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Abstract

Pixel-wise segmentation is one of the most data and an-

notation hungry tasks in our field. Providing representa-

tive and accurate annotations is often mission-critical es-

pecially for challenging medical applications. In this pa-

per, we propose a semi-weakly supervised segmentation al-

gorithm to overcome this barrier. Our approach is based on

a new formulation of deep supervision and student-teacher

model and allows for easy integration of different supervi-

sion signals. In contrast to previous work, we show that

care has to be taken how deep supervision is integrated in

lower layers and we present multi-label deep supervision as

the most important secret ingredient for success. With our

novel training regime for segmentation that flexibly makes

use of images that are either fully labeled, marked with

bounding boxes, just global labels, or not at all, we are

able to cut the requirement for expensive labels by 94.22%
– narrowing the gap to the best fully supervised baseline to

only 5% mean IoU. Our approach is validated by extensive

experiments on retinal fluid segmentation and we provide an

in-depth analysis of the anticipated effect each annotation

type can have in boosting segmentation performance.

1. Introduction

Medical imaging tools have become a central part in mod-

ern health care. In direct consequence, hundreds of millions

of 2D- and 3D-images are recorded per year [41]. With

this ever-growing number, medical personnel has become

increasingly entangled in their evaluation. Deep learning

with the use of artificial neural networks has found use to al-

leviate the necessary effort needed for interpretation of such

images. However, training these models requires enormous

amounts of annotated data, especially in case of semantic

segmentation. The annotation process for this task is al-

ready extremely difficult in real-world scenarios such as in

urban street-scenes, where the pixel-wise annotation pro-

cess of a single image could span up to 90 minutes [15].

Figure 1. Annotations for segmentation are costly, especially when

experts need to provide them. We show how our semi-weakly

semantic segmentation method can use different annotation types

and how the recognition performance benefits from them.

This problem is amplified in the medical domain as we

further require domain experts to annotate data who are

severely time-restricted due to their clinical work. Thus,

we are faced with the problem of minimizing the needed

annotation effort while maximizing model accuracy.

The majority of existing approaches follow two orthog-

onal paths: incorporating non-annotated data [24] which is

fast to obtain or using cheap weak labels with different lev-

els of quality ranging from image-level [10, 23, 32, 47] over

single point [7] to bounding box annotations [29, 55]. Both

these so called semi- and weakly-supervised approaches led

to great insights and convincing results. However, they ig-

nore that practical applications are often faced with several

types of supervision simultaneously (Fig. 1).

In very common scenarios, we are provided with a small

pixel-wise annotated data set, with automatically parsed

image-level labels from medical reports, and with large

amounts of additional unlabeled data from the same distri-

bution. Currently, it is largely unanswered how such diverse

supervision types can be unified to train a semantic segmen-

tation system. To this end, we go beyond standard weakly-

or semi-supervised learning and investigate also the semi-

weakly supervised setting in the low-resource scenario of
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the medical domain.

For dealing with only few annotated examples, we pro-

pose a novel pathway to integrate training signals deep into

segmentation network layers via a new take on deep super-

vision. We then amplify these signals by enriching weakly-

or entirely un-labeled images via our novel approach to in-

fer robust pseudo-labels using a mean-teacher segmentation

model.

Furthermore, as iterative training processes in low-data

scenarios are often unstable, we present experiments fol-

lowing a rigorous evaluation protocol and report test accu-

racies with standard deviations along numerous data-splits.

Our contributions amount to:

(1) We present the first thorough investigation of varying

numbers of training samples and a large diversity of

supervision types for semantic segmentation.

(2) We introduce a novel perspective on the deep supervi-

sion paradigm adapting it to segmentation in our Multi-

label Deep Supervision technique. With this, we intro-

duce a flexible semi-weakly supervised pathway to in-

tegrate either un- or weakly labeled images: our novel

Self-Taught Deep Supervision approach.

(3) Finally, our best performing method Mean-Taught

Deep Supervision adds invariance towards perturba-

tions and a robust pseudo-label generation, achieving

results close to fully supervised baselines while using

only a fraction of 5.78% strong labels.

2. Related Work

Mask supervision. The most prominent research direc-

tion in semantic segmentation considers the task in a fully-

supervised setting, assuming the availability of a sufficient

amount of expensive pixel-wise labeled masks [5, 12, 13,

35, 39, 50, 67]. Based on this assumption, innovation

in parameter-heavy models induces performance gains on

large data sets [15, 18, 36], while in smaller-scale scenar-

ios, e.g. domains where label acquisition is even more ex-

pensive, leveraging this progress is only partially possible.

Bounding box supervision. Coarse bounding boxes drawn

around semantic regions offer strong location cues at man-

ageable costs, but inherently include pixels not semantically

associated to the box-label. On object-related data sets,

leveraging this kind of supervision has led to impressive re-

sults [16, 29, 46, 55]. Yet, methods tend to leverage hand-

crafted rules or tools like GrabCut [51], Multiscale Combi-

natorial Grouping [4], or Selective Search [60] to kick-start

training. Therefore, such approaches are often not trivially

transferred to data different from natural images. In medical

imaging, bounding box supervision for segmentation has

been studied for positron emission tomography scans [2] as

well as magnetic resonance images [28, 49]. In this work,

we leverage box-supervision for retinal fluid segmentation

in optical coherence tomography (OCT) scans.

Image-level supervision. Leveraging global labels with

information about present classes in an image to train a

segmentation model has recently seen growing interest in

our community [10, 23, 30, 32, 47, 61]. While early ap-

proaches followed a Multiple Instance Learning (MIL) for-

mulation [47], recent work builds upon feature attribution

methods [53, 54, 68] for providing initial location cues and

refine them using prior assumptions [10, 23, 30, 32, 61].

Such assumptions are often specific to the data set they

were designed for, consequently having limited applicabil-

ity for many medical domains. In consequence, only few

approaches are known which investigate benefits of image-

level labels in context of OCT scans [52, 63].

Semi- and semi-weakly supervision. Combining pixel-

wise annotations with weaker annotations like global- or

box-labels has been shown early in [46]. These scenar-

ios are termed semi-weakly supervised segmentation [14].

With the emergence of generative adversarial networks, un-

and pixel-wise labeled data were fused via adversarial ob-

jectives [24, 43, 56], exploring semi-supervised segmenta-

tion models. Making best use of bounding boxes in con-

junction with pixel-wise labels has seen interest in [25, 29].

Recently, many attempts try to regularize the learner to form

predictions invariant towards perturbations [34, 45]. Along

this line of thought, the data augmentation strategy Cut-

Mix [65] can serve as perturbation by mixing predictions

and assembling new informative pseudo-labels [19, 44].

This approach is often accompanied by mean-teachers [58]

serving as robust models for distilling invariance into the

student. Closest to our work, medical image segmenta-

tion with a mean-teacher was done by changing the consis-

tency term from [58] to better fit the segmentation task [48].

Our approach does not only enforce consistency between a

teacher and student, we extend the idea with pseudo-targets.

Yet, instead of adding complexity by generating them itera-

tively [6], we integrate pseudo-labels online and identify the

missing link in coping with their noise: deep supervision.

Deep supervision. Early explorations of deep architectures

for classification introduced companion objectives or dense

pathways into lower layers [22, 31, 57]. The positive ef-

fects in low-data scenarios [64], on convergence, general-

ization and vanishing gradients [31] set off lots of work us-

ing deep supervision in segmentation models [11, 38, 40].

Especially the medical imaging community with their noto-

riously scarce-data applications showed strong interest [1,

17, 20, 33, 62, 64, 66, 69, 70]. The move from classification

to segmentation is mostly done by up-scaling low resolution

feature maps. We propose the counter intuitive reverse di-

rection: down-scaling the pixel-wise annotations. By doing

so in a novel semantic-preserving fashion, we uncover sur-

prising properties when joining it with noisy pseudo-labels.
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3. Proposed Approach

In this chapter, we introduce notation and the task of

semi-weakly supervised semantic segmentation. There-

after, we present our novel perspective on deep supervision:

Multi-label Deep Supervision which we consider for tradi-

tional semantic segmentation and motivate its strong fit for

semi- and semi-weakly supervised segmentation in our Self-

Taught and Mean-Taught Deep Supervision frameworks.

3.1. Preliminaries

3.1.1 Supervision modalities and notation

For semi-weakly supervised semantic segmentation, we

consider an image data set:

D = {x1, ..., xn|xi ∈ R
3×H×W } . (1)

An image xi can have different available annotations, for

example a pixel-wise annotated mask mi, bounding box bi,

global image-level label gi from:

M = {m1, ...,mn|mi ∈ [0, 1](C+1)×H×W } , (2)

B = {b1, ..., bn|bi ∈ [0, 1](C+1)×H×W } , (3)

G = {g1, ..., gn|gi ∈ [0, 1](C+1)} , (4)

or no annotation at all. Note, for m ∈ M, we assume that at

each spatial position (x, y) ∈ H ×W only a single class is

set to one. We replace the common representation of bound-

ing boxes as two points (x1, y1), (x2, y2) ∈ H × W by a

mask-like notation, where foreground classes c are set to

one for spatial positions falling inside their bounding box.

The background class C+1 is one at all left empty regions.

In semi-weakly supervised segmentation, we do not have

full access on M for all images x ∈ D but each image is

annotated with a mask, bounding box, image-level label or

not at all. Along with its special case of having masks and

raw images, i.e. semi-supervised segmentation, the target is

to correctly infer the semantic mask for any given image.

3.1.2 Supervision integration

Given an input feature map f ∈ R
d×H×W , we refer to

H and W as the spatial dimensions. To form a prediction

p ∈ R
C×H×W of the same spatial extent with C output

dimensions, in semantic segmentation, most commonly f

is transformed by C 1 × 1 convolutions. In our case, we

transform f by a sequence of 1× 1 convolution, batch nor-

malization [26] and ReLU non-linearity followed by a final

1 × 1 convolution. We refer to this as an output-head of

the model. In case we have multiple objective functions, we

simply augment the model with additional output-heads on

top of f , which is common practise in literature [8, 59].

Segmentation networks often employ encoder-decoder

architectural designs, within which we later integrate aux-

iliary outputs (deep supervision). More specifically, these

additional outputs operate on feature maps f0, . . . , fh pro-

duced in the decoding process. Here, we refer to f0 as the

innermost feature map in the decoder, while fh corresponds

to the outermost feature map, on which standard segmenta-

tion models add an output-head for predictions. Given the

spatial dimensions Hi ×Wi for the feature map fi, we can

generally assume that:

∀i∈{0,...,h};i<j : Hi ≤ Hj & Wi ≤ Wj . (5)

In our experiments, we employ encoder-decoder models for

which H0 ≪ Hh and W0 ≪ Wh hold. Computing predic-

tions based on a certain feature map fi will be referred to as

κi(fi) ∈ R
C×Hi×Wi , with κi(·) denoting an output-head.

3.1.3 Supervision signals

Different modes of supervision often require different loss

functions. The most common objective for training seman-

tic segmentation models when pixel-wise masks are avail-

able is minimizing the cross-entropy loss:

LCE(f,m) = −
1

Ω1

H,W,C∑

i,j,c=1

mc,i,j · log(α(κ(f))c,i,j) , (6)

where α(·) is the softmax along the first dimension and

Ω1 = H · W . In case of multi-label settings, the binary

cross-entropy loss is commonly chosen:

BCE(o, t) = t · log(σ(o)) + (1− t) log(1− σ(o)) (7)

LBCE(f,m) = −
1

Ω2

H,W,C∑

i,j,c=1

BCE(κ(f)c,i,j ,mc,i,j) (8)

With Ω2 = H · W · C, this loss most commonly uses a

sigmoid normalization σ(·).

3.2. Multilabel Deeply Supervised Nets

Parameter-efficient multi-label deep supervision. In its

inception, deep supervision was introduced for image clas-

sification [31], as such, having to identify one individual

class corresponding to the input. Yet, semantic segmenta-

tion in itself has a different target: find the class for each

pixel in the image. The problem we identify is the way

deep supervision is commonly integrated into segmentation

networks. Specifically, the challenge arises due to the mis-

match in spatial dimensions between the full-scale ground-

truth mask and the smaller spatial resolution within the net-

work’s feature maps (Equation 5).

Apart from [37] which use a lossy nearest interpolation,

most work forces the network to learn an up-scaling to ad-

dress the mismatch between low-resolution spatial features
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Figure 2. Our proposed approach combines pseudo-labeling via a mean-teacher with a novel perspective on deep supervision. By perturbing

the input to the teacher and reversing geometric transformations in output-space, we streamline mean-teachers for segmentation. The new

take on deep supervision, i.e. Multi-label Deep Supervision introduces a much needed smoothing effect for noisy pseudo-labels: At smaller

scales, erroneous predictions (red) like small shifts or few missed pixel-classifications get smoothed out and match the unavailable mask.

and the ground-truth mask. Then, after up-scaling, a stan-

dard output-head transforms the features into a prediction

with the same size as the mask. Consider the toy exam-

ple with the feature map fsmall ∈ R
d×10×10 and a corre-

sponding ground-truth mask mbig ∈ R
c×100×100. To en-

rich the segmentation model via deep supervision, previous

approaches would for the d dimensional feature f
:,x,y
small at

the spatial location (x, y) ∈ Hsmall ×Wsmall up-scale and

infer a patch of size 10 × 10 in the ground-truth. Not only

is this a tremendously hard task, it is precisely the task the

entirety of the decoder is trying to solve.

To summarize, we identify two shortcomings, (1) the

network has to learn an up-scaling, at the cost of addi-

tional parameters and (2) intermediate features are burdened

to model complex classification information and spatial re-

lations in output space that we question to be useful in

the decoding process, but presumably only serve as skip-

connections for more stable gradients.

Instead, we propose to model each feature vector f :,x,y

at each location (x, y) in feature maps as patch-descriptors

for their receptive field in the input image. Thus, we aim

at ingraining the semantic information of all pixels con-

tained in the receptive field of the patch-descriptors into the

model. We argue that this can be achieved by enforcing a

multi-label loss with a label containing all semantic classes

present in the receptive field. It follows, that instead of up-

scaling feature maps, we can simply down-scale the ground-

truth mask to match the size of the feature maps at no cost

of parameters and contain labels of all classes confined in

the receptive fields to preserve semantic information.

By formulating ground-truth masks as binary tensors (2),

this down-scaling process can be efficiently implemented,

by applying max-pooling with a fitting kernel-size and

stride to match the feature map’s spatial extent. The new

down-scaled target m∗
i ∈ R

C×Hi×Wi , therefore, contains

the multi-label ground-truth m
∗ :,x,y
i of the feature f

:,x,y
i

(i.e. patch-descriptor) aggregated from all spatial positions

within the feature’s receptive field.

As shown in Fig. 3, we integrate such semantic-

preserving, down-scaled multi-label ground-truths by ap-

plying output-heads on top of the feature maps and enforce:

L(f1, . . . , fh,m
∗
1, . . . ,m

∗
h) =

1

h

h∑

k=1

LBCE(fk,m
∗
k). (9)

We refer to this way of integrating supervision as Multi-

label Deep Supervision since it respects the presence of

multiple classes within the receptive field at each spatial lo-

cation in the hierarchical, low-resolution feature maps. Dur-

ing training, we pair this loss for the outermost feature maps

with a standard output-head using (6), and only use the lat-

ter for inference in a usual fashion.

Self-taught deep supervision. For semi-supervised seg-

mentation, some authors consider generating pseudo-labels

for unlabeled images to add noisy annotated samples. In a

similar fashion, we propose to generate pseudo-labels but

integrate them by providing Multi-label Deep Supervision.

The motivation behind this is that pseudo-labels at full res-

olution will contain a significant amount of incorrect pre-

dictions. Yet, making use of Multi-label Deep Supervision

we down-sample the pseudo-labels, naturally smoothing the

noisy supervision signal. For earlier decoder outputs with

smaller spatial resolution, the down-sampled pseudo-label

will better match the unavailable actual ground-truth, as

shown on the right-hand side of Fig. 2.

We introduce Self-Taught Deep Supervision, which gen-

erates a binary ground-truth tensor for an unlabeled sam-
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Figure 3. Our proposed method of integrating deep supervision

into the decoder of segmentation networks by down-sampling the

pixel-mask and enforcing a multi-label classification loss.

ple in the following fashion: First the unlabeled image xi is

passed through the segmentation network to obtain a predic-

tion pi, which we transform into a pseudo-mask by attribut-

ing ones to classes with the highest probability at each lo-

cation (x, y). Using this pseudo-label, as described before,

we enforce Multi-label Deep Supervision. We use separate

output-heads on the outermost feature map for the ground-

truth and the generated pseudo-labels, which turned out to

be important. Thus, we integrate one output-head which

is trained with standard cross-entropy loss and the clean la-

bels, as well as a second output-head which is trained as part

of Eq. (9) using pseudo-labels. For inferring pseudo-labels,

we use the output-head trained with clean labels (see Fig. 2).

In case an image-level label gi is available, we can fur-

ther constrain the generated pseudo-label to the classes con-

tained in gi. In a similar fashion, an associated bounding

box label bi can constrain the pseudo-labels to lie within

coarse regions. This results in a flexible integration of

weakly-labeled images to improve pseudo-label quality.

Mean-taught deep supervision. In our final variant, we

extend the Self-Taught Deep Supervision approach with a

stronger pseudo-label generation. We generate more ro-

bust pseudo-labels by (1) enforcing consistent predictions

with respect to perturbations and (2) using a teacher model,

which is a combination of all models of previous iterations.

Mean-teachers (i.e. the exponential moving average over

previous model parameters) were successfully introduced

for semi-supervised classification [58] and saw some use in

segmentation [19, 44, 48]. The idea is that better predictions

can be obtained by maintaining a teacher model via contin-

uously updating its parameters with the moving average of

the student model and the previous teacher model. Hence,

the teacher is not trained separately, but just updated by:

θteacher
t = α · θteacher

t−1 + (1− α) · θstudent
t . (10)

Here, θ denotes either the parameters of the student- or

teacher model, while the index denotes the training iteration

and α the smoothing coefficient. The authors of [58] use the

teacher to align its softmax predictions with the student’s

given differently perturbed inputs using a mean squared er-

ror (MSE) loss. We extend this by leveraging the mean-

teacher to provide pseudo-labels for our Multi-label Deep

Supervision that the student network is trained with.

Previous adaptations to semantic segmentation either did

not perturb the input image to the teacher [48] or used Cut-

Mix variants [19, 44] as perturbations. Instead, we propose

to perturb the input image to the teacher in a different way as

the student input and still obtain matching outputs. To this

intent, we transform the teacher’s input xi by photo-metric

(e.g. color jittering) and geometric perturbations (e.g. flip-

ping) ϕ(xi). After the forward pass, we reverse only the ge-

ometric perturbations on the predictions via ϕ−1(pi). This

alteration is the crucial detail to make mean-teachers work

for semantic segmentation using common, simple data aug-

mentations as perturbations. As the mean-teacher is deemed

to produce better predictions, we use its standard output-

head for inference. See also Fig. 2 for visualizations.

4. Experiments

4.1. Data set

Our experiments are built on the publicly available RE-

TOUCH data set [9] for retinal fluid segmentation. It is

a collection of optical coherence tomography (OCT) vol-

umes (stacks of b-scans) containing different retinal dis-

eases. These volumes can be obtained by imaging tools of

different vendors of which the data set features three: Spec-

tralis, Cirrus, and Topcon. Generally, b-scans differ across

manufacturers in appearance and will be considered sepa-

rately in our experiments. Further, as part of our work lies

in investigating the scarce-data scenario, our main experi-

ments are carried out on the smallest of the three, Spectralis

(49 b-scans per volume), while the performance on the re-

maining vendors (128 b-scans per volume) is evaluated to

emphasize the generalization of our approach. The data

set is fully annotated with pixel-wise labels for three types

of retinal fluids: Intraretinal fluid, Subretinal fluid and Pig-

ment Epithelial Detachments. For our experiments, we de-

rive bounding boxes and image-level labels from the masks.

Experimental setup. As low-data scenarios entail sensi-

tivity in the optimization process, we carry out each exper-

imental configuration on 10 cross-validation splits. Each

split is generated randomly and independent for each ven-

dor: First, we randomly select 5 volumes for validation

and 5 for testing. The remaining volumes (Spectralis: 14,

Cirrus: 14, Topcon: 12) containing fluid annotations form

the training set. In our experiments, we consider scenarios

where 3, 6, 12, 24 labeled b-scans are present (correspond-

ing to 1, 2, 4, 8 b-scans per class), therefore, we enumerate

the scans in the training set and make sure that in an inter-
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val of size 3 all diseases are present (as long as available).

Thus, e.g. the first 6 images in a split contain each disease at

least twice, which ensures that all models access the exact

same annotations and the scenarios with more annotations

subsume the smaller ones (e.g. D3 ⊂ . . . ⊂ D24).

We consider two settings: (1) the models are provided

with pixel-wise labeled masks (M) or (2) with coarse

bounding boxes (B) as strongest annotation. In those sce-

narios, we train models having access to either one of these

labels (M or B), models having additionally access to the

remaining unlabeled examples (U , i.e. semi-supervised) or

having access to the remaining b-scans with global image-

level labels (G, i.e. semi-weakly supervised).

Evaluation metric. Our evaluation follows the standard

procedure for segmentation models. We calculate the pre-

diction for all pixels in all testing images and then calcu-

late the Intersection over Union (IoU) for all disease classes

with the corresponding ground-truth pixels. Then, these

disease-wise IoUs are averaged resulting in the mean IoU

(mIoU). We carry out each experiment on all splits (10
trained models for one result), the final measures we report

are the average mIoU and standard deviation over the splits.

4.2. Implementation details

Pre-processing. We employ the pre-processing of [3] on

the individual b-scans which includes anisotropic filtering

and warping the lower retinal edge onto a straight line. Fi-

nally, we resize all scans to the size 200× 200.

Network parameters. For our encoder-decoder segmenta-

tion model, we use a standard UNet architecture [50], ubiq-

uitous in medical image analysis. The UNet is augmented

with batchnorm layers [26] and a total of four down-scaling

and four up-scaling (bilinear interpolation) convolutional

blocks. This way, the decoder has a total of four feature

maps f0, . . . , f3 increasing in spatial dimensions as well as

a feature map f4 directly before the standard output 1 × 1
convolution. As noted before, we exchange the output lay-

ers with output-heads as stated in Sec. 3.1.2, enabling each

head to learn an individual non-linear transformation of the

features. In case we use deep supervision, we add output-

heads for all feature maps f{0−4} and enforce the respective

loss function. All experiments are carried out with the same

basic training-hyperparameters: We use a batch size of 16
b-scans, which are transformed by a horizontal flip 50% of

the time and by a random adjustment of brightness, contrast,

hue and saturation by a factor of 0.0−0.1. Network param-

eters are initialized using Xavier initialization [21] and the

optimization process spans over 100 epochs with SGD op-

timization and a momentum term of 0.9. The learningrate

is adjusted once after 80 epochs from 0.01 to 0.001. Each

model is evaluated every 10 epochs on the validation set, we

perform early stopping and at the end of our experimenta-

tion phase evaluate the best model once on the testing set.

larger ϕ inference α MSE validation (mIoU)

X teacher 0.5 – 61.24± 3.69
X teacher 0.5 X 61.36 ± 4.73

X teacher 0.1 X 60.15± 4.14
X student 0.1 X 58.54± 3.62
– student 0.1 X 58.26± 4.27

– student 0.0 – 57.80± 4.68
Table 1. Ablation for Mean-Taught Deep Supervision using 24

pixel-masks and the remaining image-level labels. Last line shows

Self-Taught Deep Supervision performance for comparison.

4.3. Baselines and methods

Our first Baseline model is a UNet only using the strongest

available supervision (mask or bounding box) as training

signal, integrating it via the loss of (6) on f4. To ac-

commodate for the small amount of seen images (only

{3, 6, 12, 24}), we train the model for 10 times the epochs.

All other models should outperform this model.

Next, we consider the semi-supervised scenario. Here,

we leverage a UNet which uses (6) for available masks or

bounding boxes and additionally the self-supervised invari-

ant information clustering (IIC) loss of [27] for all labeled

and unlabeled images on f4. This IIC Baseline sets the bar

for all models integrating unlabeled data.

For the semi-weakly supervised scenario with access to

image-level labels g, we introduce a Multiple-Instance

Learning (MIL) model. This lower bound leverages the

weakly labeled images by pooling a feature map in the spa-

tial dimension, classifying this pooled feature f̄ and enforc-

ing LBCE(f̄ , g) from (8). Here, we use a pixel-wise cross-

entropy loss for either masks or bounding boxes on f4 and

for image-level labeled images we pool f4 via average pool-

ing enforcing the MIL loss.

To show the effect of integrating deep supervision into seg-

mentation models, we show performance of the previous

two models but use all feature maps f{0−4}. We term these

models Deeply Supervised IIC and Deeply Supervised MIL.

As we will see, the latter will provide an even stronger lower

bound on semi-weakly supervised segmentation.

To grasp whether Multi-Label Deep Supervision is benefi-

cial in training, we extend the Baseline UNet with our novel

loss integration for all decoder feature maps f{0−4}.

Self-Taught Deep Supervision can be applied to both the

semi- and semi-weakly segmentation scenario. We integrate

pseudo-labels as described in Sec. 3.2. When image-level

labels are available, we refine the noisy pseudo-labels by

zeroing out absent classes. As a natural extension of this ap-

proach, Mean-Taught Deep Supervision is setup similarly.

Further, we benchmark the consistency-based approach of

Perone and Cohen-Adad [48]. Re-implementing their ap-

proach as described led to diverging models. Thus, we mod-

ify it by using cross-entropy- instead of the DICE loss [42],
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Method G U 3 6 12 24 Full Access

Mask Supervision

Baseline [50] 14.80± 6.50 26.98± 7.83 35.39± 6.36 48.63± 5.17 62.09± 4.77
Multi-Label Deep Supervision (Ours) 17.98 ± 8.20 32.92 ± 7.35 42.96 ± 6.71 52.68 ± 6.82 65.82 ± 4.64

IIC Baseline8 [27] X 22.45 ± 9.36 32.02± 7.23 41.48± 7.26 53.08± 6.13 65.16± 3.80
Deeply Supervised IIC8 X 20.78± 8.83 31.39± 10.26 39.18± 6.94 50.10± 7.92 65.18± 3.85

Perone and Cohen-Adad10 [48] X 16.17± 10.74 33.10± 10.24 45.80± 7.51 54.75± 5.96 65.49± 4.14
Self-Taught Deep Supervision (Ours) X 10.37± 8.29 28.62± 12.96 43.57± 9.97 56.11± 6.30 66.24± 4.67

Mean-Taught Deep Supervision10 (Ours) X 16.31± 15.48 35.17 ± 11.35 53.52 ± 8.72 58.84 ± 6.57 66.31 ± 4.66

MIL Baseline X 15.44± 11.10 25.46± 8.57 41.34± 9.66 49.07± 8.20 61.50± 5.64
Deeply Supervised MIL X 20.02± 9.17 31.50± 8.88 44.29± 5.03 51.13± 3.93 62.04± 3.92

Self-Taught Deep Supervision (Ours) X 20.47± 8.62 36.40± 8.91 49.39± 9.95 59.29± 7.52 66.34± 3.81
Mean-Taught Deep Supervision10 (Ours) X 21.91 ± 13.49 42.14 ± 14.25 54.70 ± 9.26 60.45 ± 5.71 66.39 ± 4.29

Bounding Box Supervision

Baseline [50] 12.49± 4.28 18.32± 4.94 25.62± 3.08 29.55± 2.77 38.45± 4.44
Multi-Label Deep Supervision (Ours) 14.59 ± 5.81 19.62 ± 6.21 27.89 ± 3.44 32.02 ± 4.78 38.66 ± 3.36

IIC Baseline8 [27] X 15.40 ± 7.07 18.15± 7.49 26.05± 6.00 30.07± 4.32 38.45± 4.65
Deeply Supervised IIC8 X 12.77± 7.15 17.76± 6.26 28.99 ± 4.60 30.64± 3.05 38.81± 4.48

Perone and Cohen-Adad10 [48] X 11.17± 7.41 19.02 ± 8.46 27.44± 5.81 31.72± 3.87 39.38± 3.56
Self-Taught Deep Supervision (Ours) X 5.14± 3.84 9.62± 7.35 24.47± 6.12 32.71± 3.56 39.39 ± 3.63

Mean-Taught Deep Supervision10 (Ours) X 8.21± 3.96 14.28± 7.48 24.79± 5.79 34.14 ± 3.10 39.04± 4.15
MIL Baseline X 15.82± 6.55 16.95± 6.19 22.56± 4.56 26.48± 5.51 37.15± 4.06

Deeply Supervised MIL X 17.14 ± 8.06 20.18± 4.61 24.15± 4.95 29.12± 4.75 37.94± 3.35
Self-Taught Deep Supervision (Ours) X 16.04± 8.52 22.15 ± 6.29 28.63± 4.04 32.37± 3.75 38.97 ± 3.59

Mean-Taught Deep Supervision10 (Ours) X 15.81± 8.59 21.97± 8.17 29.83 ± 5.30 34.81 ± 3.62 38.66± 4.73
Table 2. Results for a diverse variety of models using varying amounts (3,6,12,24,all) of annotations, i.e. ground-truth masks or coarse

bounding boxes. Approaches with U use additional unlabeled images, with G global image labels (best results in category bold). Accuracy

in average mIoU over 10 testing splits with standard deviation. Superscripts indicate smaller batch sizes due to memory constraints.

α = 0.5, no ramp up phase and balanced loss weighting.

4.4. Ablation studies

For Mean-Taught Deep Supervision, we perform a sequence

of ablation experiments on the validation set as shown in Ta-

ble 1. First, we move from not using a teacher model (Self-

Taught Deep Supervision) to using one. Further improve-

ment is made when adding stronger perturbations ϕ(·). To

this extent instead of using a factor 0.1, we use 0.4 for the

photo-metric components described in Sec. 4.2. Inferring

predictions with the teacher instead of the student for infer-

ence and tuning the hyperparameter α led to the best con-

figuration. To show that the mean squared error term taken

over from [58] is not the vital component, we omit it and

observe a minor decrease of 0.12% mIoU.

4.5. Quantitative results

Mask supervision. In the upper half of Table 2, we study

results of the diverse methods using pixel-wise annotations.

The first observation we can make is that just one sample

per class, i.e. the 3-scenario, is not sufficient as all methods

struggle in producing meaningful segmentations. The step

to 2 pixel-wise annotations per class sounds small, yet we

can observe a giant leap of 20.23% to respectable 42.14%

mIoU for the Mean-Taught Deep Supervision model which

integrates weak global labels. Throughout the scenarios

6, 12, and 24 annotated samples, our Mean-Taught Deep

Supervision outperforms all other models consistently in

both semi- and semi-weakly supervised segmentation. With

just 24 masks (i.e. 5.78% of all annotations), our results

come close to the full access Baseline that requires 415.5
masks (average over splits). Note the large margins be-

tween Perone and Cohen-Adad and our mean-teacher semi-

supervised model, stretching up to 8.12%. Integrating our

Multi-label Deep Supervision as compared to the standard

Cross-Entropy loss (Baseline) increases the performance by

3.18%, 5.94%, 7.57%, 4.05% and even fully supervised by

3.73% showcasing the strength of our novel deep supervi-

sion mechanism.

Bounding box supervision. In the lower half of Table 2, we

exchange pixel-wise masks with coarsely annotated bound-

ing boxes. As expected, the upper bound of full access at

39.39% is limited by the nature of weak annotation. Sur-

prisingly, our Mean-Taught Deep Supervision model having

access to just 6 pixel-wise masks and additional global label

(in the top half of Table 2) already outperforms all models

with full bounding box access. Further, most of the best

performing models build on Multi-label Deep Supervision.
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Method U 6 12 24 Full Access

Cirrus

Baseline [50] 12.31± 5.41 19.43± 8.00 30.10± 9.34 48.92± 11.94
Multi-label Deep Supervision (Ours) 15.99 ± 6.87 25.12 ± 8.58 33.53± 9.44 50.47± 10.84

Perone and Cohen-Adad10 [48] X 12.36± 6.12 24.99± 6.49 33.79± 10.15 49.75± 12.87
Mean-Taught Deep Supervision10 (Ours) X 9.18± 8.53 23.33± 7.37 35.82 ± 11.40 51.24 ± 10.94

Topcon

Baseline [50] 14.79± 9.34 21.19± 11.57 27.61± 10.31 42.22± 10.42
Multi-label Deep Supervision (Ours) 18.20 ± 10.48 20.92± 13.02 33.71± 11.92 45.85 ± 10.32

Perone and Cohen-Adad10 [48] X 15.26± 12.74 21.88± 12.48 27.67± 13.81 41.43± 8.18
Mean-Taught Deep Supervision10 (Ours) X 14.39± 11.19 23.92 ± 15.25 33.87 ± 8.25 42.70± 10.97

Table 3. Segmentation accuracy of different methods on Cirrus and Topcon OCT vendors in average mIoU over 10 testing splits.

Input 6 12 24 Full Access Target

Baseline

Our approach – Multi-label Deep Supervision

MIL Baseline

Deeply Supervised MIL

Our approach – Mean-Taught Deep Supervision
Figure 4. Segmentation progression when increasing the number of pixel-wise annotated masks from 6 to 12, 24, and full access. The upper

two methods leverage only pixel-wise masks while the remaining three methods have access to weak annotations (image-level labels).

Results for other vendors. Due to the immense resources

required to carry out the full evaluation as in Table 2, i.e.

training a total amount of 1100 models, we show that our

approaches generalize to other vendors (Cirrus and Topcon)

on a smaller subset of experiments in Table 3.

4.6. Qualitative results

In Fig. 4, we show segmentation results as more annota-

tions are added for the Baseline and Multi-label Deep Su-

pervision models as well as some semi-weakly supervised

results. Comparing the first two rows, we observe the ad-

vantageous effect of our deep supervision technique, espe-

cially in the low-data setting. Similarly, when comparing

our deep supervision in Mean-Taught models (bottom row)

to the rest, we directly see in column two and three that

our models nicely segment the fluid regions, even with ex-

tremely few samples while other methods fail severely.

5. Conclusion

We introduced a new segmentation approach that allows

for learning from different annotation types (pixel-wise la-

bels, bounding boxes, global labels, unlabeled images). We

showed that a key ingredient is the deep supervision prin-

ciple, which we adapted to efficiently introduce supervision

signals even in intermediate layers with a small spatial reso-

lution. Furthermore, we introduced a student-teacher model

to stabilize training and increase generalization. Our exper-

iments for a challenging medical application demonstrated

the flexibility of our approach and the power of the simple

concept of deep supervision for semi-weakly learning.
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