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Abstract

Recent studies have shown that deep networks can

achieve promising results for image denoising. However,

how to simultaneously incorporate the valuable achieve-

ments of traditional methods into the network design and

improve network interpretability is still an open problem. To

solve this problem, we propose a novel model-based denois-

ing method to inform the design of our denoising network.

First, by introducing a non-linear filtering operator, a reli-

ability matrix, and a high-dimensional feature transforma-

tion function into the traditional consistency prior, we pro-

pose a novel adaptive consistency prior (ACP). Second, by

incorporating the ACP term into the maximum a posteriori

framework, a model-based denoising method is proposed.

This method is further used to inform the network design,

leading to a novel end-to-end trainable and interpretable

deep denoising network, called DeamNet. Note that the

unfolding process leads to a promising module called dual

element-wise attention mechanism (DEAM) module. To the

best of our knowledge, both our ACP constraint and DEAM

module have not been reported in the previous literature.

Extensive experiments verify the superiority of DeamNet on

both synthetic and real noisy image datasets.

1. Introduction

In computer vision applications, images corrupted by

noise will significantly affect the further analysis and pro-

cess. Generally, representative image denoising methods

can be categorized as filtering-based methods [48, 23, 4,

11, 15, 29, 26], model-based methods [30, 42, 14, 39, 56,

19, 55, 54, 57, 37, 38, 58, 7], and learning-based methods

[14, 33, 61, 34, 31, 32, 41, 22, 18, 6, 17, 3, 24].

Filtering-Based Methods. Classical filtering-based

methods, e.g., median filtering [48] and Wiener filtering

[23], etc., exploit certain manually designed low pass filters

to remove the image noise. Knaus et al. [26] proposed to

progressively reduce noise by deterministic annealing with
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Figure 1. A real noisy image from SIDD dataset [1]. Compared

with other denoising methods, DeamNet achieves better results.

a simple iterative filtering scheme. In addition, based on the

observation that a natural image patch generally has many

similar counterparts within the same image, some works re-

move the noise by using a stack of non-local similar patch-

es, such as the classic non-local means (NLM) algorithm

[4], and the block-matching based 3D filtering (BM3D) al-

gorithm [11]. Because of the success of NLM and BM3D,

various non-local filtering methods appeared [15, 29]. How-

ever, the block-wise operation may lead to blurred outputs.

Moreover, the difficulty of setting the hyper-parameters of

these methods will significantly affect the performance.

Model-Based Methods. The model-based methods usu-

ally formulate the denoising task as a maximum a posterior-

i (MAP)-based optimization problem, whose performance

mainly depends on image priors. With the assumption that

an image patch can be sparsely represented by some prop-

er basis function, the sparsity prior [42, 14] was proposed

for image restoration (IR). Recently, a trilateral weighted

sparse coding scheme based image denoising method was

proposed for real-world images in [56]. With the observa-

tion that a matrix formed by the nonlocal similar patches

in a natural image has a low-rank property, the low-rank

prior based image denoising methods [19, 55, 57, 54] were

proposed. For instance, Xu et al. [19] proposed a weight-

ed nuclear norm minimization (WNNM) method for IR vi-

a low-rank matrix approximation. In addition, Pang et al.

[37] introduced graph-based regularizers to reduce image
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noise. Although these model-based methods have strong

mathematical derivations, the performance will be signifi-

cantly degraded in recovering texture structures for heavy

noise. Furthermore, they are usually time-consuming since

the high complexity of the iterative optimization.

Learning-Based Methods. The learning-based meth-

ods focus on learning a latent mapping from the noisy im-

age to the clean version, and can be divided into traditional

learning-based [14, 9, 46, 33, 36] and deep network-based

methods [31, 62, 41, 22, 18, 6, 17, 5, 13]. Recently, be-

cause the deep network-based methods have achieved more

promising denoising results than the filtering-based, model-

based, and traditional learning-based methods, they have

become the dominant approaches. For example, Zhang et

al. [61] proposed a simple but effective denoising convolu-

tional neural network (CNN) by stacking convolution, batch

normalization and rectified linear unit (ReLU) layers. In-

spired by the non-local similarity of images, the non-local

operations were incorporated into a recurrent neural net-

work in [31] for IR. A neural nearest neighbors block (N3

block) based architecture was proposed in [41]. Chang et

al. [5] proposed a novel spatial-adaptive denoising network

for efficient single image noise removal. For real-noise de-

noising, Anwar et al. [3] proposed a one-stage denoising

network with feature attention, and Kim et al. [24] pro-

posed a well-generalized denoising architecture and a trans-

fer learning scheme. However, the architectures of most

deep network-based methods are empirically designed and

the achievements of the traditional algorithms are not fully

considered, facing weak interpretability to some extent.

More recently, some deep unfolding-based methods [9,

13, 59, 22, 28] were proposed to implement some traditional

methods by deep networks. For example, Chen et al. [9] im-

plemented the classic iterative nonlinear reaction diffusion

method as a deep network for IR. Based on the fractional

optimal control theory, Jia et al. [22] developed a fractional

optimal control network for image denoising. Lefkimmiatis

et al. [28] utilized the proximal gradient method (PGM)

to solve a constrained optimization problem transformed by

the general MAP optimization problem in IR, and the PGM

updates were implemented as a neural network.

Contributions. The main focus of this work is to pro-

pose a novel model-based denoising method, and then ex-

ploit the inference process of this method to inform the de-

sign of our denoising CNN (DeamNet). The details about

the differences among DeamNet and the existing denoising

networks are presented in the ‘Supplementary Material’.

Our main contributions are as follows: 1) A novel image

prior (i.e., adaptive consistency prior (ACP)) is proposed

to improve the traditional consistency prior by introducing

a non-linear filtering operator, a reliability matrix, and a

high-dimensional transformation function. Then, a model-

based denoising method is proposed by exploiting ACP un-

der the MAP framework; 2) the iterative optimization steps

of the model-based denoising method are utilized to infor-

m the network design, leading to an end-to-end trainable

and interpretable denoising network (DeamNet). DeamNet

merges the power of model-based scheme with deep learn-

ing; 3) the unfolding process leads to a novel and promis-

ing module called dual element-wise attention mechanis-

m (DEAM) module, which is derived from the reliability

matrix in ACP. DEAM also enables the across-level/across-

scale feature interactions and the element-wise feature re-

calibration in each iteration stage; 4) a multi-scale nonlinear

operation (NLO) sub-network with DEAM modules is pro-

posed, which can simultaneously exploit the fine scale and

coarse scale features within the NLO sub-network for better

nonlinear filtering in feature domain (FD). To the best of our

knowledge, we are the first to propose the ACP constraint

and DEAM module. Experiments verify the effectiveness

of DeamNet for both synthetic and real image denoising.

2. Proposed Method

We propose a novel ACP-based denoising framework,

which is further used to inform the design of our DeamNet.

2.1. Adaptive Consistency Prior for Denoising

Because of the local continuity and non-local self-

similarity of natural images, strong correlations are prone

to hold locally and non-locally. Based on these correlation-

s, the consistency priors were proposed [60, 43, 8, 35].

Limitations of Consistency Prior and Their Solutions.

Let x ∈ R
n be an image with n pixels, xi represent the i-th

pixel in x, Di denote the index vector for the related pixels

of xi within x, and wij be the normalized weight related to

xi and xj . The consistency prior JCP(x) : Rn → R
1 can

be written as

JCP(x)
def
=

n∑

i=1

‖xi −
∑

j∈Di

wijxj‖
2
2. (1)

To facilitate the analysis, we rewrite Eq. (1) as follows:

JCP(x) = ‖ I

3©

(x
1©

−W

2©

x

1©

)‖22, (2)

where I ∈ R
n×n is an identical matrix, and W ∈ R

n×n is

a diagonal consistency matrix composed by wij-s.

We can understand the consistency prior as follows: the

image x in pixel domain (labeled by 1©) is first filtered by

the linear consistency matrix W (labeled by 2©), and then

the magnitude of the fitting deviation vector (x − Wx) is

uniformly constrained by I (labeled by 3©). Therefore, the

main limitations of the consistency prior and their solutions

are: 1) the consistency prior performs a constraint in pix-

el domain. However, according to the traditional methods,

e.g., BM3D and its variants [10, 11], performing denoising

in FD can better reconstruct image details. In addition, by

8597



Figure 2. Architecture of the proposed DeamNet. It consists of a feature domain (FD) module, a reconstruction module, and K iteration

stages based on nonlinear operation (NLO) sub-networks and dual element-wise attention mechanism (DEAM) modules. The modules

labeled by ∗ mean the parameters of these modules are shared. The parameters of the modules labeled by # are also shared.

expanding the space dimension, more features can be cap-

tured for better details recovery. Thus, it is promising to use

a high-dimensional transformation function T (·) on x; 2)

the linear operation for each pixel by W may oversmooth

image details, leading to poor performance. For better edge

and image details preservation properties, it is desired to in-

troduce an adaptive and non-linear filtering operator K (·)
to replace W; 3) the fitting deviations are penalized uni-

formly in the consistency prior. However, it would be useful

to adaptively penalize each fitting deviation according to the

reliability of the corresponding pixels. This motivates using

a reliability matrix Λ to adaptively weight (x−Wx).
Proposed Adaptive Consistency Prior (ACP). The previ-

ous analyses motivate the proposing of ACP, which inte-

grates the concepts of FD, non-linear filtering, and reliabil-

ity estimation. Let T (·) : Rn → R
n·m denote one trans-

formation function, Λ=D(a1, ..., al, ..., anm) ∈R
nm×nm

be the diagonal reliability matrix with elements al-s on the

main diagonal (al > 0), and K (·) :Rn·m→R
n·m represent

one nonlinear filtering operator. ACP can be written as

JACP(x|T ,K ,Λ
︸ ︷︷ ︸

pre-specified

)
def
= ‖Λ(T (x)− K (T (x)))‖22. (3)

There are some interesting special cases for differen-

t settings of JACP(·). For example, JACP(x|I,K ,Λ) =
‖Λ(x − K (x))‖22 becomes ACP in the pixel domain;

JACP(x|I,W, I) = JCP(x) becomes the original consisten-

cy prior. In other words, the consistency prior is a special

case of ACP, and the function space of JCP(·) is expanded

for modelling complex constraint relationships in JACP(·).
Proposed Denoising Optimization Problem. Let X =
T (x) and Xk + ∆X = X , then K (Xk + ∆X ) can be

approximated using Taylor series around the k-th iteration:

K (Xk +∆X ) ≈ K (Xk) + Jk∆X , (4)

where Jk is the Jacobian matrix, and thus we can obtain

JACP(x|T ,K ,Λ) ≈ ‖Λ(X − K (Xk))‖
2
2

+ ‖Λ(Jk∆X )‖22 − 2(X − K (Xk))
TΛTΛJk∆X ,

(5)

where the second and third terms tend to zero for a small

perturbation ∆X . When X is in the vicinity of Xk, we can

get an approximated ACP J ⋆
ACP(x|T ,K ,Λ) = ‖Λ(X −

K (Xk))‖
2
2. By incorporating the approximated ACP and

the data fidelity term Ψ(x|y,T ) = ‖Y−X‖22 (Y = T (y)),
we can obtain the novel ACP-driven denoising algorithm:

x̂=argmin
x

Ψ(x|y,T )+λJ ⋆
ACP(x|T ,K ,Λ), (6)

where λ is the regularization parameter (λ > 0). Since

K (·), Λ, λ, and T (·) are preset before the optimization, x

is the only unknown variable that needs to be estimated.

Note that in the original ACP, K (T (x)) is relevan-

t to the optimization variable x (i.e., K (T (x)) is signal-

dependent) and it is a highly nonlinear operator. Although

the original ACP driven denoising problem can be potential-

ly solved by using the gradient descent method, the gradient

of K (·) (denoted by ▽K (·)) is difficult to be computed

because of its highly nonlinear property. By using the ap-

proximated ACP, x is replaced by the k-th estimate xk dur-

ing the iteration, which avoids the calculation of ▽K (·).
The convergence of the approximated ACP-based method

can be guaranteed by forcing ‖x̂− x‖22 < ‖xk − x‖22 (x is

the ground-truth image). This will be achieved by designing

a loss constraint illustrated in the next subsection.

Theorem 1. Let βl = 1/(1 + λa2l ) ∈ (0, 1), β ∈ R
n·m

be the tensor form of all {βl}-s, L (·) : Rn·m → R
n be

the reconstructing operator from FD to the pixel domain,

1 denote a tensor of all ones with the same size as β, and

⊗ be the element-wise product of two tensors. Then, the

solution of the ACP-driven denoising problem in Eq. (6)

can be obtained by

xk+1 = L (β ⊗ T (y) + (1− β)⊗ K (T (xk))). (7)

Proof. Since Eq. (6) is a quadratic optimization problem,

by constraining the derivative of Eq. (6) to 0, we can easily

obtain the iterative equation in Eq. (7). More details about

the proof are provided in the ‘Supplementary Material’. �

To accurately estimate the clean image x, how to pre-

design the best {K (·), Λ, λ, T (·), L (·)} is the key is-

sue. Since the deep learning-based methods are continuous-

ly showing superiority over traditional model-based meth-

ods, this paper proposes an end-to-end trainable unfolding

network which adaptively learns these operators.

2.2. Deep Unfolding Denoising Network

Manually designing {K (·), Λ, λ, T (·), L (·)} for

high performance is very challenging and time-consuming.
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Figure 3. Architecture of the NLO sub-network, where c© denotes Concatenation. It mainly contains three parts: feature encoding part

(FEP, a series of Conv groups (C-Groups) followed by downsampling layers), feature decoding part (FDP, a series of C-Groups followed

by upsampling layers), and DEAM module group (for across-scale features recalibration and interaction).

Therefore, the proposed model-based framework is imple-

mented via one deep unfolding denoising network con-

structed by the FD module (T (·)), reconstruction module

(L (·)), NLO sub-network (K (·)), and DEAM module (λ
and Λ). Let Θψ be the trainable parameter set for an op-

erator ψ. In our network, the hyper-parameters λ, Λ, ΘT ,

ΘK , and ΘL are learned in a discriminative manner.

Network Architecture. DeamNet shown in Fig. 2 is a

trainable and extended version of the ACP-driven denois-

ing problem. It contains K iterative stages in FD. First, the

learned version of the FD operator T (·) is applied to the

noisy image y to obtain an initial feature Y = T (y). Sec-

ond, Y is fed into a series of encoder-decoder architecture

based NLO sub-networks, whose parameters are shared.

These sub-networks are the learned version of K (·). The

input and output of the k-th NLO sub-network are denoted

as Xk−1 and XN
k (note that X0 = Y), and XN

k = K (Xk−1).
Next, since β⊗Y + (1−β)⊗K (Xk) in Eq. (7) is close-

ly related to the attention mechanism, to calculate the dual

weights (β, 1−β) and perform the dual summation, DEAM

module is proposed. Specifically, Y and XN
k are both input

into the DEAM module to obtain the recalibrated features

in the k-th stage, which ensures the availability of low-level

information in the long CNN. The output of the k-th DEAM

module can be written as Xk = Fk
deam([X

N
k , Y]), where

Fk
deam(·) denotes the k-th DEAM operator.

Finally, the output Xk will be reconstructed by the recon-

struction module to obtain the k-th image estimate xk =
L (Xk). Note that the parameters of all the reconstruc-

tion modules are shared. To guarantee the convergence of

Eq. (7), the proposed network should have a good self-

correcting ability (i.e., ‖xK −x‖22 < ‖xK−1−x‖22 < ... <
‖x1−x‖22 should hold), motivating a multi-stage loss func-

tion. Moreover, to guarantee L (·) is the inversion version

of T (·), we add an extra branch composed by the recon-

struction module right after the FD module, and then force

the output of the branch to be closed to the input y. With

N clean-noisy training pairs {x(g), y(g)}Ng=1, our network

can be trained by optimizing the following Lp loss function:

L(Θ) =
1

KN

K∑

k=1

N∑

g=1

ξk‖F
k
DeamNet(y(g))− x(g)‖pp

+
1

N

N∑

g=1

η‖L (T (y(g)))− y(g)‖pp,

(8)

where
∑K

k=1 ξk = 1 and 0 < ξ1 < ξ2 < ... < ξK < 1.

Θ = [β, ΘT , ΘK , ΘL ] denotes the trainable parameter

set (β is related to λ and Λ). Fk
DeamNet(·) denotes the map-

ping function of the k-th stage of DeamNet from the noisy

image to the clean version. By simply setting ξk = ϑξk−1

(ϑ > 1), we can get ξk = ϑ−1
ϑK−1

ϑk−1. In general, the L2

loss has good confidence in Gaussian noise, whereas the

L1 loss has better tolerance for outliers. Therefore, we set

p = 2 for Gaussian noise and p = 1 for real noise.

Denoising in High-Dimensional FD. The FD operator is

used to imitate the process of T (·), which projects the noisy

image y to a high-dimensional FD to get an initial feature

estimate Y = T (y). It is implemented by a simple struc-

ture: a Conv layer followed by a residual unit where an Re-

LU layer is put between two Conv layers. After K iteration

stages, the output XK is reconstructed by the reconstruction

module L (·), which is implemented by a simple structure:

a residual unit where an ReLU layer is put between two

Conv layers followed by a Conv layer with 1 filter. Finally,

we can obtain the estimate L (XK). To guarantee L (·) be

the inverse operator of T (·), a branch only composed by

the FD and reconstruction modules is added, and the output

of the branch is forced to be the same as the input.

Performing denoising in high-dimensional FD has the

following advantages: 1) the original noisy space can be

potentially transformed to an FD space where noise can be

more easily reduced, leading to finer image details than the

pixel domain. Experiments in the ‘Supplementary Material’

show this in details; 2) using high-dimensional FD module

can also increase the feature channel number and improve
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Figure 4. The diagram of the DEAM module. ⊗ denotes the

element-wise product. The scale adjusted (SA) module upscales

f to the same spatial resolution of b. The weights mapping (WM)

module generates the weighting tensor. The dual weights genera-

tor (DWG) module generates two dual weighting tensors α1 and

α2 (α1 +α2 = 1) for b and f , respectively.

the information flow transmission in the deep network, lead-

ing to higher performance. In contrast, the traditional deep

unfolding networks perform iterative denoising in the low-

dimensional image space; 3) by regarding the residual be-

tween the ground-truth image and the degraded image as

noise to be reduced, this strategy can also make the network

more useful for other IR applications.

NLO Sub-Network. Inspired by the success of U-Net [44],

we model K (·) by an encoder-decoder architecture with T
spatial resolution scales as shown in Fig. 3. Specifically,

the input feature Xk−1 is progressively filtered and down-

sampled (down-sampling is performed by one Conv layer

with stride of 2) in the feature encoding part (FEP) for great-

ly expanding the receptive field. Accordingly, the down-

sampled features are progressively filtered and up-sampled

(up-sampling is implemented by a combination of ×2 inter-

polation and one Conv layer with stride of 1) in the feature

decoding part (FDP). To allow the adaptive feature recal-

ibration and across-scale feature interaction for better net-

work expressive ability, the DEAM module is introduced

into the sub-network. The recalibrated and interacted fea-

tures are then adjusted by a Conv layer followed by ReLU,

and then fused with the up-sampled Conv group (C-Group)

features via Concat and a 1 × 1 Conv layer. Overall, the

t-th DEAM-related process in each NLO sub-network can

be regarded as an across-scale fusion operator on the out-

put X et
k of the t-th C-Group in FEP and the output X

d(t+1)
k

of the C-Group at the (t + 1)-th scale in FDP. Finally, the

residual reconstruction operator Fr-rec(·) (implemented by a

Conv layer) is used to reconstruct the residual features, and

thus the output of the NLO sub-network can be written as

XN
k = K (Xk−1) = Fr-rec(X

d1
k ) + Xk−1. (9)

DEAM Module. How to obtain the dual weights (β and

1 − β) and implement the element-wise product of Y and

K (Xk) in Eq. (7) are crucial for the unfolding denoising

network. By regarding Y as the low-resolution (LR) branch,

K (Xk) as the high-resolution (HR) branch, and {β, 1−β}
as the attention maps for the LR and HR branches, we can

see that Eq. (7) is closely related to the attention mechanis-

m. To make our module has better adaptivity, we introduce

a scale adjusted (SA) module for across-level/across-scale

features interactions. All of these motivate the proposing of

our DEAM module as shown in Fig. 4.

Specifically, DEAM module has two inputs (coarse-level

feature b and high-level feature f ) and one output g. First,

b is adjusted by using a Conv layer Fc(·), and f is processed

by using the SA module Fscale(·). In our network, the SA

module is an identical matrix for the output of the NLO sub-

network in each stage, and is the Up-sample module for the

output of the C-Group in FDP within the NLO sub-network.

Then, these two adjusted inputs are concatenated by a Con-

cat layer to obtain the feature f0 = [Fc(b),Fscale(f)]. After

that, f0 is sent into the weights mapping (WM) module. In

the WM module, a 1 × 1 Conv layer C1 is first used to re-

duce the dimension of f0. Next, two 3× 3 Conv layers with

s0 and s channels (s0 < s) and a ReLU layer are used to

generate the initial element-wise feature weights for both

stability and nonlinearity. A sigmoid activation layer ϕ is

used to normalize the weights to (0, 1) and generate the

weighting tensor α. Overall, α can be written as

α = Fwm(f0) = ϕ(C3R3(C1(f0))), (10)

where Fwm(·) represents the WM operator, and C3R3 de-

notes the operator of two 3×3 Conv layers with one ReLU.

Then, α is input into the dual weights generator (DWG)

module to generate two dual weighting tensors (i.e., α1=α

and α2=1−α) for b and f , respectively. Finally, the out-

put of the DEAM module can be formulated as

g = α1 ⊗ b+α2 ⊗ f = α⊗ b+ (1−α)⊗ f . (11)

In the DEAM module of each iteration stage, α = β and

1 − α = 1 − β are used for weighting Y and K (Xk). In

the DEAM module of each NLO sub-network, α and 1−α

are used for weighting X et
k and X

d(t+1)
k .

The advantages of DEAM are discussed in the follow-

ing. As we know, the attention mechanism [63] enables

the network to have discriminative ability for different type-

s of information. However, most attention mechanisms in

IR do not pay much attention to the interactions of across-

level/across-scale features. For example, in the residual ar-

chitecture, the lower-frequency information at the coarse-

level (low-frequency branch) represents the principal com-

ponent of the input. However, the importance of low-

frequency branch is largely ignored in traditional attention

mechanisms. In contrast, DEAM can adaptively increase

the feature weight for residual branch if the low-frequency

branch is not ideal in describing the latent features, and vice

versa. In addition, the initial feature information availability

and across-level feature interactions in DEAM can further

enhance the network’s expressive ability.

2.3. Further Analyze and Optimize DeamNet

DeamNet is a trainable and extended version of the ACP-

driven denoising problem, which explains its effectiveness
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in a mathematical way to some extent. However, many sub-

branches with reconstruction modules and loss functions

are used in Eq. (8). It not only makes the network training

difficult but also restricts the freedom of the network param-

eters. In addition, it is challenging and time-consuming to

preset the parameters ξk-s and η in Eq. (8). To make the

network architecture and training more compact, the added

reconstruction modules labeled by the red rectangle in Fig.

2 are removed, and thus the following optimized loss func-

tion scheme is adopted instead of the original scheme:

L(Θ) =
1

N

N∑

g=1

‖FK
DeamNet(y(g))− x(g)‖pp. (12)

We compare these two schemes on addition white Gaus-

sian noise (AWGN) with noise level 15, 25, 50 on Urban100

[21]. For the original scheme, ϑ and η are empirically set to

3 and 0.2 for best performance. Other network settings are

provided in subsection 3.1. Results (Peak signal-to-noise

ratio (PSNR) and structural similarity index (SSIM)) in Ta-

ble 1 show that the optimized version achieves slightly bet-

ter results than the original one. This may be caused by

the difficult training of the original scheme since too many

constraints are used, while the optimized scheme has much

more freedom for pursuing better fitting ability. Therefore,

the optimized scheme is used as our default scheme.

3. Experimental Results

In this section, we demonstrate the effectiveness of

our method on both synthetic and real noisy dataset-

s. Due to the limited space, more experimental re-

sults and further analysis are given in the ‘Supple-

mentary Material’. Code will be available at http-

s://github.com/chaoren88/DeamNet.

3.1. Network Implementation Details

The Pytorch framework is used to train DeamNet with a

GeForce GTX 1080Ti GPU. We empirically set the iteration

stage number K to 4 (for the speed-accuracy trade-off), the

scale T in NLO to 5, and the size of all Conv layers to 3×3
except for those layers right after concatenation layers with

kernel size 1 × 1. Moreover, all the Conv layers have 64

filters, except for that in the channel-downscaling (4 filters)

and the reconstruction layer (1 filters for a grayscale image

and 3 filters for a color image). During the training, network

parameters are first initialized by the Xavier approach [16],

and then optimized by the Adam [25] with default settings.

In each training batch, eight patches are extracted as the

input. We initially set the learning rate to 10−4, and then

fine-tune the network with the learning rate 10−5.

3.2. Dataset Preparation and Testing

To train DeamNet for the synthetic AWGN, the Berke-

ley Segmentation Dataset (BSD) [12] and Div2K [51] are

adopted. The clean images are corrupted by AWGN with

Table 1. PSNR (dB) and SSIM results of original scheme and op-

timized scheme on Urban100.
Noise level 15 25 50

Original Scheme 33.30/0.9365 30.84/0.9042 27.45/0.8362
Optimized Scheme 33.37/0.9372 30.85/0.9048 27.53/0.8373

Table 2. PSNRs (dB) and SSIMs on Urban100 for varying K.

K 1 2 3 4 5

PSNR/SSIM 30.57/0.8992 30.73/0.9023 30.81/0.9041 30.85/0.9048 30.89/0.9054

Table 3. Ablation investigation for DeamNet. Average PSNR (dB)

and SSIM values on Urban100 for noise level 25.
FD × × X X

DEAM × X × X

PSNR/SSIM 30.01/0.8890 30.52/0.8990 30.65/0.9018 30.85/0.9048

specific levels 15, 25 and 50. We evaluate the denoising

performance on three standard benchmarks including Set12

[61], BSD68 [45] and Urban100 [21]. PSNR and SSIM [64]

metrics are used for objective evaluation. For real noisy im-

ages, we use the SIDD [1] and RENOIR [2] datasets for

training. In both synthetic and real noise cases, we random-

ly crop these training image pairs into small patches of size

128 × 128. To augment training samples, rotation of 180◦

and horizontal flipping are applied. Furthermore, we adopt

three datasets for denoising on real-world images:

• DnD [40] is composed of 50 real-world noisy images, but

the near noise-free counterparts are not available. Fortu-

nately, the PSNR/SSIM results can be achieved by upload-

ing the denoised images to the DnD website.

• SIDD [1] provides 320 pairs of noisy images and the near

noise-free counterparts for training and 1280 image patches

for validation. The PSNR/SSIM results can be obtained by

submitting the denoised images to the SIDD website.

• RNI15 [27] provides 15 real-world noisy images. Un-

fortunately, the ground-truth clean images are unavailable,

therefore we only present the visual results for RNI15.

3.3. Study of Parameter K

The selection of the iteration stage number K is cru-

cial for DeamNet, and thus the effects of different settings

of K are tested. Specifically, five network models with

K = 1, 2, 3, 4, 5 are trained independently for noise level

σ = 25, and then compared with each other in the experi-

ment. Table 2 reports the average PSNR and SSIM values

on Urban100. From the results, we can conclude that even

only using one stage, our network can achieve promising

denoising performance. Furthermore, with the increasing of

K, the performance becomes even better. For example, the

PSNR/SSIM gains of K = 4 over K = 1, 2, 3 are 0.28d-

B/0.0056, 0.12dB/0.0025, and 0.04dB/0.0007, respectively.

When K increases from 4 to 5, 0.04dB/0006 PSNR/SSIM

gains can still be obtained. That means K = 4 is a good

choice for σ = 25. Note that, slightly better results can be

obtained by setting a larger K for a larger σ. In our imple-
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Figure 5. Visual quality comparison for ‘Starfish’ from Set12.

Figure 6. Visual quality comparison for ‘test044’ from BSD68.

mentation,K is set to 4 to best balance the performance and

the network complexity for various noise levels.

3.4. Ablation Study

Study of FD. To show the effect of FD, we remove the FD

module from DeamNet. That means denoising is performed

in pixel domain, and the input and output of each iteration

stage and NLO sub-network have only one channel. The re-

sults in Table 3 show that the performance will significantly

decrease without using FD. For instance, compared the third

column with the first column, the performance decreases

from 30.65dB/0.9018 to 30.01dB/0.8890 without using FD.

These results verify that the FD processing is more effective

than the pixel domain processing in DeamNet.

Study of DEAM. From Table 3, we can conclude that

DEAM is an effective module in DeamNet, leading to high-

er performance. For example, by adding the DEAM mod-

ule, the PSNR/SSIM gains are 0.51dB/0.0100 for the net-

work without FD. These comparisons show that the DEAM

modules are essential for the performance of DeamNet.

Note that the network without FD and DEAM modules

can be regarded as an extended version of the traditional

consistency prior based denoising method. The results in

Table 3 show that the ACP based denoising network (using

FD and DEAM modules) obtains much better results than

the traditional consistency prior based network, which veri-

fy the superiority of ACP over the consistency prior.

3.5. Denoising on Synthetic Noisy Images

To evaluate the performance of DeamNet, 13 state-of-

the-art and representative denoising methods are tested.

These baselines include one filtering-based method BM3D

[11], one model-based method WNNM [19], and 11 deep

Table 4. Quantitative comparison results of the competing methods

with noise level 15, 25 and 50 on Set12, BSD68 and Urban100.

Method
15 25 50

Set12 BSD68 Urban100 Set12 BSD68 Urban100 Set12 BSD68 Urban100

BM3D[11] 32.37 31.07 32.35 29.97 28.57 29.70 26.72 25.62 25.95
0.8952 0.8717 0.9220 0.8504 0.8013 0.8777 0.7676 0.6864 0.7791

WNNM[19]
32.70 31.37 32.97 30.28 28.83 30.39 27.05 25.87 26.83

0.8982 0.8766 0.9271 0.8577 0.8087 0.8885 0.7775 0.6982 0.8047

TNRD[9]
32.50 31.42 31.86 30.06 28.92 29.25 26.82 25.97 25.88

0.8958 0.8769 0.9031 0.8512 0.8093 0.8473 0.768 0.6994 0.7563

DnCNN[61]
32.86 31.73 32.68 30.44 29.23 29.97 27.18 26.23 26.28

0.9031 0.8907 0.9255 0.8622 0.8278 0.8797 0.7829 0.7189 0.7874

FFDNet[62]
32.75 31.63 32.43 30.43 29.19 29.92 27.32 26.29 26.52

0.9027 0.8902 0.9273 0.8634 0.8289 0.8886 0.7903 0.7245 0.8057

RED[34]
- - - - - - 27.34 26.35 26.48
- - - - - - 0.7897 0.7245 0.7991

MemNet[47]
- - - - - - 27.38 26.35 26.64
- - - - - - 0.7933 0.7297 0.8029

UNLNet[28]
32.69 31.47 32.47 30.27 28.96 29.80 27.07 26.04 26.14

0.9001 0.8858 0.9252 0.8576 0.8197 0.8831 0.7793 0.7129 0.7911

CFSNet[53]
32.48 31.29 32.12 30.44 29.24 29.91 27.22 26.28 26.36

0.8905 0.8694 0.9138 0.8623 0.8290 0.8848 0.7855 0.7206 0.7934

N3Net[41]
- - - 30.50 29.30 30.19 27.43 26.39 26.82
- - - 0.8651 0.8329 0.8910 0.7950 0.7302 0.8141

ADNet[49]
32.98 31.74 32.87 30.58 29.25 30.24 27.37 26.29 26.64

0.9050 0.8916 0.9308 0.8654 0.8294 0.8923 0.7908 0.7216 0.8073

BRDNet[50] 33.03 31.79 33.02 30.61 29.29 30.37 27.45 26.36 26.82
0.9055 0.8926 0.9322 0.8657 0.8309 0.8934 0.7935 0.7265 0.8131

RIDNet[3]
32.91 31.81 33.11 30.60 29.34 30.49 27.43 26.40 26.73

0.9059 0.8934 0.9339 0.8672 0.8331 0.8975 0.7932 0.7267 0.8132

DeamNet
33.19 31.91 33.37 30.81 29.44 30.85 27.74 26.54 27.53

0.9097 0.8957 0.9372 0.8717 0.8373 0.9048 0.8057 0.7368 0.8373

DeamNet*
33.21 31.93 33.45 30.86 29.46 30.95 27.81 26.57 27.66

0.9098 0.8959 0.9375 0.8720 0.8374 0.9056 0.8067 0.7370 0.8400

network-based methods TNRD [9], DnCNN [61], FFDNet

[62], RED [34], MemNet [47], UNLNet [28], CFSNet [53],

N3Net [41], ADNet [49], BRDNet [50], and RIDNet [3].

Moreover, the self-ensemble [52] results denoted by the su-

per script * is also presented to maximize potential denois-

ing performance of DeamNet. The average PSNR/SSIM

results of the competing methods are shown in Table 4, and

the perceptual comparisons are shown in Figs. 5 and 6.

We can observe that DeamNet achieves the highest av-

erage PSNR and SSIM values. Take the case of noise

level 50 on Set12, BSD68, and Urban100 as examples.

For one of the most representative model-based method

WNNM[19], the improvement is about 0.7dB, and the S-

SIM gain is about 0.028∼0.038. Compared with the clas-

sic deep CNN based method DnCNN[61], our method can

achieve PSNR gain about 0.3∼1.3dB, and SSIM gain about

0.018∼0.050. DeamNet also outperforms the nonlocal

self-similarity based denoising networks UNLNet[28] and

N3Net[41] by large margins on all the test datasets. E-

specially, the PSNR/SSIM gains are about 1.39dB/0.0462

and 0.71dB/0.0232 on Urban100, respectively. Even com-

pared with the ADNet [49], BRDNet [50], and RIDNet[3],

our method outperforms them at all noise levels on these

datasets. Furthermore, the perceptual results of two images

with noise level 50 show that DeamNet is able to recon-

struct the clear structures of the noisy images. In contrast,

the comparison baselines may overly smooth the fine image

details. For example, the details are finer in the red rectan-

gle region of each image recovered by DeamNet. For better

visual comparisons, these red rectangle regions are zoomed-

in. According to the results, the superiority of DeamNet are
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Table 5. Real image denoising results of several state-of-the-art

algorithms on DnD and SIDD benchmark datasets.

Dataset CBM3D TNRD DnCNN FFDNet CBDNet VDN RIDNet AINDNet(TF) DeamNet DeamNet*

DnD
34.51 33.65 32.43 37.61 38.06 39.38 39.25 39.37 39.63 39.70

0.8507 0.8306 0.7900 0.9415 0.9421 0.9518 0.9528 0.9505 0.9531 0.9535

SIDD
25.65 24.73 23.66 29.30 33.28 39.26 37.87 38.95 39.35 39.43

0.685 0.643 0.583 0.694 0.868 0.955 0.943 0.952 0.955 0.956

Table 6. Running time (in seconds) and parameter comparisons.

Method BM3D WNNM TNRD DnCNN FFDNet RED MemNet CFSNet N3Net

Size 256
2 0.76 210.26 0.47 0.01 0.01 1.36 0.88 0.04 0.17

Size 512
2 3.12 858.04 1.33 0.05 0.03 4.70 3.61 0.11 0.74

Size 1024
2 12.82 3603.68 4.61 0.16 0.11 15.77 14.69 0.38 3.25

# Params - - 27k 558k 490k 4131k 667k 1731k 706k

Method ADNet BRDNet CBM3D CBDNet VDN RIDNet AINDNet Ours -

Size 256
2 0.02 0.05 0.98 0.03 0.04 0.07 0.05 0.05 -

Size 512
2 0.06 0.20 4.63 0.06 0.07 0.21 0.21 0.19 -

Size 1024
2 0.20 0.76 22.85 0.25 0.19 0.84 0.80 0.73 -

# Params 519k 1115k - 6793k 7817k 1499k 13764k 2225k -

demonstrated both objectively and subjectively.

3.6. Denoising on Real Noisy Images

Because the real noises are usually signal dependent and

spatially variant according to different in-camera pipelines,

real image denoising is generally a highly challenging task.

To further show the generalization ability of DeamNet for

real noises, DnD benchmark [40], SIDD benchmark [1],

and RNI15 dataset [27] are chosen as test datasets. Note

that, for DnD and SIDD benchmarks, the near noise-free

images are not publicly available, but the PSNR/SSIM re-

sults can be obtained through their online servers. While for

RNI15, only the noisy images are available. Several state-

of-the-art denoising methods that have demonstrated their

validity on real noisy images are tested for comparisons, in-

cluding CBM3D [10], TNRD [9], DnCNN [61], FFDNet

[62], CBDNet [20], VDN [59], RIDNet [3], and AIND-

Net(TF) [24]. According to [24], AINDNet uses differen-

t datasets to train several models. AINDNet(S) is trained

with the synthetic dataset. Although it performs well on D-

nD, its performance on SIDD is very low. AINDNet(TF)

updates specified parameters from AINDNet(S) with real

noisy images and the best overall performance can be got-

ten on both DnD and SIDD, and thus AINDNet(TF) is used

for a fair comparison. The results of different methods are

provided in Table 5 and Figs. 7, 8, and 9. We can conclude

that DeamNet consistently achieves the best performance

on these datasets among all the competing methods, includ-

ing the newly proposed denoising methods for real noisy

images, i.e., CBDNet, VDN, RIDNet, and AINDNet(TF).

Furthermore, the visual results show that our method re-

moves noises robustly, suppresses artifacts effectively, and

preserves image edges well. Overall, the superiority of

DeamNet on real noisy image denoising confirms the ef-

fectiveness of our network design.

Figure 7. Visual comparison of real denoising results from DnD.

Figure 8. Visual comparison of real denoising results from SIDD.

Figure 9. Visual comparison of real denoising results from RNI15.

3.7. Computational Complexity

To make a comparison in computational complexity,

both the network parameter numbers and the average run-

ning times on the GPU (except for BM3D[11], CBM3D

[10], WNNM[19], and TNRD [9], which are on the CPU) of

different methods for images of size 256× 256, 512× 512,

and 1024 × 1024 are shown in Table 6. Although Deam-

Net is slower than DnCNN [61], FFDNet [62], CFSNet

[53], ADNet [49], and CBDNet [10], its performance is

significantly better. DeamNet also outperforms BM3D[11],

CBM3D [10], WNNM[19], RED [34], MemNet [47], and

N3Net [41] by a considerable margin with a lower running

time. Furthermore, when compared with BRDNet [50],

RIDNet [3] and AINDNet[24], our DeamNet can still ob-

tain higher PSNRs with a slightly lower running time. For

the parameters, DeamNet has a reasonable parameter num-

ber, which is significantly lower than RED [34], CBDNet

[10], VDN [59], and AINDNet [24]. Consequently, the ef-

fectiveness of DeamNet is further demonstrated.

4. Conclusion

In this paper, we propose a novel deep network for im-

age denoising. Different from most of the existing deep

network-based denoising methods, we incorporate the novel

ACP term into the optimization problem, and then the op-

timization process is exploited to inform the deep network

design by using the unfolding strategy. Our ACP-driven de-

noising network combines some valuable achievements of

classic denoising methods and enhances its interpretability

to some extent. Experimental results show the leading de-

noising performance of the proposed network.

Acknowledgement. This work was supported by the Na-

tional Natural Science Foundation of China under Grant

61801316 and the National Postdoctoral Program for Inno-

vative Talents of China under Grant BX201700163.

8603



References

[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S

Brown. A high-quality denoising dataset for smartphone

cameras. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 1692–1700, Jun. 2018. 1, 6,

8

[2] Josue Anaya and Adrian Barbu. Renoirca dataset for real

low-light image noise reduction. Journal of Visual Commu-

nication and Image Representation, 51:144–154, 2018. 6

[3] Saeed Anwar and Nick Barnes. Real image denoising with

feature attention. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3155–3164, Oct.

2019. 1, 2, 7, 8

[4] Antoni Buades, Bartomeu Coll, and J. M. Morel. A non-

local algorithm for image denoising. In IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 60–65, Jun. 2005. 1

[5] Meng Chang, Qi Li, Huajun Feng, and Zhihai Xu. Spatial-

adaptive network for single image denoising. In European

Conference on Computer Vision (ECCV), pages 171–187,

Sep. 2020. 2

[6] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu.

Deep boosting for image denoising. In European Confer-

ence on Computer Vision (ECCV), pages 3–19, Oct. 2018. 1,

2

[7] Fei Chen, Lei Zhang, and Huimin Yu. External patch pri-

or guided internal clustering for image denoising. In IEEE

International Conference on Computer Vision (ICCV), pages

603–611, Dec. 2015. 1

[8] Xiaowu Chen, Dongqing Zou, Steven Zhou, Qinping Zhao,

and Ping Tan. Image matting with local and nonlocal smooth

priors. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1902–1907, Jun. 2013. 2

[9] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction

diffusion: A flexible framework for fast and effective image

restoration. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 39(6):1256–1272, Jun. 2017. 2, 7, 8

[10] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and

Karen Egiazarian. Color image denoising via sparse 3d

collaborative filtering with grouping constraint in lumi-

nancechrominance space. In IEEE International Conference

on Image Processing (ICIP), pages I–313–I–316, Oct. 2007.

2, 8

[11] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and

Karen Egiazarian. Image denoising by sparse 3-d transform-

domain collaborative filtering. IEEE Transactions on Image

Processing, 16(8):2080–2095, Aug. 2007. 1, 2, 7, 8

[12] Martin David R., Doron Tal Charless, Fowlkes, and Malik

Jitendra. A database of human segmented natural images

and its application to evaluating segmentation algorithms and

measuring ecological statistics. In IEEE International Con-

ference on Computer Vision (ICCV), pages 416–423, Jul.

2001. 6

[13] Weisheng Dong, Peiyao Wang, Wotao Yin, and Guangming

Shi. Denoising prior driven deep neural network for image

restoration. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 41(10):2305–2318, Oct. 2019. 2

[14] Michael Elad and Michal Aharon. Image denoising via s-

parse and redundant representations over learned dictionar-

ies. IEEE Transactions on Image Processing, 15(12):3736–

3745, DeC. 2006. 1, 2

[15] Vadim Fedorov and Coloma Ballester. Affine non-local

means image denoising. IEEE Transactions on Image Pro-

cessing, 26(5):2137–2148, May 2017. 1

[16] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Inter-

national Conference on Artificial Intelligence and Statistics,

pages 249–256, May 2010. 6

[17] Clment Godard, Kevin Matzen, and Matt Uyttendaele. Deep

burst denoising. In European Conference on Computer Vi-

sion (ECCV), pages 560–577, Oct. 2018. 1, 2

[18] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.

Self-guided network for fast image denoising. In IEEE In-

ternational Conference on Computer Vision (ICCV), pages

2511–2520, Oct. 2019. 1, 2

[19] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu

Feng. Weighted nuclear norm minimization with applica-

tion to image denoising. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2862–2869,

Jun. 2014. 1, 7, 8

[20] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei

Zhang. Toward convolutional blind denoising of real pho-

tographs. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 1712–1722, Jun. 2019. 8

[21] Jia Bin Huang, Abhishek Singh, and Narendra Ahuja. Single

image super-resolution from transformed self-exemplars. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 5197–5206, Jun. 2015. 6

[22] Xixi Jia, Sanyang Liu, Xiangchu Feng, and Zhang Lei. Foc-

net: A fractional optimal control network for image denois-

ing. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6047–6056, June 2019. 1, 2

[23] Jingdong Chen, J. Benesty, Yiteng Huang, and S. Doclo.

New insights into the noise reduction wiener filter. IEEE

Transactions on Audio, Speech, and Language Processing,

14(4):1218–1234, Jul. 2006. 1

[24] Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik

Cho. Transfer learning from synthetic to real-noise denoising

with adaptive instance normalization. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

3482–3492, Jun. 2020. 1, 2, 8

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations (ICLR), pages 1–15, May 2015. 6

[26] Claude Knaus and Matthias Zwicker. Progressive im-

age denoising. IEEE Transactions on Image Processing,

23(7):3114–3125, Jul. 2014. 1

[27] Marc Lebrun, Miguel Colom, and Jean Michel Morel. The

noise clinic: a blind image denoising algorithm. Image Pro-

cessing On Line, pages 5:1–54, 2015. 6, 8

[28] Stamatios Lefkimmiatis. Universal denoising networks : A

novel cnn architecture for image denoising. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 3204–3213, Jun. 2018. 2, 7

8604



[29] Xiaoyao Li, Yicong Zhou, Jing Zhang, and Lianhong Wang.

Multipatch unbiased distance non-local adaptive means with

wavelet shrinkage. IEEE Transactions on Image Processing,

29:157–169, 2020. 1

[30] Chih-Hsing Lin, Jia-Shiuan Tsai, and Ching-Te Chiu.

Switching bilateral filter with a texture/noise detector for u-

niversal noise removal. IEEE Transactions on Image Pro-

cessing, 19(9):2307–2320, Sep. 2010. 1

[31] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and

Thomas S. Huang. Non-local recurrent network for image

restoration. In International Conference on Learning Repre-

sentations (ICLR), pages 1680–1689, Dec. 2018. 1, 2

[32] Pengju Liu, Hongzhi Zhang, Kai Zhang, Liang Lin, and

Wangmeng Zuo. Multi-level wavelet-cnn for image restora-

tion. In IEEE Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW), pages 773–782, Jun.

2018. 1

[33] Enming Luo, Stanley H. Chan, and Truong Q. Nguyen.

Adaptive image denoising by mixture adaptation. IEEE

Transactions on Image Processing, 25(10):4489–4503, Oct.

2016. 1, 2

[34] Xiaojiao Mao, Chunhua Shen, and Yubin Yang. Image de-

noising using very deep fully convolutional encoder-decoder

networks with symmetric skip connections. In Advances

in Neural Information Processing Systems (NeurIPS), pages

2802–2810, Dec. 2016. 1, 7, 8

[35] Max Mignotte. A non-local regularization strategy for image

deconvolution. Pattern Recognition Letters, 29(16):2206–

2212, Dec. 2008. 2

[36] Ha Q. Nguyen, Emrah Bostan, and Michael Unser. Learning

convex regularizers for optimal bayesian denoising. IEEE

Transactions on Signal Processing, 66(4):1093–1105, Feb.

2018. 2

[37] Jiahao Pang and Gene Cheung. Graph laplacian regulariza-

tion for image denoising: Analysis in the continuous domain.

IEEE Transactions on Image Processing, 26(4):1770–1785,

Apr. 2017. 1

[38] Jiahao Pang, Gene Cheung, Antonio Ortega, and Oscar C. L

Au. Optimal graph laplacian regularization for natural image

denoising. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 2294–2298,

Apr. 2015. 1

[39] Vardan Papyan and Michael Elad. Multi-scale patch-based

image restoration. IEEE Transactions on Image Processing,

25(1):249–261, Jan. 2016. 1

[40] Tobias Plotz and Stefan Roth. Benchmarking denoising algo-

rithms with real photographs. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 1586–

1595, Jun. 2017. 6, 8

[41] Tobias Plotz and Stefan Roth. Neural nearest neighbors net-

works. In Advances in Neural Information Processing Sys-

tems (NeurIPS), pages 1087–1098, Dec. 2018. 1, 2, 7, 8

[42] Xie Qi, Zhao Qian, Deyu Meng, Zongben Xu, and Shuhang

Gu. Multispectral images denoising by intrinsic tensor s-

parsity regularization. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1692–1700,

Jun. 2016. 1

[43] Chao Ren, Xiaohai He, and Truong Q. Nguyen. Adjusted

non-local regression and directional smoothness for image

restoration. IEEE Transactions on Multimedia, 21(3):731–

745, Aug. 2019. 2

[44] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In International Conference on Medical Image Computing

and Computer-Assisted Intervention, pages 234–241, Nov.

2015. 5

[45] Stefan Roth and Michael J. Black. Fields of experts. Inter-

national Journal of Computer Vision, 82(2):205–229, Feb.

2009. 6

[46] Uwe Schmidt and Stefan Roth. Shrinkage fields for effec-

tive image restoration. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2774–2781,

Jun. 2014. 2

[47] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration. In

IEEE International Conference on Computer Vision (ICCV),

pages 4549–4557, Oct. 2017. 7, 8

[48] Chen Tao, Kai-Kuang Ma, and Li-Hui Chen. Tri-state medi-

an filter for image denoising. IEEE Transactions on Image

Processing, 8(12):1834–1838, Dec. 1999. 1

[49] Chunwei Tian, Yong Xu, Zuoyong Li, Wangmeng Zuo,

Lunke Fei, and Hong Liu. Attention-guided cnn for image

denoising. Neural Networks, 124:117–129, 2020. 7, 8

[50] Chunwei Tian, Yong Xu, and Wangmeng Zuo. Image de-

noising using deep cnn with batch renormalization. Neural

Networks, 121:461–473, 2020. 7, 8

[51] Radu Timofte, Kyoung Mu Lee, Xintao Wang, Yapeng

Tian, Yu Ke, Yulun Zhang, Shixiang Wu, Dong Chao, Lin

Liang, and Qiao Yu. Ntire 2017 challenge on single im-

age super-resolution: methods and results. In IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops (CVPRW), pages 1110–1121, Jun. 2017. 6

[52] Radu Timofte, Rasmus Rothe, and Luc Van Gool. Seven

ways to improve example-based single image super resolu-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1865–1873, Jun. 2016. 7

[53] Wei Wang, Ruiming Guo, Yapeng Tian, and Wenming

Yang. Cfsnet: Toward a controllable feature space for image

restoration. In IEEE International Conference on Computer

Vision (ICCV), pages 4140–4149, Oct. 2019. 7, 8

[54] Ting Xie, Shutao Li, and Bin Sun. Hyperspectral images de-

noising via nonconvex regularized low-rank and sparse ma-

trix decomposition. IEEE Transactions on Image Process-

ing, 29:44–56, 2020. 1

[55] Yuan Xie, Shuhang Gu, Yan Liu, Wangmeng Zuo, Wensheng

Zhang, Lei Zhang, and Yuan Xie. Weighted schatten p-norm

minimization for image denoising and background subtrac-

tion. IEEE Transactions on Image Processing, 25(10):4842–

4857, Oct. 2016. 1

[56] Jun Xu, Lei Zhang, and David Zhang. A trilateral weighted

sparse coding scheme for real-world image denoising. In Eu-

ropean Conference on Computer Vision (ECCV), pages 21–

38, Sep. 2018. 1

8605



[57] Jun Xu, Lei Zhang, David Zhang, and Xiangchu Feng.

Multi-channel weighted nuclear norm minimization for re-

al color image denoising. In IEEE International Conference

on Computer Vision (ICCV), pages 1096–1104, Oct. 2017. 1

[58] Jun Xu, Lei Zhang, Wangmeng Zuo, David Zhang, and Xi-

angchuFeng. Patch group based nonlocal self-similarity pri-

or learning for image denoising. In IEEE International Con-

ference on Computer Vision (ICCV), pages 244–252, Dec.

2015. 1

[59] Zongsheng Yue, Hongwei Yong, Qian Zhao, Deyu Meng,

and Lei Zhang. Variational denoising network: Toward blind

noise modeling and removal. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 1690–1701,

2019. 2, 8

[60] Kaibing Zhang, Xinbo Gao, Dacheng Tao, and Xuelong Li.

Single image super-resolution with non-local means and s-

teering kernel regression. IEEE Transactions on Image Pro-

cessing, 21(11):4544–4556, Nov. 2012. 2

[61] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: residual learning of

deep cnn for image denoising. IEEE Transactions on Image

Processing, 26(7):3142–3155, Jul. 2016. 1, 2, 6, 7, 8

[62] Kai Zhang, Wangmeng Zuo, and Zhang Lei. Ffdnet: Toward

a fast and flexible solution for cnn based image denoising.

IEEE Transactions on Image Processing, 27(9):4608–4622,

Sep. 2018. 2, 7, 8

[63] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very

deep residual channel attention networks. In European Con-

ference on Computer Vision (ECCV), pages 294–310, Sep.

2018. 5

[64] Wang Zhou, Alan Conrad Bovik, Hamid Rahim Sheikh, and

Eero P. Simoncelli. Image quality assessment: from error

visibility to structural similarity. IEEE Transactions on Im-

age Processing, 13(4):600–612, Apr. 2004. 6

8606


