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Abstract

Unsupervised video object segmentation (UVOS) aims at

segmenting the primary objects in videos without any hu-

man intervention. Due to the lack of prior knowledge about

the primary objects, identifying them from videos is the ma-

jor challenge of UVOS. Previous methods often regard the

moving objects as primary ones and rely on optical flow

to capture the motion cues in videos, but the flow infor-

mation alone is insufficient to distinguish the primary ob-

jects from the background objects that move together. This

is because, when the noisy motion features are combined

with the appearance features, the localization of the pri-

mary objects is misguided. To address this problem, we

propose a novel reciprocal transformation network to dis-

cover primary objects by correlating three key factors: the

intra-frame contrast, the motion cues, and temporal coher-

ence of recurring objects. Each corresponds to a repre-

sentative type of primary object, and our reciprocal mech-

anism enables an organic coordination of them to effec-

tively remove ambiguous distractions from videos. Addi-

tionally, to exclude the information of the moving back-

ground objects from motion features, our transformation

module enables to reciprocally transform the appearance

features to enhance the motion features, so as to focus

on the moving objects with salient appearance while re-

moving the co-moving outliers. Experiments on the public

benchmarks demonstrate that our model significantly out-

performs the state-of-the-art methods. Code is available at

https://github.com/OliverRensu/RTNet.

1. Introduction

Video object segmentation (VOS) aims at localizing and

segmenting objects in videos. As one of the fundamen-

tal tasks in computer vision, VOS has many applications,

e.g., object tracking [22,30,51] autonomous driving [5,13],

video surveillance [45]. In specific, the existing techniques

of VOS can be roughly categorized into: semi-supervised
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Figure 1: Segmenting primary objects based on optical flow

is usually distracted by the co-moving outliers. We attack

this problem by reciprocally transforming appearance fea-

tures to motion features, and thus avoid misleading motion

information from corrupting the localization of primary ob-

jects.

video object segmentation [14, 32, 56] in which the seg-

mentation mask of the primary object(s) is given at the

first frame, and unsupervised video object segmentation

(UVOS) [31, 47, 48, 60] that aims to extract the mask of the

primary object(s) without any prior knowledge. In this pa-

per, we focus on the task of UVOS.

Due to the lack of prior knowledge, the UVOS models

have to handle the major concern for identifying the sources

of primary objects in the videos. We observe that there are

three types of candidate primary objects: the salient objects

in a single frame, the moving objects, and recurring objects

in the video. In general, human attention will be drawn on

the salient objects [18, 28, 52] within an image, thus these

visually distinct objects may be the candidate primary ob-

jects. However, these methods may not be applicable for

identifying primary objects in videos, as human attention

will naturally shift to various patterns of dynamics or mo-

tions in video [9, 37]. Thus, the objects that are indistinct

in a single frame but moving in video may be the primary

objects according to motion cues, yet ignored by the image-

based models. Besides, people also tend to memorize the

objects that appear repeatedly in the video, therefore these

objects may be treated as another type of primary ones.

Previous methods [24, 65] apply optical flow to capture

motion information. However, the optical flow can hardly
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distinguish the dynamic background objects from the fore-

ground objects. For instance, in Fig. 1, it is ambiguous

to categorize the car and the billboard, or the human and

the spray, into foreground and background by optical flow

only. Therefore, directly mapping these motion cues to the

appearance features [24, 65] may misguide UVOS models

when localizing the primary objects.

To address the aforementioned limitation, we propose

a unified framework, Reciprocal Transformation Network

(RTNet), to identify primary objects beyond the distrac-

tion of co-moving outliers. Our idea is to mutually evolve

and integrate the appearance and motion representations

in the network such that all three types of candidate pri-

mary objects can be taken into consideration and produces

a holistic decision. To this end, we propose a Reciprocal

Transformation Module (RTM) within the network to en-

able in-domain and cross-domain feature interactions. In

particular, the proposed reciprocal transformation scheme

computes similarities for all the pairwise features including

motion-motion, appearance-appearance, and appearance-

motion pairs of features. The underlying information will

be transformed to each other in order to replenish the ap-

pearance/motion object representation and remove the am-

biguity from the inconsistent appearance or the inaccurate

optical flow.

Applying the proposed RTM on different source fea-

tures results in different types of primary object properties,

i.e., 1) self-similarities of appearance and motion features

lead to intra-frame contrast; 2) appearance-motion similar-

ity produces motion cues; and 3) cross-frame appearance-

appearance and motion-motion feature similarities yield

temporal coherence. Each corresponds to one of the three

types of primary objects. Besides, instead of simply skip

connecting the encoder and decoder as FCN [29] does,

we propose a Spatial Temporal Attentive Fusion Mod-

ule (STAFM) to leverage the appearance and motion fea-

tures from the corresponding encoder stage, and segment

spatio-temporally consistent primary objects. In experi-

ments, we evaluate our approach against the state-of-the-art

methods on public benchmarks DAVIS [34] and achieve the

performance gain of 4% on region similarity J and 5% on

boundary accuracy F over the second best method [65].

To sum up, the contributions of our paper are three-fold:

• We delve into three types of primary objects in videos,

and present a novel reciprocal transformation network

(RTNet), which is able to effectively exploit the intra-

frame contrast, motion cues, and temporal coherence

of recurring objects to identify and segment primary

objects from the videos.

• To eliminate the co-ocurring moving outliers from the

optical flow and extract the moving objects with salient

appearance, we propose a new reciprocal transforma-

tion approach that mutually evolves the appearance

features to the motion features.

• We propose a Spatial Temporal Attentive Fusion Mod-

ule (STAFM) to selectively integrate the appearance

and motion features.

• Our method significantly outperforms state-of-the-art

methods in the public benchmark. Even if we use

a much smaller backbone and less training data, our

lightweight model can still achieve comparable perfor-

mance against latest competitors.

2. Related Work

In this section, we will survey the works on video object

segmentation as well as attention mechanism.

2.1. Video Object Segmentation

Prior methods on video object segmentation can be di-

vided into two categories: semi-supervised video object seg-

mentation and unsupervised video object segmentation.

Semi-supervised Video Object Segmentation. The

semi-supervised VOS methods assume that the ground-truth

mask of the target object(s) is provided at the first frame.

These methods can be further categorized into two types,

i.e., online-learning methods [1,4,7,26] and offline-learning

methods [6,20]. Online-learning methods fine-tune the pre-

trained model based on the given ground-truth mask and

predict the segmentation results at the cost of the inference

time. On the contrary, offline-learning methods utilize the

given mask as the guidance to update the pretrained model

at the inference time. Despite the superior performance

of semi-supervised VOS methods, the annotating ground-

truth masks involves manual efforts and may introduce bias,

which limits its application in real-world scenarios.

Unsupervised Video Object Segmentation. Compared

with semi-supervised VOS methods, UVOS methods do

not require any manual annotations. Early UVOS meth-

ods are mainly based on object proposal [21, 23], temporal

trajectory [3, 11, 33] and saliency prior [19, 53, 54]. With

the development of deep convolutional neural networks and

the establishment of large-scale datasets [34], deep learn-

ing based methods are proposed for modeling the spatio-

temporal information. To capture the motion cues, MP-

Net [46] focuses on optical flow only, but it is difficult to

segment the static objects, due to the insufficient appearance

information. In addition, several methods apply two stream

networks to capture and then fuse the appearance and mo-

tion features. Fragkiadaki et al. [10] use fully-connected

layers to integrate optical flow and static boundaries to rank

the segment proposals. MBN [25] includes a bilateral net-

work for background estimation and integrates it with the

appearance features into a graph. Besides, to capture long-

term temporal information, several methods [43] process
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Figure 2: Illustration of Reciprocal Transformation Network which is composed of two network streams: the appearance

stream and the motion stream. A pair of frames {Ia1
, Ia2

} and their corresponding optical flows {Im1
, Im2

} are fed into two

streams, respectively. To correlate the features of the spatial and temporal domains, we propose the Reciprocal Transforma-

tion Modules (RTM) to transform the motion features, F i
m1

and F i
m2

(i = {1, 2}), and the appearance features, F i
a1

and F i
a2

.

Given pairwise features, RTM enables in-domain and cross-domain feature interactions for identifying salient objects in a

single frame, moving objects, and recurring objects, respectively. In the end, the appearance features and motion features

are fused by the Spatial Temporal Attentive Fusion Module (STAFM) and fed to the decoder of the appearance stream to

generate the final mask.

video in RNN-based architecture. Song et al. [43] intro-

duce a bi-directional ConvLSTM [41] for extracting fea-

tures for multiple frames. However, RNN-based models

suffer from the gradient vanishing problem and they are dif-

ficult to run in parallel. Furthermore, the attention-based

methods are proposed for capturing long range dependency.

COSNet [31] propose a co-attention layer to extract the dis-

criminative foreground in a short video. ADNet [60] in-

troduces an anchor frame to model the long-term depen-

dency. MATNet [65] uses a motion-attentive transition to

model motion information and spatio-temporal representa-

tion. Different from prior works, our reciprocal transfor-

mations leverage long range intra-frame contrast, temporal

coherence, and motion-appearance similarity to enhance the

appearance feature representation.

Attention Mechanism. Attention mechanism has been

demonstrated effective and efficiency in many tasks due

to its flexibility [27, 40, 49, 63]. The core idea of atten-

tion mechanisms is to highlight the task-specific discrimi-

native regions in features. The attention scheme for videos

has been explored in many aspects, including gating or

pooling [14, 32], pose primitives [2, 15], graph representa-

tions [17, 57], recurrent memory models [31, 39], and self-

attention [56]. In contrast to previous works, our proposed

model measures the similarity for any pair of feature maps

of frames and flows, and reciprocally transform the similar-

ity to each other.

3. Proposed Method

3.1. System Overview

Given a pair of frames {Ia1
, Ia2

} in a video and their cor-

responding optical flow {Im1
, Im2

} computed by [44], we

aims at segmenting the primary objects within Ia1
and Ia2

.

Fig. 2 shows the pipeline of our method, which is composed

of two main streams: the appearance stream with {Ia1
, Ia2

}
as inputs and the motion stream with {Im1

, Im2
} as inputs.

Each stream is an encoder-decoder architecture with skip

connections [38]. In specific, we adopt ResNet [16] with

dilated convolution [61] as backbone.

In each stage of the encoder, we introduce a Reciprocal

Transformation Module (RTM), FRTM . As the main com-

ponent of our framework, RTM is consisted of three sub-

modules: reciprocal scaling, reciprocal transformation, and

reciprocal gating. We will elaborate it in Sec. 3.2. Hence,

we leverage RTM to enhance the pairwise appearance and
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Figure 3: Our Reciprocal Transformation Module (RTM)

includes reciprocal scaling, reciprocal transformation and

reciprocal gating. ⊙ and ⊗ indicate element-wise multipli-

cation and matrix multiplication respectively.

motion features for identifying three types of candidate pri-

mary objects, i.e., salient objects within a frame, moving

objects, and recurring objects in the video, which will be

described in Sec. 3.3.

Last, in the decoder network of the motion stream, the

skip connections bridge the low-level encoded features with

the corresponding decoding layer, while the decoder of the

appearance stream leverages the Spatial Temporal Attentive

Fusion Module (STAFM) (Sec. 3.4) to fuse appearance and

motion features to yield the final results.

3.2. Reciprocal Transformation Module
In this section, we will describe the structure of Recipro-

cal Transformation Module (RTM) (see Fig. 3) . Given

two features (denoted as Fa and Fb which could be any

pair from the appearance or motion features), we can mu-

tually evolve and integrate the pairwise features via RTM.

As described in the following subsections, our RTM in-

cludes three sub-modules: reciprocal scaling for adjusting

the weights of different semantics, reciprocal transforma-

tion for measuring the similarity between feature maps, and

reciprocal gating for balancing the transformed features.

3.2.1 Reciprocal Scaling

In deep neural networks, the channels of features represent

different semantic meanings [12]. Thus, the values of chan-

nels can be accordingly scaled so as to bridge the atten-

tion of different primary objects for the features of different

sources. In particular, as the motion features mainly focus

on moving objects while the appearance features focus on

salient objects, the reciprocal scaling enables to bridge their

attention gap. Similarly, for the appearance features of two

different frames, the reciprocal scaling may enable them to

cast attention on different objects. To do so, we squeeze the

combined feature maps to generate the representative value

Ac for each channel and estimate the scaling factors w1, w2

that indicate the importance of semantics:

Ac = Fc(Fa;Fb),

w1 = σ(FC(φ(FC(Ac; θ1); θ21))),

w2 = σ(FC(φ(FC(Ac; θ1); θ22))),

(1)

where Fc refers to the concatenation and squeezing (i.e.,

global average pooling) operation. FC(·; θ) refers to the

fully connected layer and φ is a ReLU activation function.

Thus, we scale the channels of the features Fa and Fb ac-

cording to w1 and w2:

F
′

a = w1 ⊙ Fa + Fa,

F
′

b = w2 ⊙ Fb + Fb,
(2)

where ⊙ is the element-wise multiplication.

3.2.2 Reciprocal Transformation

In this sub-module, we aim at measuring the similarity be-

tween feature maps, and transform both features to enhance

the representation. Before explaining our reciprocal trans-

formation, we introduce the principle of the vanilla self-

transformation and nonreciprocal transformation.

Vanilla self-transformation. The local receptive fields

of standard fully convolution network (FCN) based meth-

ods [29] confines the capability of networks in segmenta-

tion tasks that require rich context information. To capture

long range dependency, Wang et al. [56] propose the self-

attention scheme in which the feature maps are applied to

measure the holistic similarity with itself to estimate its at-

tention.

Nonreciprocal transformation. Nonreciprocal trans-

formation is designed to compute the holistic similarity

across different feature maps and manages to deliver the

information from one feature to another. The nonrecip-

rocal transformation is computed based on the similarity

of the features from different sources. Given the feature

maps for query F
′

a ∈ Rc×w×h and the target feature map

F
′

b ∈ Rc×w×h, it measures the holistic positional similarity

matrix S using a non-local network structure:

S = Softmax(F
′
T

b WF
′

a), (3)

where W ∈ Rc×c is the similarity matrix. In practice, W

contains a large amount of trainable parameters. To reduce

the network complexity, we approximate W via two sepa-

rate convolution operations:

F̂
′

a = Conv(F
′

a; θa),

F̂
′

b = Conv(F
′

b , θb),

Sa→b = Softmax(F̂
′
T

b × F̂
′

a),

(4)
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where Conv(F ; θ) is the convolution layer with the param-

eters θ on the feature map F and × refer to the matrix mul-

tiplication operator. Then, we derive the features according

to the holistic positional similarity matrix S:

F
′′

a→b = Conv(F
′

a, θxa
)× Sa→b, (5)

where F
′′

a→b is the enhanced features of F
′

b from interacting

with the feature F
′

a.

Reciprocal Transformation. Unlike nonreciprocal

transformation, our reciprocal transformation use two fea-

tures to mutually compensate each other, i.e.,:

F
′′

a→b = Conv(F
′

a, θxa
)× Sa→b,

F
′′

b→a = Conv(F
′

b , θxb
)× Sb→a.

(6)

Using reciprocal transformation, the motion cues can be

strengthened across the features of different sources. In

specific, we can first transform the motion features to the

appearance features to improve the segmentation ability for

moving objects, and then the appearance features are recip-

rocally transformed to the motion features to eliminate the

co-moving outliers.

3.2.3 Reciprocal Gating

Transformed features often have the different extents of im-

portance. For instance, the appearance or motion noise like

background variation or motion blur should be regarded as

distractors with less importance. Therefore, we design a re-

ciprocal gating mechanism to balance different transformed

features:

Ga = σ(Conv(F
′′

a→b ⊕ F
′′

b→a; θ1)),

Gb = σ(Conv(F
′′

a→b ⊕ F
′′

b→a; θ2)),
(7)

where ⊕ is the concatenation operation and σ is the sigmoid

function. Ga, Gb ∈ (0, 1) are the reciprocal gates to balance

the transformed features. Thus, we apply these gates to the

original features:

Xa→b = Gb ⊙ F
′′

a→b + F
′′

a→b,

Xb→a = Ga ⊙ F
′′

b→a + F
′′

b→a.
(8)

where Xa→b, Xb→a are the final feature maps.

3.3. RTM­based Video Object Segmentation

Depending on the input features, RTM is enabling to in-

teract and enhance the features of different sources for iden-

tifying the salient objects in a single frame, the moving ob-

jects, and the recurring objects, respectively. In general, on

the ith stage of the encoder network, we obtain the appear-

ance features F i
a1

and F i
a2

from the input frames {Ia1
, Ia2

},

as well as the motion features F i
m1

and F i
m2

from the corre-

sponding optical flows {Im1
, Im2

}.

Salient objects. To identify the salient objects in a single

frame, RTM is utilized to obtain the intra-frame contrast by

measuring the self-similarity of the appearance features or

the motion features, which can be expressed as below.

Xi
a1→a1

= FRTM (F i
a1
, F i

a1
; θa),

Xi
a2→a2

= FRTM (F i
a2
, F i

a2
; θa),

Xi
m1→m1

= FRTM (F i
m1

, F i
m1

; θm),

Xi
m2→m2

= FRTM (F i
m2

, F i
m2

; θm),

(9)

where Xi
a1→a1

and Xi
a2→a2

represent the self-similarity

of the appearance features F i
a1

and F i
a2

. Xi
m1→m1

and

Xi
m2→m2

are the self-similarity of the motion features F i
m1

and F i
m2

. θa, θm are the parameters of the corresponding

RTMs.

Recurring objects. To identify the recurring objects, the

spatio-temporal correlation between the input frames will

be measured, so as to capture the long range dependency in

two separate frames. Thus, we have:

Xi
a1→a2

, Xi
a2→a1

= FRTM (F i
a1
, F i

a2
; θaa),

Xi
m1→m2

, Xi
m2→m1

= FRTM (F i
m1

, F i
m2

; θmm),
(10)

where Xi
a1→a2

and Xi
a2→a1

are the similarity between the

appearance features of two frames, F i
a1

and F i
a2

. Xi
m1→m1

and Xi
m2→m2

refer to the similarity between the motion fea-

tures of two frames, F i
m1

and F i
m2

.

Moving objects. We associate the motion features with

the appearance features for identifying the moving objects,

by computing the similarity of salient appearance and mo-

tion cues. Likewise, by associating the motion features with

the appearance features, we can eliminate the co-moving

outliers:

Xi
m1→a1

, Xi
a1→m1

= FRTM (F i
a1
, F i

m1
; θam),

Xi
m2→a2

, Xi
a2→m2

= FRTM (F i
a2
, F i

m2
; θam),

(11)

where Xi
m1→a1

and Xi
a1→m1

are the simiarity between the

motion and appearance features, F i
m1

and F i
a1

. Xi
m2→a2

and Xi
a2→m2

refer to the similarity between the motion and

appearance features, F i
m2

and F i
a2

.

Hence, the final appearance features are the combination

of the intra-frame contrast, temporal coherence, and motion

cues, as below:

Xi
a1

= F i
a1

+Xi
a1→a1

+Xi
a2→a1

+Xi
m1→a1

,

Xi
a2

= F i
a2

+Xi
a2→a2

+Xi
a1→a2

+Xi
m2→a2

.
(12)

Similarly, the motion features are defined as below.

Xi
m1

= F i
m1

+Xi
m1→m1

+Xi
m2→m1

+Xi
a1→m1

,

Xi
m2

= F i
m2

+Xi
m2→m2

+Xi
m1→m2

+Xi
a2→m2

.
(13)
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Figure 4: Our Spatial Temporal Attentive Fusion Mod-

ule (STAFM) including channel attention and spatial atten-

tion. ⊙ and ⊕ indicate element-wise addition and matrix

multiplication respectively.

3.4. Spatial Temporal Attentive Fusion Module

Inspired by CBAM [59], we aim at selectively fusing ap-

pearance features and motion features from each network

stage via channel attention and spatial attention. As il-

lustrated in Fig. 4, with the appearance features Xa ∈
Rc×w×h and motion features Xm ∈ Rc×w×h, we design

a gating mechanism to adjust the weight of each channel

for all the feature maps:

Ac = Fc(Xa;Xm),

wc = σ(FC(φ(FC(Ac; θ1); θ2))),

wa
c = wc, w

m
c = 1− wc,

(14)

where Fc is the concatenation and squeezing operation.

FC(X; θ) is a fully connected layer, φ is the ReLU acti-

vation function. The fully connected layers and these ac-

tivation functions jointly serve as the excitation operation.

{wc ∈ (0, 1) |wc ∈ Rc} refers to the channel gate. Thus,

we use the channel gate to enhance motion and appearance

features as below:

X
′

a = wa
c ⊙Xa,

X
′

m = wm
c ⊙Xm,

(15)

In addition, we exploit the spatial relationship across mo-

tion and appearance features to infer the spatial attention,

which can guide the adaptive fusion of the motion and ap-

pearance features. To do so, we first calculate the spatial

features for the appearance features X
′

a and motion features

X
′

m enhanced by channel attention:

Pa = MaxPool(X
′

a)⊕AvgPool(X
′

a),

Pm = MaxPool(X
′

m)⊕ AvgPool(X
′

m),

P
′

= σ(Conv(Pa ⊕ Pm; θp)),

P
′

a = P
′

, P
′

m = 1− P
′

,

(16)

where Pa and Pm represent the spatial attention maps of

X
′

a and X
′

m. MaxPool represents the max pooling layer

and AvgPool represents the average pooling layer. Then,

we leverage the attention maps to fuse the appearance and

motion features, as follows.

X
′′

a = P
′

a ⊙X
′

a + P
′

m ⊙X
′

m, (17)

where X
′′

a is the fused features which will be passed to the

decoder of the appearance network stream.

3.5. Loss Function

We adopt the same loss function as BASNet [36] to

jointly measure the prediction in the pixel level by cross

entropy loss [8], in the patch level by SSIM loss [58], as

well as in the region level by IoU loss [62]:

L(M,G) = lce(M,G)+ lssim(M,G)+ liou(M,G), (18)

where M denotes the segmentation mask and G refers to

the ground-truth.

Given an pair of image Ia1
, Ia2

and their corresponding

optical flow Im1
, Im2

, we have four output segmentation

masks from four stages of the decoder. Hence, the total loss

is defined as below:

L =

2∑

i=1

4∑

j=1

L(M j
ai
, Gj

ai
) + L(M j

mi
, Gj

mi
). (19)

4. Experiment

4.1. Implementation Details and Datasets

Implementation Details. In the following experiments,

we test our model with ResNet-34 and ResNet-101 as back-

bone networks. We pre-train our appearance stream and the

motion stream without the transformation and fusion mod-

ules on the saliency detection dataset DUTS [50] and video

object segmentation dataset DAVIS-16 [34] dataset respec-

tively. Then, we freeze the weights of the backbone net-

works and train the transformation modules and the feature

fusion module on DAVIS-16 dataset. During above training

period, the learning rate is set as 1e-3 and we fine-tune the

whole model with the learning rate of 5e-4. We apply SGD

as the optimizer with momentum of 5e-4. During training,

we randomly sample frame pairs in the same video. We

adopt the data argumentation strategies including the verti-

cal/horizontal flip and multi-scale training. On the test time,

to produce the segmentation masks of primary objects in the

target frame, we randomly select another frame in the same

video as reference. Following the practice of [31], we also

apply CRF-based post-processing technique.

Datasets. We evaluate our method on two public dataset:

DAVIS-16 [34] contains 50 high-quality videos of 480p

and 720p with high quality dense pixel-level annotations

and YouTube-Objects [35] contains 126 videos over 20,000

frames and 10 semantic categories. We adopt region simi-

larity J and boundary accuracy F as evaluation metrics.
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Figure 5: Qualitative results on DAVIS-16: breakdance, horsejump-high and dance-twirl

J F

Method Backbone Mean Recall Mean Recall

LMP FLowNet 70.0 85.0 65.9 79.2

LVO DeepLab 75.9 89.1 72.1 83.4

PDB ResNet-50 77.2 90.1 74.5 84.4

LMSO ResNet-101 78.2 89.1 75.9 84.7

MOTAdapt ResNet-101 77.2 87.8 77.4 84.4

AGS ResNet-101 79.7 91.1 77.4 85.8

COSNet ResNet-101 80.5 93.1 79.5 89.5

ADNet ResNet-101 81.7 90.9 80.5 85.1

MATNet ResNet-101 82.4 94.5 80.7 90.2

DFNet DeepLab 83.4 - 81.8 -

Ours-Light ResNet-34 84.8 95.8 83.5 93.1

Ours ResNet-101 85.6 96.1 84.7 93.8

Table 1: Quantitative results on DAVIS-16. Res-m indicates

the number of layers in the backbone. The top three per-

formers are marked in Red, Green, and Blue, respectively.

4.2. Comparison with State­of­the­arts

We compare with the previous methods: LMP [29]

LVO [47], PDB [43], LSMO [48], MOTAdapt [42],

AGS [55], COSNet [31], ADNet [60], MATNet [65],

DFNet [64].

Evaluation on DAVIS-16. We evaluate our RTNet

with state-of-the-art unsupervised video object segmenta-

tion methods. The quantitative results are reported in Table

1. LMP [29] tries to prediction primary objects based on

the optical flow only. However, due to the lack of appear-

ance features, this method has the worst performance in lo-

calizing and segmenting the primary objects. Some meth-

ods [31, 43, 60] rely on the appearance features without the

guidance of optical flow also achieves comparable perfor-

mance, because these methods extract the appearance fea-

tures in sequences based on the spatial-temporal architec-

tures like ConvLSTM. Among them, COSNet [31] and AD-

Net [60] leverage the attention mechanism and show strong

ability to model global sequence information. AGS [55]

takes extra visual attention annotations and is more pow-

erful to locate primary objects. More methods [47, 48, 65]

including us take both appearance featrues and motion fea-

tures into consideration. With the reciprocal transformation,

our method is able to identify all kinds of candidate primary

objects. In particular, our lightweight model using ResNet-

34 as backbone (“Ours-Light” in Table 1) outperforms the

both motion and appearance based method MATNet by

2.91% on J and 3.47% on F . MATNet uses ResNet-101 as

backbone and around 12k video frames for training, while

our lightweight version model adopts ResNet-34 as back-

bone and around 2k frames for training. Our full model

using ResNet-101 (“Ours” in Table 1) shows even better

performance. It achieves 0.94% on J over our lightweight

weight model and 3.88% on J over the second best model.

Fig. 5 shows our qualitative results on DAVIS-16 which

contains challenging scenarios like complex background

and motion blur. Our RTNet precisely captures the location

of primary objects and segments them with sharp bound-

aries, thanks to the transformed intra-frame contrast, mov-

ing cues and temporal coherence. The effectiveness can be

specially observed in breakdance, where there are plenty

of appearance-similar humans standing behind the dancing

man. Besides, with our multi-stage reciprocal transforma-

tion, objects of different scales in horsejump-high can be

accurately segmented.

Evaluation on YouTube-Objects. We report the per-

formance of our RTNetet on YouTube-Objects dataset in

Table 2. Our method achieve the best performance over

all the comparison methods under the region similarity J .

For the slow moving objects (i.e.Airplane and Boat) with

ambiguous background, it is difficult for the optical flow

based model (i.e. MATNet) to capture the primary ob-

jects, while our model fuses temporal coherence and intra-

frame contrast information and thus significantly outper-

form MATNet. For the moving objects with salient ap-

pearance (i.e., Bird and Cat), motion based method includ-

ing ours and MATNet outperform the appearance based

method (i.e. COSNet).
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Category LVO PDB MATNet AGS COSNet Ours

Airplane 86.2 78.0 72.9 87.7 81.1 84.1

Bird 81.0 80.0 77.5 76.7 75.7 80.2

Boat 68.5 58.9 66.9 72.2 71.3 70.1

Car 69.3 76.5 79.0 78.6 77.6 79.5

Cat 58.8 63.0 73.7 69.2 66.5 71.8

Cow 68.5 64.1 67.4 64.6 69.8 70.1

Dog 61.7 70.1 75.9 73.3 76.8 71.3

Horse 53.9 67.6 63.2 64.4 67.4 65.1

Motorbike 60.8 58.3 62.6 62.1 67.7 64.6

Train 66.3 35.2 51.0 48.2 46.8 53.3

Mean J 67.5 65.4 69.0 69.7 70.5 71.0

Table 2: Quantitative results of each category on YouTube-

Objects dataset over regional similarity (mean J ).

Model Mean J ∆J Mean F ∆F

Baseline 77.53 - 76.26 -

Baseline+S 78.19 0.66 77.30 1.04

Baseline+M 83.01 5.48 82.19 5.93

Baseline+R 79.57 2.04 79.22 2.96

Baseline+SM 83.51 5.98 81.97 5.71

Baseline+SR 80.11 2.58 79.95 3.69

Baseline+MR 83.43 5.90 82.44 6.18

Baseline+SMR 83.96 6.43 82.65 6.39

Table 3: Ablation study for three types of primary objects.

S, M, R indicate intra-frame salient objects, moving objects,

and recurring objects, respectively.

4.3. Ablation Study

Our ablation experiment is conducted based on our

lightweight model without applying the CRF post-

processing operation on DAVIS-16 dataset.

Primary Objects. We evaluate the effectiveness of our

proposed model for transforming intra-frame saliency, mov-

ing cues, and temporal coherence. The results are reported

in Table 3. We use the vanilla encoder-decoder architec-

ture without any transformation or feature fusion module

as Baseline. Then, we search three kinds of candidate pri-

mary objects and transform the intra-frame contrast features

for local salient objects (denoted as S), the motion features

for moving objects (denoted as M) and the temporal coher-

ence for recurring objects (denoted as R). On the one hand,

we find that identifying the three kinds of primary objects

all contribute to the whole model according to performance

gain while considering one more kind of primary objects.

On the other hand, we find that the performance improve-

ment is most obvious. Therefore, the moving objects play

the most important roles in primary objects comparing with

Model Mean J ∆J Mean F ∆F

Baseline 77.53 - 76.26 -

Nonreciprocal 83.01 5.51 82.19 5.93

Reciprocal 83.74 6.21 82.57 6.31

Table 4: Ablation study of reciprocal mechanism.

Model Mean J ∆J Mean F ∆F

Ours w/o STAFM 84.15 - 82.89 -

Ours w/ STAFM 84.31 0.16 83.01 0.12

Table 5: Ablation study for STFAM.

salient objects and the recurring objects.

Reciprocal Mechanism. We study the quality of the

motion features transformed to the appearance to show the

effectiveness of our reciprocal transformation between mo-

tion features and appearance features. We adopt the vanilla

encoder-decoder architecture without transforming any mo-

tion features as Baseline. Then, we transform the motion

features directly from the motion stream without salient ap-

pearance as Nonreciprocal. Furthermore, our reciprocal

transformation for transforming between appearance and

motion with moving primary objects as Reciprocal. The

results are reported in Table 4.

STAFM. To evaluate the effectiveness of our STAFM,

we compare the performance for our RTNet with STAFM

(Ours w/ STAFM) and the model simply skip connect both

motion and appearance features (Ours w/o STAFM). The

results are reported in Table 5. The gain of our STAFM

comes from the fusion of the crucial spatial and temporal

features while removing the redundant features.

5. Conclusion

In these paper, we propose the reciprocal transformations

to identify the three kind of primary objects: salient objects,

recurring objects and moving objects by searching the intra-

frame dependency, the correlation between motion and ap-

pearance features, and temporal coherence to the appear-

ance features. Besides, to eliminate the moving background

objects, the reciprocal scheme transform appearance fea-

tures back to motion features to filter moving objects with

distinct appearance. Finally, we propose a spatial temporal

attentive feature fusion module to dynamically and selective

fuse spatial and temporal features.
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Laura Leal-Taixé, Daniel Cremers, and Luc Van Gool. One-

shot video object segmentation. In CVPR, pages 221–230,

2017. 2

[5] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong

Xiao. Deepdriving: Learning affordance for direct percep-

tion in autonomous driving. In ICCV, pages 2722–2730,

2015. 1

[6] Yuhua Chen, Jordi Pont-Tuset, Alberto Montes, and Luc

Van Gool. Blazingly fast video object segmentation with

pixel-wise metric learning. In CVPR, pages 1189–1198,

2018. 2

[7] Jingchun Cheng, Yi-Hsuan Tsai, Shengjin Wang, and Ming-

Hsuan Yang. Segflow: Joint learning for video object seg-

mentation and optical flow. In ICCV, pages 686–695, 2017.

2

[8] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and

Reuven Y Rubinstein. A tutorial on the cross-entropy

method. Annals of operations research, 134(1):19–67, 2005.

6

[9] Deng-Ping Fan, Wenguan Wang, Ming-Ming Cheng, and

Jianbing Shen. Shifting more attention to video salient object

detection. In CVPR, pages 8554–8564, 2019. 1

[10] Katerina Fragkiadaki, Pablo Arbelaez, Panna Felsen, and Ji-

tendra Malik. Learning to segment moving objects in videos.

In CVPR, June 2015. 2

[11] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video

segmentation by tracing discontinuities in a trajectory em-

bedding. In CVPR, pages 1846–1853. IEEE, 2012. 2

[12] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene

segmentation. In CVPR, pages 3146–3154, 2019. 4

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

CVPR, pages 3354–3361, 2012. 1

[14] Rohit Girdhar and Deva Ramanan. Attentional pooling for

action recognition. In NeurIPS, pages 34–45, 2017. 1, 3

[15] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,

and Bryan Russell. Actionvlad: Learning spatio-temporal

aggregation for action classification. In CVPR, pages 971–

980, 2017. 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 3

[17] Roei Herzig, Elad Levi, Huijuan Xu, Eli Brosh, Amir

Globerson, and Trevor Darrell. Classifying collisions with

spatio-temporal action graph networks. arXiv preprint

arXiv:1812.01233, 2, 2018. 3

[18] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,

Zhuowen Tu, and Philip HS Torr. Deeply supervised salient

object detection with short connections. In CVPR, pages

3203–3212, 2017. 1

[19] Yuan-Ting Hu, Jia-Bin Huang, and Alexander G Schwing.

Unsupervised video object segmentation using motion

saliency-guided spatio-temporal propagation. In ECCV,

pages 786–802, 2018. 2

[20] Varun Jampani, Raghudeep Gadde, and Peter V Gehler.

Video propagation networks. In CVPR, pages 451–461,

2017. 2

[21] Yeong Jun Koh and Chang-Su Kim. Primary object segmen-

tation in videos based on region augmentation and reduction.

In CVPR, pages 3442–3450, 2017. 2

[22] Changick Kim and Jenq-Neng Hwang. Fast and automatic

video object segmentation and tracking for content-based ap-

plications. IEEE TCSVT, 12(2):122–129, 2002. 1

[23] Yong Jae Lee, Jaechul Kim, and Kristen Grauman. Key-

segments for video object segmentation. In ICCV, pages

1995–2002. IEEE, 2011. 2

[24] Haofeng Li, Guanqi Chen, Guanbin Li, and Yizhou Yu. Mo-

tion guided attention for video salient object detection. In

ICCV, pages 7274–7283, 2019. 1, 2

[25] Siyang Li, Bryan Seybold, Alexey Vorobyov, Xuejing Lei,

and C-C Jay Kuo. Unsupervised video object segmentation

with motion-based bilateral networks. In ECCV, pages 207–

223, 2018. 2

[26] Xiaoxiao Li and Chen Change Loy. Video object segmen-

tation with joint re-identification and attention-aware mask

propagation. In ECCV, pages 90–105, 2018. 2

[27] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos,

Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. A

structured self-attentive sentence embedding. arXiv preprint

arXiv:1703.03130, 2017. 3

[28] Nian Liu, Junwei Han, and Ming-Hsuan Yang. Picanet:

Learning pixel-wise contextual attention for saliency detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3089–3098, 2018. 1

[29] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, pages 3431–3440, 2015. 2, 4, 7

[30] Xiankai Lu, Chao Ma, Bingbing Ni, Xiaokang Yang, Ian

Reid, and Ming-Hsuan Yang. Deep regression tracking with

shrinkage loss. In ECCV, pages 353–369, 2018. 1

[31] Xiankai Lu, Wenguan Wang, Chao Ma, Jianbing Shen, Ling

Shao, and Fatih Porikli. See more, know more: Unsuper-

vised video object segmentation with co-attention siamese

networks. In CVPR, pages 3623–3632, 2019. 1, 3, 6, 7

[32] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable

pooling with context gating for video classification. arXiv

preprint arXiv:1706.06905, 2017. 1, 3

[33] Peter Ochs and Thomas Brox. Object segmentation in video:

a hierarchical variational approach for turning point trajecto-

15463



ries into dense regions. In ICCV, pages 1583–1590. IEEE,

2011. 2

[34] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.

Gross, and A. Sorkine-Hornung. A benchmark dataset and

evaluation methodology for video object segmentation. In

CVPR, 2016. 2, 6

[35] Alessandro Prest, Christian Leistner, Javier Civera, Cordelia

Schmid, and Vittorio Ferrari. Learning object class detectors

from weakly annotated video. In CVPR, pages 3282–3289.

IEEE, 2012. 6

[36] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,

Masood Dehghan, and Martin Jagersand. Basnet: Boundary-

aware salient object detection. In CVPR, June 2019. 6

[37] Sucheng Ren, Chu Han, Xin Yang, Guoqiang Han, and

Shengfeng He. Tenet: Triple excitation network for video

salient object detection. 1

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 3

[39] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov.

Action recognition using visual attention. arXiv preprint

arXiv:1511.04119, 2015. 3

[40] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui

Pan, and Chengqi Zhang. Disan: Directional self-attention

network for rnn/cnn-free language understanding. In AAAI,

2018. 3

[41] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,

Wai-Kin Wong, and Wang-chun Woo. Convolutional lstm

network: A machine learning approach for precipitation

nowcasting. NeurIPS, 28:802–810, 2015. 3

[42] Mennatullah Siam, Chen Jiang, Steven Lu, Laura Petrich,

Mahmoud Gamal, Mohamed Elhoseiny, and Martin Jager-

sand. Video object segmentation using teacher-student adap-

tation in a human robot interaction (hri) setting. In ICRA,

pages 50–56. IEEE, 2019. 7

[43] Hongmei Song, Wenguan Wang, Sanyuan Zhao, Jianbing

Shen, and Kin-Man Lam. Pyramid dilated deeper convlstm

for video salient object detection. In ECCV, pages 715–731,

2018. 2, 3, 7

[44] Zachary Teed and Jia Deng. Raft: Recurrent all-

pairs field transforms for optical flow. arXiv preprint

arXiv:2003.12039, 2020. 3

[45] Ying-Li Tian, Max Lu, and Arun Hampapur. Robust and

efficient foreground analysis for real-time video surveillance.

In CVPR, volume 1, pages 1182–1187. IEEE, 2005. 1

[46] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid.

Learning motion patterns in videos. In CVPR, pages 3386–

3394, 2017. 2

[47] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid.

Learning video object segmentation with visual memory. In

ICCV, Oct 2017. 1, 7

[48] Pavel Tokmakov, Cordelia Schmid, and Karteek Alahari.

Learning to segment moving objects. IJCV, 127(3):282–301,

2019. 1, 7

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, pages

5998–6008, 2017. 3

[50] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,

Dong Wang, Baocai Yin, and Xiang Ruan. Learning to de-

tect salient objects with image-level supervision. In CVPR,

2017. 6

[51] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip HS Torr. Fast online object tracking and segmentation:

A unifying approach. In CVPR, pages 1328–1338, 2019. 1

[52] Tiantian Wang, Lihe Zhang, Shuo Wang, Huchuan Lu, Gang

Yang, Xiang Ruan, and Ali Borji. Detect globally, refine

locally: A novel approach to saliency detection. In CVPR,

pages 3127–3135, 2018. 1

[53] Wenguan Wang, Jianbing Shen, Xuelong Li, and Fatih

Porikli. Robust video object cosegmentation. IEEE TIP,

24(10):3137–3148, 2015. 2

[54] Wenguan Wang, Jianbing Shen, and Fatih Porikli. Saliency-

aware geodesic video object segmentation. In CVPR, pages

3395–3402, 2015. 2

[55] Wenguan Wang, Hongmei Song, Shuyang Zhao, Jianbing

Shen, Sanyuan Zhao, Steven CH Hoi, and Haibin Ling.

Learning unsupervised video object segmentation through

visual attention. In CVPR, pages 3064–3074, 2019. 7

[56] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, pages 7794–

7803, 2018. 1, 3, 4

[57] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. In ECCV, pages 399–417, 2018. 3

[58] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error visibility

to structural similarity. IEEE TIP, 13(4):600–612, 2004. 6

[59] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In

So Kweon. Cbam: Convolutional block attention module.

In ECCV, pages 3–19, 2018. 6

[60] Zhao Yang, Qiang Wang, Luca Bertinetto, Weiming Hu,

Song Bai, and Philip HS Torr. Anchor diffusion for unsuper-

vised video object segmentation. In CVPR, pages 931–940,

2019. 1, 3, 7

[61] Fisher Yu and Vladlen Koltun. Multi-scale context

aggregation by dilated convolutions. arXiv preprint

arXiv:1511.07122, 2015. 3

[62] Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and

Thomas Huang. Unitbox: An advanced object detection net-

work. In ACM MM, pages 516–520, 2016. 6

[63] Ting Zhao and Xiangqian Wu. Pyramid feature attention net-

work for saliency detection. In CVPR, pages 3085–3094,

2019. 3

[64] Mingmin Zhen, Shiwei Li, Lei Zhou, Jiaxiang Shang, Haoan

Feng, Tian Fang, and Long Quan. Learning discriminative

feature with crf for unsupervised video object segmentation.

In ECCV, pages 445–462. Springer, 2020. 7

[65] Tianfei Zhou, Jianwu Li, Shunzhou Wang, Ran Tao, and

Jianbing Shen. Matnet: Motion-attentive transition net-

work for zero-shot video object segmentation. IEEE TIP,

29:8326–8338, 2020. 1, 2, 3, 7

15464


