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Figure 1. The proposed pixel2style2pixel framework can be used to solve a wide variety of image-to-image translation tasks. Here we show

results of pSp on StyleGAN inversion, multi-modal conditional image synthesis, facial frontalization, inpainting and super-resolution.

Abstract

We present a generic image-to-image translation frame-

work, pixel2style2pixel (pSp). Our pSp framework is based

on a novel encoder network that directly generates a se-

ries of style vectors which are fed into a pretrained Style-

GAN generator, forming the extended W+ latent space. We

first show that our encoder can directly embed real images

into W+, with no additional optimization. Next, we pro-

pose utilizing our encoder to directly solve image-to-image

translation tasks, defining them as encoding problems from

some input domain into the latent domain. By deviating

from the standard “invert first, edit later” methodology used

with previous StyleGAN encoders, our approach can han-

dle a variety of tasks even when the input image is not

represented in the StyleGAN domain. We show that solv-

ing translation tasks through StyleGAN significantly sim-

plifies the training process, as no adversary is required,

has better support for solving tasks without pixel-to-pixel

correspondence, and inherently supports multi-modal syn-

thesis via the resampling of styles. Finally, we demon-

strate the potential of our framework on a variety of fa-

cial image-to-image translation tasks, even when compared

to state-of-the-art solutions designed specifically for a sin-

gle task, and further show that it can be extended beyond

the human facial domain. Code is available at https:

//github.com/eladrich/pixel2style2pixel.

1. Introduction

In recent years, Generative Adversarial Networks

(GANs) have significantly advanced image synthesis, par-

ticularly on face images. State-of-the-art image genera-

tion methods have achieved high visual quality and fidelity,

and can now generate images with phenomenal realism.

Most notably, StyleGAN [20, 21] proposes a novel style-
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based generator architecture and attains state-of-the-art vi-

sual quality on high-resolution images. Moreover, it has

been demonstrated that it has a disentangled latent space,

W [39, 7, 35], which offers control and editing capabilities.

Recently, numerous methods have shown competence in

controlling StyleGAN’s latent space and performing mean-

ingful manipulations in W [17, 35, 36, 13]. These methods

follow an “invert first, edit later” approach, where one first

inverts an image into StyleGAN’s latent space and then ed-

its the latent code in a semantically meaningful manner to

obtain a new code that is then used by StyleGAN to generate

the output image. However, it has been shown that invert-

ing a real image into a 512-dimensional vector w ∈ W does

not lead to an accurate reconstruction. Motivated by this, it

has become common practice [1, 2, 4, 42, 3] to encode real

images into an extended latent space, W+, defined by the

concatenation of 18 different 512-dimensional w vectors,

one for each input layer of StyleGAN. These works usually

resort to using per-image optimization over W+, requiring

several minutes for a single image. To accelerate this opti-

mization process, some methods [4, 42] have trained an en-

coder to infer an approximate vector in W+ which serves

as a good initial point from which additional optimization

is required. However, a fast and accurate inversion of real

images into W+ remains a challenge.

In this paper, we first introduce a novel encoder architec-

ture tasked with encoding an arbitrary image directly into

W+. The encoder is based on a Feature Pyramid Net-

work [24], where style vectors are extracted from differ-

ent pyramid scales and inserted directly into a fixed, pre-

trained StyleGAN generator in correspondence to their spa-

tial scales. We show that our encoder can directly recon-

struct real input images, allowing one to perform latent

space manipulations without requiring time-consuming op-

timization. While these manipulations allow for extensive

editing of real images, they are inherently limited. That is

because the input image must be invertible, i.e., there must

exist a latent code that reconstructs the image. This require-

ment is a severe limitation for tasks, such as conditional

image generation, where the input image does not reside

in the same StyleGAN domain. To overcome this limita-

tion we propose using our encoder together with the pre-

trained StyleGAN generator as a complete image-to-image

translation framework. In this formulation, input images

are directly encoded into the desired output latents which

are then fed into StyleGAN to generate the desired output

images. This allows one to utilize StyleGAN for image-to-

image translation even when the input and output images

are not from the same domain.

While many previous approaches to solving image-to-

image translation tasks involve dedicated architectures spe-

cific for solving a single problem, we follow the spirit of

pix2pix [16] and define a generic framework able to solve a

wide range of tasks, all using the same architecture. Besides

the simplification of the training process, as no adversary

discriminator needs to be trained, using a pretrained Style-

GAN generator offers several intriguing advantages over

previous works. For example, many image-to-image archi-

tectures explicitly feed the generator with residual feature

maps from the encoder [16, 38], creating a strong locality

bias [33]. In contrast, our generator is governed only by the

styles with no direct spatial input. Another notable advan-

tage of the intermediate style representation is the inherent

support for multi-modal synthesis for ambiguous tasks such

as image generation from sketches, segmentation maps, or

low-resolution images. In such tasks, the generated styles

can be resampled to create variations of the output image

with no change to the architecture or training process. In a

sense, our method performs pixel2style2pixel translation, as

every image is first encoded into style vectors and then into

an image, and is therefore dubbed pSp.

The main contributions of this paper are: (i) A novel

StyleGAN encoder able to directly encode real images into

the W+ latent domain; and (ii) A new methodology for

utilizing a pretrained StyleGAN generator to solve image-

to-image translation tasks.

2. Related Work

GAN Inversion. With the rapid evolution of GANs, many

works have tried to understand and control their latent

space. A specific task that has received substantial attention

is GAN Inversion — where the latent vector from which

a pretrained GAN most accurately reconstructs a given,

known image, is sought. Motivated by its state-of-the-art

image quality and latent space semantic richness, many re-

cent works have used StyleGAN [20, 21] for this task. Gen-

erally, inversion methods either directly optimize the latent

vector to minimize the error for the given image [25, 8, 1, 2],

train an encoder to map the given image to the latent space

[31, 8, 32, 12, 29], or use a hybrid approach combining both

[4, 42]. Typically, methods performing optimization are su-

perior in reconstruction quality to a learned encoder map-

ping, but require a substantially longer time. Unlike the

above methods, our encoder can accurately and efficiently

embed a given face image into the extended latent space

W+ with no further optimization.

Latent Space Manipulation. Recently, numerous papers

have presented diverse methods for learning semantic edits

of the latent code. One popular approach is to find linear

directions that correspond to changes in a given binary la-

beled attribute, such as young ↔ old, or no-smile ↔ smile

[35, 11, 10, 3]. Tewari et al. [36] utilize a pretrained 3DMM

to learn semantic face edits in the latent space. Jahanian

et al. [17] find latent space paths that correspond to a spe-

cific transformation, such as zoom or rotation, in a self-
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Figure 2. Our pSp architecture. Feature maps are first extracted using a standard feature pyramid over a ResNet backbone. For each of the

18 target styles, a small mapping network is trained to extract the learned styles from the corresponding feature map, where styles (0-2) are

generated from the small feature map, (3-6) from the medium feature map, and (7-18) from the largest feature map. The mapping network,

map2style, is a small fully convolutional network, which gradually reduces spatial size using a set of 2-strided convolutions followed by

LeakyReLU activations. Each generated 512 vector, is fed into StyleGAN, starting from its matching affine transformation, A.

supervised manner. Härkönen et al. [13] find useful paths in

an unsupervised manner by using the principal component

axes of an intermediate activation space. Collins et al. [7]

perform local semantic editing by manipulating correspond-

ing components of the latent code. These methods generally

follow an “invert first, edit later” procedure, where an im-

age is first embedded into the latent space, and then its latent

is edited in a semantically meaningful manner. This differs

from our approach which directly encodes input images into

the corresponding output latents, allowing one to also han-

dle inputs that do not reside in the StyleGAN domain.

Image-to-Image. Image-to-Image translation techniques

aim at learning a conditional image generation function

that maps an input image of a source domain to a corre-

sponding image of a target domain. Isola et al. [16] first

introduced the use of conditional GANs to solve various

image-to-image translation tasks. Since then, their work has

been extended for many scenarios: high-resolution synthe-

sis [38], unsupervised learning [27, 43, 22, 26], multi-modal

image synthesis [44, 14, 6], and conditional image synthe-

sis [30, 23, 28, 45, 5]. The aforementioned works have con-

structed dedicated architectures, which require training the

generator network and generally do not generalize to other

translation tasks. This is in contrast to our method that uses

the same architecture for solving a variety of tasks.

3. The pSp Framework

Our pSp framework builds upon the representative power

of a pretrained StyleGAN generator and the W+ latent

space. To utilize this representation one needs a strong en-

coder that is able to match each input image to an accu-

rate encoding in the latent domain. A simple technique to

embed into this domain is directly encoding a given input

image into W+ using a single 512-dimensional vector ob-

tained from the last layer of the encoder network, thereby

learning all 18 style vectors together. However, such an ar-

chitecture presents a strong bottleneck making it difficult to

fully represent the finer details of the original image and is

therefore limited in reconstruction quality.

In StyleGAN, the authors have shown that the different

style inputs correspond to different levels of detail, which

are roughly divided into three groups — coarse, medium,

and fine. Following this observation, in pSp we extend

an encoder backbone with a feature pyramid [24], gener-

ating three levels of feature maps from which styles are ex-

tracted using a simple intermediate network — map2style

— shown in Figure 2. The styles, aligned with the hier-

archical representation, are then fed into the generator in

correspondence to their scale to generate the output image,

thus completing the translation from input pixels to output

pixels, through the intermediate style representation. The

complete architecture is illustrated in Figure 2.

As in StyleGAN, we further define w to be the average

style vector of the pretrained generator. Given an input im-

age, x, the output of our model is then defined as

pSp(x) := G(E(x) + w)

where E(·) and G(·) denote the encoder and StyleGAN

generator, respectively. In this formulation, our encoder

aims to learn the latent code with respect to the average style

vector. We find that this results in better initialization.
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3.1. Loss Functions

While the style-based translation is the core part of our

framework, the choice of losses is also crucial. Our encoder

is trained using a weighted combination of several objec-

tives. First, we utilize the pixel-wise L2 loss,

L2 (x) = ||x − pSp(x)||2. (1)

In addition, to learn perceptual similarities, we utilize the

LPIPS [40] loss, which has been shown to better preserve

image quality [12] compared to the more standard percep-

tual loss [18]:

LLPIPS (x) = ||F (x)− F (pSp(x))||2, (2)

where F (·) denotes the perceptual feature extractor.

To encourage the encoder to output latent style vectors

closer to the average latent vector, we additionally define

the following regularization loss:

Lreg (x) = ||E(x)− w||2. (3)

Similar to the truncation trick introduced in StyleGAN,

we find that adding this regularization in the training of

our encoder improves image quality without harming the

fidelity of our outputs, especially in some of the more am-

biguous tasks explored below.

Finally, a common challenge when handling the specific

task of encoding facial images is the preservation of the

input identity. To tackle this, we incorporate a dedicated

recognition loss measuring the cosine similarity between

the output image and its source,

LID (x) = 1− 〈R(x), R(pSp(x)))〉 , (4)

where R is the pretrained ArcFace [9] network.

In summary, the total loss function is defined as

L(x) = λ1L2(x) + λ2LLPIPS(x) + λ3LID(x) + λ4Lreg(x),

where λ1, λ2, λ3, λ4 are constants defining the loss

weights. This curated set of loss functions allows for more

accurate encoding into StyleGAN compared to previous

works and can be easily tuned for different encoding tasks

according to their nature. Constants and other implementa-

tion details can be found in the supplementary material.

3.2. The Benefits of The StyleGAN Domain

The translation between images through the style do-

main differentiates pSp from many standard image-to-

image translation frameworks, as it makes our model op-

erate globally instead of locally, without requiring pixel-

to-pixel correspondence. This is a desired property as it

has been shown that the locality bias limits current meth-

ods when handling non-local transformations [33]. Addi-

tionally, previous works [20, 7] have demonstrated that the
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Figure 3. Style-mixing for multi-modal generation.

disentanglement of semantic objects learned by StyleGAN

is due to its layer-wise representation. This ability to inde-

pendently manipulate semantic attributes leads to another

desired property: the support for multi-modal synthesis. As

some translation tasks are ambiguous, where a single in-

put image may correspond to several outputs, it is desirable

to be able to sample these possible outputs. While this re-

quires specialized changes in standard image-to-image ar-

chitectures [44, 14], our framework inherently supports this

by simply sampling style vectors. In practice, this is done

by randomly sampling a vector w ∈ R
512 and generating

a corresponding latent code in W+ by replicating w. Style

mixing is then performed by replacing select layers of the

computed latent with those of the randomly generated la-

tent, possibly with an α parameter for blending between the

two styles. This approach is illustrated in Figure 3.

4. Applications and Experiments

To explore the effectiveness of our approach we evaluate

pSp on numerous image-to-image translation tasks.

4.1. StyleGAN Inversion

We start by evaluating the usage of the pSp framework

for StyleGAN Inversion, that is, finding the latent code of

real images in the latent domain. We compare our method

to the optimization technique from Karras et al. [21], the

ALAE encoder [32] and to the encoder from IDInvert [42].

The ALAE method proposes a StyleGAN-based autoen-

coder, where the encoder is trained alongside the genera-

tor to generate latent codes. In IDInvert, images are em-

bedded into the latent domain of a pretrained StyleGAN by

first encoding the image into W+ and then directly opti-

mizing over the generated image to tune the latent. For a

fair comparison, we compare with IDInvert where no fur-

ther optimization is performed after encoding.

Results. Figure 4 shows a qualitative comparison be-

tween the methods. One can see that the ALAE method,

operating in the W domain, cannot accurately reconstruct

the input images. While IDInvert [42] better preserves the

image attributes, it still fails to accurately preserve identity

and the finer details of the input image. In contrast, our
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Figure 4. Results of pSp for StyleGAN inversion compared to other encoders on CelebA-HQ.

Method ↑ Similarity ↓ LPIPS ↓ MSE ↓ Runtime

Karras et al. [21] 0.77 0.11 0.02 182.1
ALAE [32] 0.06 0.32 0.15 0.207
IDInvert [42] 0.18 0.22 0.06 0.032

W Encoder 0.35 0.23 0.06 0.064
Naive W+ 0.49 0.19 0.04 0.064
pSp w/o ID 0.19 0.17 0.03 0.105
pSp 0.56 0.17 0.03 0.105

Table 1. Quantitative results for image reconstruction.

method is able to preserve identity while also reconstruct-

ing fine details such as lighting, hairstyle, and glasses.

Next, we conduct an ablation study to analyze the effec-

tiveness of the pSp architecture. We compare our architec-

ture to two simpler variations. First, we define an encoder

generating a 512-dimensional style vector in the W latent

domain, extracted from the last layer of the encoder net-

work. We then expand this and define an encoder with an

additional layer to transform the 512-dimensional feature

vector to a full 18 × 512 W+ vector. Figure 5 shows that

while this simple extension into W+ significantly improves

the results, it still cannot preserve the finer details generated

by our architecture. In Figure 6 we show the importance of

the identity loss in the reconstruction task.

Finally, Table 1 presents a quantitative evaluation mea-

suring the different inversion methods. Compared to other

encoders, pSp is able to better preserve the original images

in terms of both perceptual similarity and identity. To make

sure the similarity score is independent of our loss function,

we utilize the CurricularFace [15] method for evaluation.

Input W Naive W+ pSp

Figure 5. Ablation of the pSp encoder over CelebA-HQ.

Input pSp w/o ID pSp w/ ID

Figure 6. The importance of identity loss.
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Input pix2pixHD R&R pSp

Figure 7. Comparison of face frontalization methods.

4.2. Face Frontalization

Face frontalization is a challenging task for image-to-

image translation frameworks due to the required non-local

transformations and the lack of paired training data. Rotate-

AndRender (R&R) [41] overcome this challenge by incor-

porating a geometric 3D alignment process before the trans-

lation process. Alternatively, we show that our style-based

translation mechanism is able to overcome these challenges,

even when trained with no labeled data.

Methodology. For this task, training is the same as the en-

coder formulation with two important changes. First, we

randomly flip the target image during training, effectively

forcing the model to output an image that is close to both

the original image and the mirrored one. The underlying

idea behind this augmentation is that it guides the model

to converge to a fixed frontal pose. Next, we increase LID

and decrease the L2 and LLPIPS losses for the outer part of

the image. This change is based on the fact that for frontal-

ization we are less interested in preserving the background

region compared to the face region and the facial identity.

Method ↑ Similarity ↓ Runtime

90° 70° 50° 30°

R&R 0.34 0.56 0.66 0.7 1.5s

pSp 0.32 0.52 0.60 0.63 0.1s

Table 2. Results for Face Frontalization on the FEI Face Database

split by rotation angle of the face in the input.

Results. Results are illustrated in Figure 7. When trained

with the same data and methodology, pix2pixHD is unable

to converge to satisfying results as it is much more depen-

dent on the correspondence between the input and output

pairs. Conversely, our method is able to handle the task suc-

cessfully, generating realistic frontal faces, which are com-

parable to the more involved R&R approach. This shows

the benefit of using a pretrained StyleGAN for image trans-

lation, as it allows us to achieve visually-pleasing results

even with weak supervision. Table 2 provides a quantitative

evaluation on the FEI Database [37]. While R&R outper-

forms pSp, our simple approach provides a fast and elegant

alternative, without requiring specialized modules, such as

R&R’s 3DMM fitting and inpainting steps.

4.3. Conditional Image Synthesis

Conditional image synthesis aims at generating photo-

realistic images conditioned on certain input types. In this

section, our pSp architecture is tested on two conditional

image generation tasks: generating high-quality face im-

ages from sketches and semantic segmentation maps. We

demonstrate that, with only minimal changes, our encoder

successfully utilizes the expressiveness of StyleGAN to

generate high-quality and diverse outputs.

Methodology and details. The training of the two con-

ditional generation tasks is similar to that of the encoder,

where the input is the conditioned image and the target is

the corresponding real image. To generate multiple images

at inference time we perform style-mixing on the fine-level

features, taking layers (1-7) from the latent code of the input

image and layers (8-18) from a randomly drawn w vector.

4.3.1 Face From Sketch

Common approaches for sketch-to-image synthesis incor-

porate hard constraints that require pixel-wise correspon-

dence between the input sketch and generated image, mak-

ing them ill-suited when given incomplete, sparse sketches.

DeepFaceDrawing [5] address this using a set of dedicated

mapping networks. We show that pSp provides a simple al-

ternative to past approaches. As there are currently no pub-

licly available datasets representative of hand-drawn face

sketches, we elect to construct our own dataset, which we

describe in the supplementary material.
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Input pix2pixHD DeepFace pSp

Figure 8. Comparison of sketches presented in DeepFace-

Drawing [5].

Input pix2pixHD SPADE CC FPSE pSp

Figure 9. Comparisons to other label-to-image methods.

Results. Figure 8 compares the results of our method to

those of pix2pixHD and DeepFaceDrawing. As no code

release is available for DeepFaceDrawing, we compare di-

rectly with sketches and results published in their paper.

While DeepFaceDrawing obtain more visually pleasing re-

sults compared to pix2pixHD, they are still limited in their

diversity. Conversely, although our model is trained on a

different dataset, we are still able to generalize well to their

sketches. Notably, we observe our ability to obtain more di-

verse outputs that better retain finer details (e.g. facial hair).

Additional results, including those on non-frontal sketches

are provided in the supplementary material.

4.3.2 Face from Segmentation Map

Here, we evaluate using pSp for synthesizing face im-

ages from segmentation maps. In addition to pix2pixHD,

we compare our approach to two additional state-of-the-art

label-to-image methods: SPADE [30], and CC FPSE [28],

both of which are based on pix2pixHD.

Results. In Figure 9 we provide a visual comparison of

the competing approaches on the CelebAMask-HQ dataset

containing 19 semantic categories. As the competing meth-

ods are based on pix2pixHD, the results of all three suf-

fer from similar artifacts. Conversely, our approach is able

to generate high-quality outputs across a wide range of in-

puts of various poses and expressions. Additionally, using

our multi-modal technique, pSp can easily generate various

possible outputs with the same pose and attributes but vary-

ing fine styles for a single input semantic map or sketch

image. We provide examples in Figure 1 with additional

results in the supplementary material.

Task pix2pixHD SPADE CC FPSE

Segmentation 94.72% 95.25% 93.06%
Sketch 93.34% N/A N/A

Table 3. Human evaluation results on CelebA-HQ for conditional

image synthesis tasks. Each cell denotes the percentage of users

who favored pSp over the listed method.

Human Perceptual Study. We additionally perform a

human evaluation to compare the visual quality of each

method presented above. Each worker is given two images

synthesized by different methods on the same input and is

given an unlimited time to select which output looks more

realistic. Each of our three workers reviews approximately

2, 800 pairs for each task, resulting in over 8, 400 human

judgements for each method. Table 3 shows that pSp sig-

nificantly outperforms the other respective methods in both

synthesis tasks.

4.4. Extending to Other Applications

Besides the applications presented above, we have found

pSp to be applicable to a wide variety of additional tasks

with minimal changes to the training process. Specifically,

we present samples of super-resolution and inpainting re-

sults using pSp in Figure 1 with further details and results

presented in the supplementary material. For both tasks,

paired data is generated and training is performed in a su-

pervised fashion. Additionally, we show multi-modal sup-

port for super-resolution via style-mixing on medium-level

features and evaluate pSp on several image editing tasks,

including image interpolation and local patch editing.
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StyleGAN Inversion and Reconstruction

Image Generation from Sketches

Figure 10. Results of pSp on the AFHQ Dataset for StyleGAN

Inversion and the sketch-to-image tasks. For reconstruction, the

input (left) is shown alongside the reconstructed output (right). For

sketch-to-image, multiple outputs are generated via style-mixing.

4.5. Going Beyond the Facial Domain

In this section we show that our pSp framework can be

trained to solve the various tasks explored above without re-

lying on the advantages provided by the identity loss in the

facial domain. While our method does require a pretrained

StyleGAN generator, recent works [19, 34] have shown that

such a generator can be easily trained with significantly

fewer examples than required in the past.

Figure 10 shows the results on the AFHQ Cat and

AFHQ Dog datasets [6] for the StyleGAN inversion and

sketch-to-image tasks. For these tasks, we use a pretrained

StyleGAN-ADA [19] model for each of the two domains

and train our pSp encoder using only the L2, LLPIPS, and

Lreg losses with the same λ values as those used for the fa-

cial domain. As shown, we are able to generalize well to the

examined domains, obtaining high-quality, accurate recon-

struction results while also supporting multi-modal synthe-

sis via our style-mixing approach. The accompanying sup-

plementary material provides additional results for super-

resolution and inpainting on these domains.

Figure 11. Challenging cases for StyleGAN Inversion.

5. Discussion

Although our suggested framework for image-to-image

translation achieves compelling results in various applica-

tions, it has some inherent assumptions that should be con-

sidered. First, the high-quality images that are generated

by utilizing the pretrained StyleGAN come with a cost —

the method is limited to images that can be generated by

StyleGAN. Thus, generating faces which are not close to

frontal, or have certain expressions may be challenging if

such examples were not available when training the Style-

GAN model. Also, the global approach of pSp, although

advantageous for many tasks, does introduce a challenge

in preserving finer details of the input image, such as ear-

rings or background details. This is especially significant

in tasks such as inpainting or super-resolution where stan-

dard image-to-image architectures can simply propagate lo-

cal information. Figure 11 presents some examples of such

reconstruction failures.

6. Conclusion

In this work, we propose a novel encoder architecture

that can be used to directly map a real image into the W+
latent space with no optimization required. There, styles are

extracted in a hierarchical fashion and fed into the corre-

sponding inputs of a fixed StyleGAN generator. Combining

our encoder with a StyleGAN decoder, we present a generic

framework for solving various image-to-image translation

tasks, all using the same architecture. Notably, in contrast to

the “invert first, edit later” approach of previous StyleGAN

encoders, we show pSp can be used to directly encode these

translation tasks into StyleGAN, thereby supporting input

images that do not reside in the StyleGAN domain. Addi-

tionally, differing from previous works that typically rely

on dedicated architectures for solving a single translation

task, we show pSp to be capable of solving a wide variety

of problems, requiring only minimal changes to the training

losses and methodology. We hope that the ease-of-use of

our approach will encourage further research into utilizing

StyleGAN for real image-to-image translation tasks.
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