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Figure 1: Stable View Synthesis synthesizes spatially and temporally coherent photorealistic views of complex real-world

scenes. Top and left: new views of scenes from the Tanks and Temples dataset [18]. Bottom right: a new view of a scene

from the FVS dataset [29].

Abstract

We present Stable View Synthesis (SVS). Given a set

of source images depicting a scene from freely distributed

viewpoints, SVS synthesizes new views of the scene. The

method operates on a geometric scaffold computed via

structure-from-motion and multi-view stereo. Each point

on this 3D scaffold is associated with view rays and cor-

responding feature vectors that encode the appearance of

this point in the input images. The core of SVS is view-

dependent on-surface feature aggregation, in which direc-

tional feature vectors at each 3D point are processed to

produce a new feature vector for a ray that maps this point

into the new target view. The target view is then rendered

by a convolutional network from a tensor of features syn-

thesized in this way for all pixels. The method is composed

of differentiable modules and is trained end-to-end. It sup-

ports spatially-varying view-dependent importance weight-

ing and feature transformation of source images at each

point; spatial and temporal stability due to the smooth

dependence of on-surface feature aggregation on the tar-

get view; and synthesis of view-dependent effects such as

specular reflection. Experimental results demonstrate that

SVS outperforms state-of-the-art view synthesis methods

both quantitatively and qualitatively on three diverse real-

world datasets, achieving unprecedented levels of realism

in free-viewpoint video of challenging large-scale scenes.

Code is available at https://github.com/intel-

isl/StableViewSynthesis
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1. Introduction

Photorealistic view synthesis can allow us to explore

magnificent sites in faraway lands without leaving the com-

fort of our homes. This requires advancing the technology

towards two key goals. First, the synthesized images should

be photorealistic: indistinguishable from reality. Second,

the user should be free to move through the scene, as in

the real world, exploring it from any physically realizable

viewpoint.

In this paper, we present a new method for photorealistic

view synthesis that brings these two goals closer. Our in-

put is a set of images that can be taken for example from a

handheld video of the scene. From these images, we con-

struct a 3D geometric scaffold via off-the-shelf structure-

from-motion, multi-view stereo, and meshing. Input images

are encoded by a convolutional network and the resulting

deep features are mapped onto the geometric scaffold. As

a result, for any point on the scaffold, we can obtain a col-

lection of view rays with associated feature vectors, which

correspond to input images that see this point.

The core of our method is an approach to synthesizing

arbitrary new views given this representation of the scene.

Each pixel in the new view is mapped onto the geometric

scaffold to obtain the set of input rays with associated fea-

ture vectors, and an output ray towards the new view. The

feature vectors from the input rays are then aggregated, tak-

ing the geometry of the input and output rays into account,

by a differentiable module that produces a feature vector for

the output ray. Together, the feature vectors synthesized for

all pixels form a feature tensor. The new image is rendered

from this feature tensor by a convolutional network.

All steps of the method are differentiable and the com-

plete pipeline can be trained end-to-end to maximize pho-

torealism. All steps can be implemented efficiently, lever-

aging parallelism across pixels. Crucially, the computation

of a feature vector for a new output ray does not require

any heuristic selection of input rays. The computation ag-

gregates information from all input rays in a differentiable

module that is informed by the spatial layout of the rays

and is optimized end-to-end. This supports temporal stabil-

ity for smoothly moving viewpoints.

We evaluate the presented method on three diverse

datasets of real scenes and objects: Tanks and Temples [18],

FVS [29], and DTU [1]. Tanks and Temples and FVS pro-

vide handheld video sequences of large real-world scenes;

the objective is to use these video sequences as input to en-

able photorealistic rendering of the scenes from new views.

DTU provides regularly-spaced outside-in images of chal-

lenging real objects. On all three datasets, SVS convinc-

ingly outperforms the state of the art. On Tanks and Tem-

ples, our method reduces the LPIPS error for new views by

up to 10 absolute percentage points (a reduction of roughly

30% on average) relative to the prior state of the art, while

also improving PSNR and SSIM. On the FVS dataset, our

method likewise outperforms the state of the art on all met-

rics, reducing LPIPS by 7 absolute percentage points on av-

erage relative to the best prior method. On DTU, we set the

new state of the art for novel view synthesis, attaining an

average LPIPS error of 4.5% over the test scenes in extrap-

olation mode and 1.6% for view interpolation. A number of

our synthesized images for new views in Tanks and Temples

and FVS scenes are shown in Figure 1, and video sequences

are provided in the supplementary video.

2. Related Work

Image-based rendering has a long history in computer

vision and graphics. Shum and Kang [33] provide a review

of early approaches and foundational work. More recent

highlights include the work of Wood et al. [42], Buehler et

al. [4], Davis et al. [10], Chaurasia et al. [5], Kopf et al. [19],

Hedman et al. [15], and Penner and Zhang [27].

More recently, deep learning techniques have enabled a

new level of flexibility and realism. Given a geometric re-

construction of the scene, Hedman et al. [14] map image

mosaics to the target view and refine them via a blending

network. Thies et al. [39] learn image-dependent effects via

a convolutional network. Choi et al. [7] warp volumetric in-

formation from the source images to the target view. Riegler

and Koltun [29] warp features from a heuristically selected

set of source images into the target view and blend them

using a recurrent convolutional network. Other approaches

directly learn features for each 3D point [2, 9] or vertex [38]

of a geometric reconstruction.

Our method is most closely related to the Free View Syn-

thesis approach of Riegler and Koltun [29], in that both

methods operate on a geometric scaffold obtained via SfM,

MVS, and meshing, and both methods utilize encoder and

decoder networks to encode input images into feature ten-

sors and render the new view from a new feature tensor,

respectively. However, the methods differ crucially at their

core: the synthesis of the feature tensor for the new view.

The FVS pipeline heuristically selects a set of relevant

source images for a given target view, warps the feature ten-

sors from these input views into the target camera frame,

and blends these warped feature tensors via a recurrent con-

volutional network. The heuristic selection of relevant input

views leads to temporal instability when the set of selected

views changes and causes drastic visual artifacts when the

selected views do not contain all the information needed to

cover some part of the output image. Furthermore, the se-

quential ordering of the input feature tensors processed by

the recurrent network is artificial and can lead to instabil-

ity when it changes. In contrast, SVS synthesizes feature

vectors for the new view on the 3D surface itself, taking

all input images into account as needed, and using set op-

erators rather than sequence models to avoid arbitrary or-
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Figure 2: Overview of Stable View Synthesis. (a) A geometric scaffold of the scene is constructed using structure-from-

motion, multiple-view stereo, and meshing. (b) All source images are encoded into feature tensors via a convolutional

network. (c) Given a new target view (red camera), feature vectors from the source images (green cameras) are aggregated on

the geometric scaffold. Red arrows map 3D points to the target view, green arrows map the same points to the source views.

(d) The output image in the target view is rendered from a tensor of synthesized feature vectors by a convolutional network.

dering. There is no heuristic selection of relevant images,

no temporal instability due to changes in this set, no drastic

artifacts due to the heuristic omission of relevant informa-

tion, and no instability due to shifts in sequential process-

ing. All processing takes all available information into ac-

count as needed, via permutation-invariant set operators, in

a pipeline that is composed entirely of differentiable mod-

ules that are trainable end-to-end.

Several methods incorporate concepts similar to plane-

sweep volumes [8] into the network architecture to synthe-

size novel views. Flynn et al. [12] utilize this concept to in-

terpolate between views. Kalantari et al. [16] use this idea

for a light-field setup with a fixed number of cameras. Addi-

tional directional lighting extensions to these architectures

enable synthesis of complex appearance effects [3, 43].

Multi-plane images (MPIs) [47] are also often used in

conjunction with deep networks [46]. Here the image is

represented by color+α planes at different depths and novel

views can be rendered back-to-front. Srinivasan et al. [37]

show that a limiting factor in MPIs is the depth resolu-

tion and propose a randomized-resolution training proce-

dure. This work is extended by Mildenhall et al. [23] who

use multiple local MPIs and practical user guidance. Flynn

et al. [11] train a network to predict high-quality MPIs via

learned gradient descent. Li et al. [20] extend this line of

work to image sets with strong appearance variation.

Another class of methods utilizes volumetric represen-

tations. Sitzmann et al. [35] lift 2D image features to

a common 3D volume. The features are synthesized via

a scene-dependent rendering network. To overcome the

memory requirements of voxel-based representations, Lom-

bardi et al. [21] learn a dynamic irregular grid structure. In

Scene Representation Networks [36], the volume is repre-

sented as an MLP and images are rendered via differen-

tiable ray marching. Niemeyer et al. [25] build upon an

implicit occupancy representation that can be trained by

posed images via implicit differentiation. Neural Radiance

Fields [24] produce impressive results by training an MLP

that maps 3D rays to occupancy and color. Images are

synthesized from this representation via volume rendering.

This methodology has been extended to unbounded outdoor

scenes [44] and crowdsourced image collections [22].

3. Overview

A visual overview of SVS is provided in Figure 2. Our

input is a set of source images {In}
N
n=1, which are used

to erect a geometric scaffold Γ and are the basis for the

on-surface feature representation. Given a new viewpoint

(Rt, tt) and camera intrinsics Kt, our goal is to synthesize

an image O that depicts the scene in this new view.

Preprocessing: Our method leverages a 3D geomet-

ric scaffold. To construct this scaffold, we use stan-

dard structure-from-motion, multi-view stereo, and sur-

face reconstruction [31, 32]. We first run structure-from-

motion [31] to get camera intrinsics {Kn}
N
n=1 and camera

poses as rotation matrices {Rn}
N
n=1 and translation vec-

tors {tn}
N
n=1. In the rest of the paper, we use {In}

N
n=1

to denote the rectified images after structure-from-motion.

We then run multi-view stereo on the posed images, obtain

per-image depthmaps, and fuse these into a point cloud.

Delaunay-based 3D surface reconstruction is applied to

this point cloud to get a 3D surface mesh Γ. We use

COLMAP [31, 32] for preprocessing in all experiments, but

our method can utilize other SfM and MVS pipelines.

In addition, each image In is encoded by a convolutional

network to obtain a feature tensor Fn, which provides a fea-

ture vector for each pixel in In.

View synthesis: To synthesize the new view O, we back-
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project pixels in O onto the scaffold Γ. For each point

x ∈ Γ obtained in this way, we query the set of input im-

ages in which x is visible. For each such image Ik, we

obtain a feature vector fk along the corresponding ray vk

to x. See Figure 3 for an illustration. The set {(vk, fk)}k
of view rays with corresponding feature vectors is then pro-

cessed by a differentiable set network that is conditioned on

the output view direction u. This network produces a new

feature vector g. Feature vectors g are obtained in this way

for all pixels in O. The resulting feature tensor G is decoded

by a convolutional network to produce the output image.

Note that SVS differs from works that use neural point

features [2, 9] or neural mesh textures [38], which fit fea-

ture vectors from scratch (initialized with random noise) per

scene on a point cloud or mesh. SVS also differs from meth-

ods that project full (encoded) source images to the target

view [14, 29]; in SVS, each 3D point independently aggre-

gates features from a different set of source images.

4. Feature Processing and Aggregation

Image encoding: Each source image In is encoded into

a feature tensor by a convolutional network based on the

U-Net architecture [30]. This network is denoted by φenc.

The encoder part of φenc consists of an ImageNet-pretrained

ResNet18 [13], where we freeze the BatchNorm parame-

ters. In the decoder part of φenc, each stage upsamples the

feature map using nearest-neighbor interpolation, concate-

nates it with the corresponding feature map (of the same

resolution) from the encoder, and applies convolution and

activation layers. We denote the feature tensor produced by

this network by Fn = φenc(In).

On-surface aggregation: The core of our method is the

computation of a target feature vector g(x,u) for each

point x ∈ Γ ⊂ R
3 on the 3D geometric scaffold. This

feature vector is computed as a function of the viewing

direction u from the target camera center to the surface

point x, and tuples {(vk, fk(x))}
K
k=1

. Here {fk(x)}
K
k=1

are source image features that correspond to x in the im-

age encodings {Fk}
K
k=1

in which x is visible, and {vk}
K
k=1

are the corresponding viewing directions. Specifically,

fk(x) = Fk(Kk(Rkx+ tk)) using bilinear interpolation.

More formally, the target feature vector for a given 3D

surface point x is computed as

g(x,u) = φaggr(u, {(vk, fk(x))}
K
k=1) , (1)

where K is the number of source images that x is visible

in and φaggr is an aggregation function. The function φaggr

must fulfill a number of criteria; most notably, it should be

differentiable and must process any number K of input fea-

tures, in any order. We explore multiple designs based on

differentiable set operators and select one of them based on

empirical performance (reported in Section 6).

Γ

x

g
u

f0

v
0

f1

v
1

f2
v2

Figure 3: On-surface aggregation. A 3D point x on the

geometric scaffold Γ is seen in a set of source images. Each

such image contributes a feature vector fk along a ray vk

(green). On-surface aggregation uses a differentiable set

network to process this data and produces a feature vector

g for the target ray u (red).

A simple choice for φaggr is a weighted average, where

the weights are based on the alignment between the source

and target directions:

φWA
aggr =

1

W

K
∑

k=1

max(0,uTvk)fk(x) . (2)

Here W =
∑K

k=1
max(0,uTvk) is the sum of all weights.

For a more expressive aggregation function, we can lever-

age PointNet [28]. Specifically, we concatenate the source

and target directions to the source features, apply an MLP

to each feature vector, and aggregate the results:

φMLP
aggr = νKk=1 MLP(f ′k) . (3)

Here f ′k = [u,vk, fk(x)] is the concatenation of source

and target directions with the feature vector, and ν is a

permutation-invariant operator such as mean or max. In-

stead of an MLP, we can also use a graph attention net-

work (GAT) [40] that operates on a fully-connected graph

between the source views per 3D point:

φGAT
aggr = νKk=1 GAT

(

{f ′k}
K
k=1

) ∣

∣

k
, (4)

where ·|k is the readout of the feature vector on node k.

Aggregation functions presented so far compute the tar-

get feature g as a set feature. Another possibility is to read

out the target feature vector at the target viewing direction

u. Specifically, we can create a fully connected graph over

source features {[vk, fk]}
K
k=1

and an initial target feature

[u,g′], where g′ is initialized via Equation (2). Then we

can define the readout aggregation function as

φGAT-RO
aggr = GAT

(

{[u,g′]} ∪ {[vk, fk(x)]}
K
k=1

)
∣

∣

0
, (5)

where ·|0 denotes the readout of the feature vector associ-

ated with the target node.

Rendering: We now describe how the surface points

x are obtained and how the output image O in the tar-

get view is rendered. Given a user-specified camera Kt
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and new camera pose (Rt, tt), we compute a depth map

D ∈ R
H×W from the proxy geometry Γ. We then unpro-

ject each pixel center of the target view back to 3D based on

the depth map D, obtaining a surface point for each pixel in

O, {xh,w}
H×W
h,w=1,1. Note that D may not have valid depth

values for some pixels due to incompleteness of the surface

mesh Γ, or for background regions such as the sky. We use

∞ as the depth value for such pixels.

Given the 3D surface points {xh,w}
H×W
h,w=1,1, we can

compute view-dependent feature vectors {g(xh,w)}
H×W
h,w=1,1

as described above and assemble a feature tensor

G = [gh,w]
H×W
h,w=1,1. For 3D surface points xh,w that do not

map to any source image, we set gh,w to 0.

To synthesize the image O from the feature tensor

G, we use a convolutional network, denoted by φrender:

O = φrender(G). The main goal of this network is to reg-

ularize the feature map, for example to counteract scale and

exposure differences in the source images, and to inpaint

missing regions. For this purpose, we use a sequence of L

U-Nets, where each U-Net learns the residual to its input:

φrender(G) = φL
render(G + φL−1

render(G + . . . )).

5. Training

Training a scene-agnostic model: We train the three net-

works (φenc, φaggr, and φrender) end-to-end. Given a set of

scenes, we first sample a scene and a source image In that

will serve as ground truth. From the remaining source im-

ages of the sampled scene, we sample a subset of M source

images used for one training pass. We then minimize a per-

ceptual loss that is inspired by Chen and Koltun [6]:

L(O, In) = ||O−In||1+
∑

l

λl||φl(O)−φl(In)||1 , (6)

where φl are the outputs of the layers ‘conv1 2’, ‘conv2 2’,

‘conv3 2’, ‘conv4 2’, and ‘conv5 2’ of a pretrained VGG-

19 network [34]. We use Adam [17] with a learning rate of

10−4 and set β1 = 0.9, β2 = 0.9999, and ǫ = 10−8 to train

the network.

Network fine-tuning: The scene-agnostic training pro-

cedure described above yields a general network that can

be applied to new scenes without retraining or fine-tuning.

However, scenes we apply our method to can be very differ-

ent from scenes we train on: for example, training the net-

work on Tanks and Temples and applying it on DTU. We

could follow common practice and fine-tune the network

parameters θ = [θenc, θaggr, θrender] on source images of the

target scene, which are provided as input. Starting from the

trained scene-agnostic model, we apply the same training

procedure as described above, but only sample training im-

ages In from the source images of the target scene.

Scene fine-tuning: An even more powerful form of fine-

tuning is to optimize not only the network parameters but

also parameters associated with the source images. This en-

ables the optimization to harmonize inconsistencies across

images, such as different exposure intervals due to auto-

exposure, image-specific motion blur, and other aberrations

in the source images.

Recall that so far we have optimized the objective

minθ L(O, In), where θ = [θenc, θaggr, θrender] are the pa-

rameters of the encoder, aggregation, and rendering net-

works. Note also that the output image O produced by

the networks is a function of the encoded source images

{φenc(Im; θenc)}
M
m=1.

So far, the image encoder φenc took the source im-

age Im as input, but the training process only optimized

the network parameters θenc. The key idea of our more

powerful fine-tuning is to also optimize the source images

{φenc(Im; θenc)}
M
m=1 that are used as input. (Importantly,

the optimization cannot alter the image In that is used as

ground truth in the loss L(O, In).) Specifically, we change

the image encoder to φenc(m; θenc, θimgs), i.e., the input of

the network changes from a source image Im to the index

m, which is used by the network to index into a pool of

trainable parameters θimgs that are initialized with the actual

source images. The source images have become mutable

and can be optimized during the training process. The en-

coder can also be denoted by φenc(θimgs[m]; θenc) to estab-

lish the connection to the original encoder.

The optimization objective becomes minθ,θimgs
L(O, In).

Aside from the modified objective, the training procedure

stays the same. Note that θimgs are initialized with the source

images {In}
N
n=1, but the original, unmodified source im-

ages {In}
N
n=1 are used throughout the training process in

the loss L(O, In). Thus the optimization process is forced

to produce output O that matches the original images In
and cannot degenerate to a trivial solution such as setting

all the source images to a uniform color. The optimization

over θimgs merely gives the training process the flexibility to

modify its perceived input images (e.g., regularizing away

inconsistencies) to be able to more closely match the im-

mutable ground-truth targets.

6. Evaluation

We begin by evaluating our architectural choices in a set

of controlled experiments. We then compare SVS to the

state of the art on three challenging datasets: Tanks and

Temples [18], the FVS dataset [29], and DTU [1]. We use

the same Tanks and Temples scenes for training as Riegler

and Koltun [29] with the difference that Ignatius and Horse

are withheld for validation, to get a clean split between

training, validation, and test scenes. Thus 15 of the 21
Tanks and Temples scenes are used for training, 2 for vali-

dation, and 4 for evaluation. We implement the networks

in PyTorch [26] and train the scene-agnostic model for
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↑PSNR ↑SSIM ↓LPIPS%

Weighted Mean 21.42 0.870 12.84

MLP Mean 21.25 0.869 12.51

MLP Max 20.95 0.863 12.65

GAT Mean 21.01 0.864 12.84

GAT Max 21.05 0.864 13.09

GAT Readout 20.88 0.862 12.81

(a) 3D aggregation function

↑PSNR ↑SSIM ↓LPIPS%

1 21.20 0.868 12.62

3 21.25 0.869 12.51

5 21.30 0.870 12.46

7 21.55 0.872 12.41

9 21.39 0.871 12.27

(b) Number of refinement steps

↑PSNR ↑SSIM ↓LPIPS%

RGB Averaging 21.15 0.844 22.84

Network FT w/o PT 21.13 0.865 15.05

General 21.59 0.872 12.19

Network FT 22.16 0.874 11.26

Scene FT 22.02 0.873 9.99

(c) Fine-tuning

Table 1: Controlled experiments. Mean accuracy over the validation scenes. Numbers in bold are within 1% of the best.

General Network FT Scene FT

Figure 4: The impact of fine-tuning. The figure shows a new target view that was not seen by the network during fine-tuning.

600,000 iterations with a batch size of 1, sampling M = 3
source images per iteration. We use three image fidelity

metrics: LPIPS [45] (reported in percent), which has been

shown to correlate well with human perception, alongside

SSIM [41] and PSNR, which are metrics that are more at-

tuned to low-level image differences.

Architectural choices: In the first set of controlled exper-

iments, we validate our architectural choices. As outlined

above, we train on 15 Tanks and Temples scenes and vali-

date on the 2 withheld scenes.

First, we compare a set of different 3D aggregation func-

tions. The results are summarized in Table 1a. The first row

reports the accuracy with the Weighted Mean aggregation

as described in Equation (2). The second and third rows re-

port accuracy with the MLP aggregation function (see Equa-

tion (3)), once with the mean and once with the max pool-

ing operator. Rows four and five report accuracy with the

graph attention network aggregation as described in Equa-

tion (4), again once with mean and once with max pooling

of the GAT feature vectors. The last row reports accuracy

with the φGAT-RO
aggr aggregation function as defined in Equa-

tion (5). The results give a slight edge to MLP Mean aggre-

gation, in particular for the LPIPS metric, which correlates

most reliably with human perception. We therefore adopt

this aggregation function for the other experiments.

In the second experiment, we want to verify that the ren-

dering network benefits from multiple refinement stages.

We thus vary the number L of residual U-Net stages

in φrender. The results are reported in Table 1b. We observe

that there is no significant difference in terms of PSNR and

SSIM, but LPIPS decreases with the number of refinement

stages. We thus set L = 9 for the other experiments.

In the third controlled experiment, we evaluate the im-

pact of scene-specific fine-tuning. Table 1c summarizes the

results. In the first row we show a simple baseline that just

averages the RGB values per 3D point and in the second row

the network is only trained on the source images of the test

scene (not trained on the pre-training scenes). The third row

reports the accuracy of the scene-agnostic network, which

is trained on the 15 training scenes from Tanks and Tem-

ples and is not fine-tuned on the validation scenes. The

fourth row reports the accuracy of the same network af-

ter fine-tuning the network weights on the source images

of the target scene. (Only the source images are used for

fine-tuning. Target views that are used for evaluation are

never used during training or fine-tuning.) The fifth row

reports the accuracy of the network after fine-tuning both

the network weights and the input images, as described in

Section 5. Although none of the fine-tuning methods signif-

icantly alters PSNR or SSIM, we can see a clear improve-

ment in LPIPS. We thus use scene fine-tuning for all other

experiments. Figure 4 shows the effect of fine-tuning on an

example image.

Tanks and Temples dataset: We now compare SVS to

the state of the art on four new scenes (not used for train-

ing or validation) from the Tanks and Temples dataset [18],

following the protocol of Riegler and Koltun [29]. For each

scene, there is a specific set of source images and a disjoint

set of target views for evaluation.

We compare to a variety of recent methods that repre-

sent different approaches to view synthesis and have been

applied in comparable settings in the past. For Local Light

Field Fusion (LLFF) [23] we used the publicly available

code. Since no training code is available, we use the pro-

vided pretrained network weights. For Extreme View Syn-

thesis (EVS) [7] we also use the publicly available code and
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Truck M60 Playground Train

↑PSNR ↑SSIM ↓LPIPS% ↑PSNR ↑SSIM ↓LPIPS% ↑PSNR ↑SSIM ↓LPIPS% ↑PSNR ↑SSIM ↓LPIPS%

LLFF [23] 10.78 0.454 60.62 8.98 0.431 71.76 14.40 0.578 53.93 9.15 0.384 67.40

EVS [7] 14.22 0.527 43.52 7.41 0.354 75.71 14.72 0.568 46.85 10.54 0.378 67.62

NPBG [2] 21.88 0.877 15.04 12.35 0.716 35.57 23.03 0.876 16.65 18.08 0.801 25.48

NeRF [24] 20.85 0.738 50.74 16.86 0.701 60.89 21.55 0.759 52.19 16.64 0.627 64.64

NeRF++ [44] 22.77 0.814 30.04 18.49 0.747 43.06 22.93 0.806 38.70 17.77 0.681 47.75

FVS [29] 22.93 0.873 13.06 16.83 0.783 30.70 22.28 0.846 19.47 18.09 0.773 24.74

Ours w/o FT 23.09 0.893 12.41 19.41 0.827 23.70 23.61 0.876 17.38 18.42 0.809 19.42

Ours 23.86 0.895 9.34 19.97 0.833 20.45 23.72 0.884 14.22 18.69 0.820 15.73

Table 2: Accuracy on Tanks and Temples. Accuracy on the test scenes. Numbers in bold are within 1% of the best.
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Figure 5: Qualitative results on Tanks and Temples. Comparison of SVS to the best-performing prior methods.

the provided network weights. Neural Point Based Graph-

ics (NPBG) [2] is fitted per scene using the published code

and pretrained rendering network weights. For Neural Ra-

diance Fields (NeRF) [24] and NeRF++ [44] we manually

define the bounding volume around the main object in each

scene. These approaches are trained per scene. For Free

View Synthesis (FVS) [29] we use the publicly available

code and the published network weights, which had been

trained on the union of our training and validation scenes.

The results are summarized in Table 2. As observed in

prior work [29], LLFF and EVS struggle in this challeng-

ing view synthesis setting. We also see that NeRF++ im-

proves over NeRF, but neither attain the accuracy of the

best-performing methods. SVS without any scene-specific

fine-tuning (Ours w/o FT) already outperforms all prior

work for most scenes, especially with respect to LPIPS. Our

full method (Ours) achieves the best results on all scenes.

Figure 5 shows images synthesized by the best-

performing methods on a number of scenes. FVS sometimes

fails to utilize all the relevant images, which leads to miss-
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↑SSIM ↓LPIPS% ↑SSIM ↓LPIPS% ↑SSIM ↓LPIPS% ↑SSIM ↓LPIPS% ↑SSIM ↓LPIPS% ↑SSIM ↓LPIPS%

NPBG [2] 0.616 31.08 0.553 48.47 0.592 45.71 0.686 29.08 0.650 35.91 0.723 29.97

NeRF++ [44] 0.715 27.01 0.816 30.30 0.712 41.56 0.657 34.69 0.842 23.08 0.889 20.61

FVS [29] 0.592 27.83 0.778 26.07 0.685 35.89 0.668 23.27 0.770 30.20 0.819 19.41

Ours w/o FT 0.745 21.18 0.848 21.41 0.752 29.21 0.782 18.00 0.850 21.48 0.895 14.79

Ours 0.757 20.84 0.845 20.82 0.760 30.83 0.791 16.12 0.862 20.00 0.912 13.07

Table 3: Accuracy on the FVS dataset. Numbers in bold are within 1% of the best.

65 106 118

↑PSNR ↑SSIM ↓LPIPS% ↑PSNR ↑SSIM ↓LPIPS% ↑PSNR ↑SSIM ↓LPIPS%

LLFF [23] 22.48/22.07 0.935/0.921 9.38/12.71 24.10/24.63 0.900/0.886 13.26/13.57 28.99/27.42 0.928/0.922 9.69/10.99

EVS [7] 23.26/14.43 0.942/0.848 7.94/22.11 20.21/11.15 0.902/0.743 14.91/29.57 23.35/12.06 0.928/0.793 10.84/25.01

NPBG [2] 16.74/15.44 0.889/0.873 14.30/19.45 19.62/20.26 0.847/0.842 18.90/21.13 23.81/24.14 0.867/0.879 15.22/16.88

NeRF [24] 32.00/28.12 0.984/0.963 3.04/8.54 34.45/30.66 0.975/0.957 7.02/10.14 37.36/31.66 0.985/0.967 4.18/6.92

FVS [29] 30.44/25.32 0.984/0.961 2.56/7.17 32.96/27.56 0.979/0.950 2.96/6.57 35.64/29.54 0.985/0.963 1.95/6.31

Ours w/o FT 30.08/23.98 0.983/0.960 2.36/7.16 32.06/29.01 0.978/0.959 3.54/5.36 35.65/30.42 0.986/0.966 2.15/5.15

Ours 32.13/26.82 0.986/0.964 1.70/5.61 34.30/30.64 0.983/0.965 1.93/3.69 37.27/31.44 0.988/0.967 1.30/4.26

Table 4: Accuracy on DTU. Numbers in bold are within 1% of the best. In each column, numbers on the left are for view

interpolation, right for extrapolation.

ing regions. NeRF++ suffers from blurring and patterning

in the output, although it sometimes reconstructs details that

are missing in our geometric scaffold. While the results of

NPBG can be very good, it sometimes introduces notice-

able artifacts in parts of the scene. Images synthesized by

SVS are overall sharper, more complete, more accurate, and

more temporally stable than the prior work. Please see the

supplementary video for sequences.

Free View Synthesis dataset: Next, we compare SVS

with prior work on the FVS dataset [29]. This dataset con-

tains 6 scenes, each of which was recorded at least twice.

The first recording provides the source images and the other

recordings serve as ground truth for novel target views.

Quantitative results are summarized in Table 3 and quali-

tative results are provided in the supplement. Due to space

constraints, we omit PSNR values here. SVS improves over

prior work on all scenes, according to all metrics. Note that

SVS reduces the LPIPS relative to the best prior method by

at least 5 absolute percentage points in every scene.

DTU: Lastly, we compare SVS to prior approaches on the

DTU dataset [1]. DTU scenes are captured with a regular

camera layout, where 49 images are taken from an octant of

a sphere. We follow the protocol of Riegler and Koltun [29],

use the same scenes, and use the 6 central cameras to evalu-

ate view interpolation and the 4 corner cameras to evaluate

view extrapolation.

Quantitative results are summarized in Table 4 and qual-

itative results are provided in the supplement. LLFF and

EVS achieve reasonable results on this dataset, indicating

that this setup conforms much better to their modeling as-

sumptions. NPBG struggles on this dataset, possibly due to

the small number of images per scene (i.e., 39). NeRF ex-

cels on this dataset; we manually specified a tight bounding

box around the object to maximize the accuracy of NeRF.

The results of FVS are on par with NeRF with respect

to SSIM and LPIPS. For our method, the scene-agnostic

model, which was trained on Tanks and Temples and has

never seen DTU-like scenes, is already surprisingly com-

petitive, and the full SVS method sets the new state of the

art for novel view synthesis on this dataset with respect to

LPIPS, attaining an average LPIPS error of 4.5% in extrap-

olation mode and 1.6% for view interpolation.

7. Discussion

We presented a view synthesis method that is based on

differentiable on-surface feature processing. The method

aggregates deep features from source images adaptively on

a geometric scaffold of the scene using a differentiable set

network. The pipeline is trained end-to-end and learns to

aggregate features from all images, obviating the need for

heuristic selection of “relevant” source images. Our method

sets a new state of the art for photorealistic view synthesis

on large-scale real-world scenes.

There are a number of exciting avenues for future work.

First, we look forward to continued progress in 3D recon-

struction [18], which can further advance the fidelity of the

images synthesized by the presented approach. Second, it

would be interesting to extend the approach to image sets

with strong appearance variation, perhaps enabling relight-

ing of the scenes at test time [20, 22]. Lastly, the presented

approach, like most recent view synthesis work, only han-

dles static scenes. This enables the user to look at these

environments but not engage and interact with them. An

exciting challenge for the field is to enable interactive ma-

nipulation of such scenes while maintaining photorealism.
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