our DeRF having 16×
1

4
= 4× more parameters than the

baseline NeRF, it executes 1.7× faster. See Figure 7 for metrics on various model combinations for this scene.

of frames-per-second (practical performance). As shown in

Table 1, in terms of FLOPs, the difference between using no-

decomposition and 8-decompositions is 62.8% in maximum,

and 49.8% in average, whereas there is a quadratic increase

in computation should more units be used.

These theoretical trends are mirrored into those of actual

runtime. While there can be an increase in computation time

compared to the operation count, the maximum increase

when going from no-decomposition to 8-decomposition is

47.5%, and the average is 29.3%. Again, this is much more

efficient than increasing the number of neurons. This high-

lights the efficacy of our decomposition strategy – Voronoi

– allowing theory to be applicable in practice. Note that in

Section 4.3, we show that this is not necessarily the case for

other naı̈ve strategies.

Quality vs. efficiency – Figure 7. We further evaluate how

the quality of rendering changes with respect to the number

of decompositions, and the number of neurons used. To

quantify the rendering quality, we rely on three metrics:

• Peak Signal to Noise Ratio (PSNR): A classic metric to

measure the corruption of a signal.

• Structural Similarity Index Measure (SSIM) [22]: A per-

ceptual image quality assessment based on the degradation

of structural information.

• Learned Perceptual Image Patch Similarity (LPIPS) [26]:

A perceptual metric based on the deep features of a trained

network that is more consistent with human judgement.

We summarize the results for a representative scene in Fig-

ure 7. As shown, given the same render cost, more fine-

grained decompositions improve rendering quality across all

metrics. Regardless of the computation, using more decom-

position leads to better rendering quality.

Qualitative results – Figure 8 and Figure 9. We further

show a qualitative comparison between a standard NeRF

model and DeRF in Figure 8, where we show that our method

outperforms NeRF in terms of both quality and efficiency.

More qualitative results are also available in Figure 9 and

the video supplementary.

4.3. Alternative decomposition methods

We further empirically demonstrate that naı̈ve decompo-

sition strategies are insufficient, and hence the importance

of using our Voronoi decomposition.

Decompositions with MLPs – Table 2. An obvious first

thought into decomposing scenes would be to leave the de-

composition to a neural network, and ask it to find the opti-

mal decomposition through training. To compare against this

baseline, we implement a decomposition network with an

MLP with a softmax activation at the end to provide values

of wn
φ(x). We show the actual rendering time compared to

ours in Table 2. While in theory this method should require

a similar number of operations to ours, due to the random

memory access during the integration process, they can not

be accelerated as efficiently. Consequently, their runtime

cost tends to grow much faster than DeRF models as we

increase the number of heads.

Decompositions with regular grids. A trivial spatial de-

composition could be achieved by using a regular grid of

network regions. While this would eliminate the require-

ment to train the decomposition, in practice it would require

many more regions in total to achieve the same level of accu-

racy (due to the non-homogeneous structure of real scenes).

Due to the curse of dimensionality, this will also result in a

significant amount of incoherence in the memory access pat-

14159

Figure 9. Qualitative results gallery – A sampling of DeRF renders, alongside visualizations of decompositions.

4 Heads 8 Heads 16 Heads

DeRF 55.88s 76.51s 83.50s

DeRF-MLP 32.89s 63.40s 127.32s

Table 2. Decomposition baselines – The frame render time for the

“room” scene (in seconds) for a Voronoi and MLP-decomposition.

Note that as the number of heads increases, the Voronoi decom-

position provides a substantial benefit to efficiency. Note models

beyond 16 heads are infeasible to train due to memory require-

ments (for reasonable network widths).

tern for network weights, resulting in lower computational

performance; see the appendix.

5. Conclusions

We have presented DeRF – Decomposed Radiance

Fields – a method to increase the inference efficiency of

neural rendering via spatial decomposition. By decompos-

ing the scene into multiple cells, we circumvent the problem

of diminishing returns in neural rendering: increasing the

network capacity does not directly translate to better render-

ing quality. To decompose the scene, we rely on Voronoi

decompositions, which we prove to be compatible with the

Painter’s algorithm, making our inference pipeline GPU-

friendly. As a result, our method not only renders much

faster, but can also deliver higher quality images.

Limitations and future work. There are diminishing re-

turns with respect to the number of decomposition heads,

not just network capacity; see Figure 7. Yet, one is left to

wonder whether the saturation in rendering quality could be

compensated by significantly faster rendering as we increase

the number of heads in the hundreds or thousands. In this

respect, while in this paper we assumed all heads to have the

same neural capacity, it would be interesting to investigate

heterogeneous DeRFs, as, e.g., a 0-capacity head is perfect

for representing an empty space. On a different note, the

implementation of highly efficient scatter/gather operations

could lead to an efficient version of the simple MLP solution

in Section 4.3, and accelerate the training of DeRFs, which

currently train slower than models without decomposition.

Acknowledgements

This work was supported by the Natural Sciences and En-

gineering Research Council of Canada (NSERC) Discovery

Grant, NSERC Collaborative Research and Development

Grant, Google, Compute Canada, and Advanced Research

Computing at the University of British Columbia.

We thank Ricardo Martin Brualla for his comments.

14160

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-

low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software

available from tensorflow.org.

[2] Gaurav Chaurasia, Sylvain Duchêne, Olga Sorkine-Hornung,

and George Drettakis. Depth synthesis and local warps for

plausible image-based navigation. ACM Transactions on

Graphics, 2013.

[3] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Ot-

fried Schwarzkopf. Computational geometry. Springer, 1997.

[4] Emilien Dupont, Miguel Angel Bautista, Alex Colburn,

Aditya Sankar, Carlos Guestrin, Josh Susskind, and Qi Shan.

Equivariant Neural Rendering. arXiv Preprint, 2020.

[5] Herbert Edelsbrunner. An Acyclicity Theorem for Cell Com-

plexes in D Dimension. Combinatorica, 1990.

[6] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,

Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Rud-

erman, Andrei A Rusu, Ivo Danihelka, Karol Gregor, et al.

Neural Scene Representation and Rendering. Science, 2018.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. In International Conference on

Learning Representations, 2015.

[8] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural Sparse Voxel Fields. Advances in

Neural Information Processing Systems, 2020.

[9] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel

Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural Vol-

umes: Learning Dynamic Renderable Volumes from Images.

ACM Transactions on Graphics, 2019.

[10] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-

jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel

Duckworth. NeRF in the Wild: Neural Radiance Fields for

Unconstrained Photo Collections. arXiv Preprint, 2020.

[11] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues

Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-

Brualla. Neural Rerendering in the Wild. In Conference on

Computer Vision and Pattern Recognition, 2019.

[12] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and

Abhishek Kar. Local Light Field Fusion: Practical View Syn-

thesis with Prescriptive Sampling Guidelines. ACM Transac-

tions on Graphics, 2019.

[13] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing Scenes as Neural Radiance Fields for View Syn-

thesis. In European Conference on Computer Vision, 2020.

[14] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-

zel Jakob. Mitsuba 2: A Retargetable Forward and Inverse

Renderer. ACM SIGGRAPH Asia, 2019.

[15] Eric Penner and Li Zhang. Soft 3d reconstruction for view

synthesis. 2017.

[16] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically

Based Rendering: From Theory to Implementation. Morgan

Kaufmann, 2016.

[17] Konstantinos Rematas and Vittorio Ferrari. Neural Voxel Ren-

derer: Learning an Accurate and Controllable Rendering Tool.

In Conference on Computer Vision and Pattern Recognition,

2020.

[18] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Niess-

ner, Gordon Wetzstein, and Michael Zollhofer. DeepVoxels:

Learning Persistent 3D Feature Embeddings. In Conference

on Computer Vision and Pattern Recognition, 2019.

[19] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.

Scene Representation Networks: Continuous 3D-Structure-

Aware Neural Scene Representations. In Advances in Neural

Information Processing Systems, 2019.

[20] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitz-

mann, Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-

Brualla, Tomas Simon, Jason Saragih, Matthias Niessner, et al.

State of the Art on Neural Rendering. Eurographics 2020

State of The Art Report, 2020.

[21] Justus Thies, Michael Zollhöfer, and Matthias Niessner. De-

ferred Neural Rendering: Image Synthesis Using Neural Tex-

tures. ACM Transactions on Graphics, 2019.

[22] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.

Simoncelli. Image Quality Assessment: From Error Visi-

bility to Structural Similarity. IEEE Transactions on Image

Processing, 2004.

[23] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. SynSin: End-to-End View Synthesis from a Sin-

gle Image. In Conference on Computer Vision and Pattern

Recognition, 2020.

[24] Francis Williams, Jerome Parent-Levesque, Derek

Nowrouzezahrai, Daniele Panozzo, Kwang Moo Yi,

and Andrea Tagliasacchi. Voronoinet: General functional

approximators with local support. In Conference on

Computer Vision and Pattern Recognition Workshops, 2020.

[25] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. NeRF++: Analyzing and Improving Neural Radiance

Fields. arXiv Preprint, 2020.

[26] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The Unreasonable Effectiveness of Deep

Features as a Perceptual Metric. In Conference on Computer

Vision and Pattern Recognition, 2018.

14161

