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Abstract

In many real-world problems, collecting a large number

of labeled samples is infeasible. Few-shot learning (FSL) is

the dominant approach to address this issue, where the ob-

jective is to quickly adapt to novel categories in presence of

a limited number of samples. FSL tasks have been predom-

inantly solved by leveraging the ideas from gradient-based

meta-learning and metric learning approaches. However,

recent works have demonstrated the significance of pow-

erful feature representations with a simple embedding net-

work that can outperform existing sophisticated FSL algo-

rithms. In this work, we build on this insight and propose

a novel training mechanism that simultaneously enforces

equivariance and invariance to a general set of geometric

transformations. Equivariance or invariance has been em-

ployed standalone in the previous works; however, to the

best of our knowledge, they have not been used jointly. Si-

multaneous optimization for both of these contrasting ob-

jectives allows the model to jointly learn features that are

not only independent of the input transformation but also

the features that encode the structure of geometric transfor-

mations. These complementary sets of features help gener-

alize well to novel classes with only a few data samples. We

achieve additional improvements by incorporating a novel

self-supervised distillation objective. Our extensive exper-

imentation shows that even without knowledge distillation

our proposed method can outperform current state-of-the-

art FSL methods on five popular benchmark datasets.

1. Introduction

In recent years, deep learning methods have made great

strides on several challenging problems [29, 71, 28, 6, 7].

This success can be partially attributed to the availability

of large-scale labeled datasets [14, 6, 81, 43]. However,

acquiring large amounts of labeled data is infeasible in sev-

eral real-world problems due to practical constraints such

as the rarity of an event or the high cost of manual anno-

tation. Few-shot learning (FSL) targets this problem by
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Figure 1. Approach Overview: Shapes represent different trans-

formations and colors represent different classes. While the in-

variant features provide better discrimination, the equivariant fea-

tures help us learn the internal structure of the data manifold.

These complimentary representations help us generalize better to

new tasks with only a few training samples. By jointly leverag-

ing the strengths of equivariant and invariant features, our method

achieves significant improvement over baseline (bottom row).

learning a model on a set of base classes and studies its

adaptability to novel classes with only a few samples (typ-

ically 1-5) [19, 76, 65, 70]. Remarkably, this setting is dif-

ferent from transfer and self/semi-supervised learning that

assumes the availability of pretrained models [63, 79, 36] or

large-amounts of unlabeled data [17, 9, 3].

FSL has been predominantly solved using ideas from

meta-learning. The two most dominant approaches are

optimization-based meta-learning [19, 32, 61] and metric-

learning based methods [65, 70, 1]. Both sets of approaches

attempt to train a base learner which can be quickly adapted

in the presence of a few novel class examples. However, re-

cently it has been shown in [55] that the quick adaptation of

the base learner crucially depends on feature reuse. Other

recent works [72, 15, 10] have also shown that a baseline
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feature extractor trained on all the meta-train set can achieve

comparable performance to the state-of-the-art meta learn-

ing based methods. This brings in an interesting question:

How much further can FSL performance be pushed by sim-

ply improving the base feature extractor?

To answer this question, first, we take a look at the in-

ductive biases in machine learning (ML) algorithms. The

optimization of all ML algorithms takes advantage of dif-

ferent inductive biases for hypothesis selection; as the so-

lutions are never unique. The generalization of these algo-

rithms often relies on the effective design of inductive bi-

ases, since they encode our priori preference for a particular

set of solutions. For instance, regularization methods like

ℓ1/ℓ2-penalties [73], dropout [66], or early stopping [52]

implicitly impose Occam’s razor in the optimization pro-

cess by selecting simpler solutions. Likewise, convolutional

neural networks (CNN) by design impose translation invari-

ance [2] which makes the internal embeddings translation

equivariant. Inspired by this, several methods [12, 20, 16]

have attempted to generalize CNNs by imposing equivari-

ance to different geometric transformations so that the inter-

nal structure of data can be modeled more efficiently. On the

other hand, methods like [37] try to be robust against nui-

sance variations by learning transformation invariant fea-

tures. However, such inductive biases do not provide opti-

mal generalization on FSL tasks and the design of efficient

inductive designs for FSL is relatively unexplored.

In this paper, we propose a novel feature learning ap-

proach by designing an effective set of inductive biases.

We observe that the features required to achieve invariance

against input transformations can provide better discrim-

ination, but do not ensure optimal generalization. Simi-

larly, features that focus on transformation discrimination

are not optimal for class discrimination but learn equiv-

ariant properties that help in learning the data structure

leading to better transferability. Therefore, we propose to

combine the complementary strengths of both feature types

through a multi-task objective that simultaneously seeks to

retain both invariant and equivariant features. We argue that

learning such generic features encourages the base feature

extractor to be more general. We validate this claim by

performing extensive experimentation on multiple bench-

mark datasets. We also conduct thorough ablation studies

to demonstrate that enforcing both equivariance and invari-

ance outperforms enforcing either of these objectives alone

(see Fig. 1).

Our main contributions are:

• We enforce complimentary equivariance and invariance

to a general set of geometric transformations to model

the underlying structure of the data, while remaining dis-

criminative, thereby improving generalization for FSL.

• Instead of extensive architectural changes, we propose

a simple alternative by defining self-supervised tasks as

auxiliary supervision. For equivariance, we introduce a

transformation discrimination task, while an instance dis-

crimination task is developed to learn transformation in-

variant features.

• We demonstrate additional gains with cross-task knowl-

edge distillation that retains the variance properties.

2. Related Works

Few-shot Learning: The FSL approaches generally be-

long to the meta-learning family, which either learn a gen-

eralizable metric space [65, 35, 77, 50] or apply gradient-

based updates to obtain a good initialization. In the first

class of methods, Siamese networks related a pair of images

[35], matching networks applied an LSTM based context

encoder to match query and support set images [77], and

prototypical networks used the distance between the query

and the prototype embedding for class assignment [65].

A task-dependent metric scaling approach to improve FSL

was introduced in [50]. The second category use gradient-

based meta-learning methods that include using a sequence

model (e.g., LSTM) to learn generalizable optimization

rules [57], Model-agnostic Meta-Learning (MAML) to find

a good initialization that can be quickly adapted to new

tasks with minimal supervision [19], and Latent Embedding

Optimization (LEO) that applied MAML in the low dimen-

sional space from which high-dimensional parameters can

be generated. A few recent efforts, e.g., ProtoMAML [75],

combined the complementary strengths of metric-learning

and gradient-based meta-learning methods.

Inductive Biases in CNNs: Inductive biases reflect our

prior knowledge regarding a particular problem. State of

the art CNNs are based on such design choices which range

from the convolutional operator (e.g., the weight sharing

and translational equivariance) [39], pooling operator (e.g.,

local neighbourhood relevance) [11], regularization mecha-

nisms (e.g., sparsity with ℓ1 regularizer) [33], and loss func-

tions (e.g., max-margin boundaries) [27]. Similarly, recur-

rent architectures and attention mechanisms are biased to-

wards preserving contextual information and being invari-

ant to time translation [2]. A number of approaches have

been designed to achieve invariance to nuisances such as

natural perturbations [30, 74], viewpoint changes [45], and

image transformations [13, 5]. On the other hand, equiv-

ariant representations have also been investigated to retain

knowledge regarding group actions [12, 53, 62, 41], thereby

maintaining meaningful structure in the representations. In

this work, we advocate that the representations required to

simultaneously achieve invariance and equivariance can be

useful for generalization to new tasks with limited data.

Self-supervised Learning for FSL: Our self-supervised

loss is inspired by the recent progress in self-supervised

learning (SSL), where proxy tasks are defined to learn trans-

ferable representations without adding any manual annota-
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tions [56]. The pretext tasks include colorization [38, 80],

inpainting [51], relative patch location [17, 49], and amount

of rotation applied [24]. Recently, the potential of SSL for

FSL was explored in [23, 67]. In [23] a parallel branch with

the rotation prediction task to help learn generalizable fea-

tures was added. Su et al. [67] also used rotation and per-

mutation of patches as auxiliary tasks and concluded that

SSL is more effective in low-shot regimes and under signif-

icant domain shifts. A recent approach employed SimCLR

[9] style contrastive learning with augmented pairs to learn

improved representations in either unsupervised pretraining

[44] or episodic training [18] for FSL.

In contrast to the existing SSL approaches for FSL, we

propose to jointly optimize for a complimentary pair of pre-

text tasks that lead to better generalization. Our novel distil-

lation objective acquires knowledge from the classification

as well as proxy task heads and demonstrates further per-

formance improvements. We present our approach next.

3. Our Approach

We first describe the problem setting and the baseline

training approach and then present our proposed approach.

3.1. Problem Formulation

Few-shot learning (FSL) operates in two phases, first a

model on a set of base classes is trained and then at infer-

ence a new set of few-shot classes are received. We de-

fine the base training set as Db = {(x,y)}, where x ∈
I ⊂ R

h×w×3 is an image, and the one-hot encoded label

y ∈ Y ⊂ R
Nb can belong to a total of Nb base classes. At

inference, a data set of few-shot classes Df = {(x,y)} is

presented for learning such that the label y belongs to one

of the Nf novel classes, each with a total of K examples

(K typically ranges between 1-5). The evaluation setting

for few-shot classes is denoted as Nf -way, K-shot. Impor-

tantly, the Nb base and Nf few-shot classes belong to totally

disjoint sets.

For solving the FSL task, most meta-learning methods

[19, 65, 76] have leveraged an episodic training scheme. An

episode consists of a small train and test set
(

Di
tr,D

i
ts

)

. The

examples for the train and test set of an episode are sam-

pled from the same distribution i.e. from the same subset

of meta-training classes. Meta-learning methods try to opti-

mize the parameters of the base learner by solving a collec-

tion of these episodes. The main motivation is that the eval-

uation conditions should be emulated in the base training

stage. However, following recent works [72, 15, 10], we do

not use an episodic training scheme which allows us to train

a single generalizable model that can be efficiently used for

any-way, any-shot setting without retraining. Specifically,

we train our base learner on the whole base training set Db

in a supervised manner.

Let’s assume our base learner for the FSL task is a neural

network, fΘ, parameterized with parameters Θ. The role of

this base learner is to extract good feature embeddings that

can generalize for novel classes. The base learner fΘ can

project an input image x into the embedding space fΘ :
x → z, such that z ∈ R

d. Now, to optimize the parameters

of the base learner fΘ we need a classifier to project the

extracted embeddings into the label space. To this end, we

introduce a classifier function, fΦ, with parameters Φ that

projects the embeddings z into the label space Y i.e., fΦ :
z → ỹ, such that ỹ ∈ Y .

We jointly optimize the parameters of both fΘ and fΦ by

minimizing cross-entropy loss on the whole base-training

set Db. The classification loss is given by,

Lce = − log
exp(ỹj:yj=1)
∑

i exp(ỹi)
, s.t.,y ∈ {0, 1}Nb , ỹ = fΘ,Φ(x).

To regularize the parameters of both of the sub-networks,

we add a regularization term. Hence, the learning objective

for our baseline training algorithm becomes:

Lbaseline = E
(x,y)∼Db

[

Lce (fΘ,Φ(x),y)

]

+R(Θ,Φ). (1)

Here, R(Θ,Φ) is an L2 regularization term for the parame-

ters Θ and Φ. Next, we present our inductive objectives.

3.2. Injecting Inductive Biases through SSL

We propose to enforce equivariance and invariance to a

general set of geometric transformations T by simply per-

forming self-supervised learning (SSL). Self-supervision

is particularly useful for learning general features with-

out accessing semantic labels. For representation learning,

self-supervised methods generally aim for either achieving

equivariance to some input transformations or learn to dis-

criminate instances by making the representations invariant.

To the best of our knowledge, simultaneous equivariance

and invariance to a general set of geometric transformations

T has not been explored in the self-supervised literature.

We are the first ones to do so.

The transformation set T can be obtained from a family

of geometric transformations, DT ; T ∼ DT . Here, DT can

be interpreted as a family of geometric transformations like

Euclidean transformation, Similarity transformation, Affine

transformation, and Projective transformation. All of these

geometric transformations can be represented with a R3×3

matrix with varying degrees of freedom. However, enforc-

ing equivariance and invariance for a continuous space of

geometric transformations, T , is difficult and may even lead

to suboptimal solutions. To overcome this issue, in this

work, we quantize the complete space of affine transforma-

tions. We approximate DT by dividing it into M discrete

set of transformations. Here, M can be selected based on

the nature of the data and computation budget.
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Figure 2. Network Architecture during Training: A series of transformed inputs (transformed by applying transformations T1...TM ) are

provided to a shared feature extractor fΘ. The resulting embedding is forwarded to three parallel heads fΨ, fΦ and fΩ that focus on

learning equivariant features, discriminative class boundaries, and invariant features, respectively. The resulting output representations are

distilled from an old copy of the model (teacher model on the right) across multiple-heads to further improve the encoded representations.

Notably, a dedicated memory bank of negative samples helps stabilize our invariant contrastive learning.

For training, we generate M transformed copies of an

input image x by applying all M transformations. Then

we combine all of these transformed images together into a

single tensor, xall = {x0,x1, ...,xM−1}. Here, xi is the in-

put image x transformed through ith transformation, Ti (the

subscript of xi is dropped in the subsequent discussion for

clarity). We send this composite input to the network and

optimize for both equivariance and invariance. The train-

ing is performed in a multi-task fashion. In addition to the

classification head, which is needed for the baseline super-

vised training, two other heads are added on top of the base

learner, as shown in Figure 2. One of these heads is used for

enforcing equivariance, and the other is used for enforcing

invariance. This multi-task training scheme ensures that the

base learner retains both transformation equivariant and in-

variant features in the output embedding. We explain each

component of our inductive loss below.

3.2.1 Enforcing Equivariance

As discussed above, equivariant features help us encode the

inherent structure of data that improves generalization of

features to new tasks. To enforce equivariance for the set

T comprising of M quantized transformations, we intro-

duce an MLP fΨ with parameters Ψ. The role of fΨ is to

project the output embeddings from the base learner z into

an equivariant space i.e., fΨ : z → ũ, where ũ ∈ U ⊂ R
M .

In order to train the network, we create proxy labels

without any manual supervision. For a specific transforma-

tion, a M dimensional one-hot encoded vector u ∈ {0, 1}M

(such that
∑

i ui = 1) is used to represent the label for fΨ.

Once proxy labels are assigned, training is performed in a

supervised manner with the cross-entropy loss, as follows:

Leq = − log
exp(ũj:uj=1)
∑

i
exp(ũi)

, s.t., ũ = fΘ,Ψ(x). (2)

This supervised training with proxy labels in the equivariant

space U ensures that the output embedding z retains trans-

formation equivariant features.

3.2.2 Enforcing Invariance

While equivariant representations are important to encode

the structure in data, they may not be optimal for class dis-

crimination. This is because the transformations we con-

sider are nuisance variations that do not change the image

class, therefore a good feature extractor should also encode

representations that are independent of these input varia-

tions. To enforce invariance to the set T consisting of M

quantized transformations, we introduce another MLP fΩ
with parameters Ω. The role of fΩ is to project the output

embeddings from the base learner z into an invariant space

i.e., fΩ : z → v where v ∈ V ⊂ R
D and D is the dimen-

sion of the invariant embedding.

To optimize for invariance we leverage a contrastive loss

[26] for instance discrimination. We enforce invariance

by maximizing the similarity between an embedding vm

corresponding to a transformed image (after undergoing

mth transformation Tm), and the reference embedding v0

(embedding from the original image without applying any

transformation T ). Importantly, we note that selecting neg-

atives within a batch is not sufficient to obtain discriminant

representations [78, 47]. We employ a memory bank in our

contrastive loss to sample more negative samples without

arbitrarily increasing the batch size. Further, the memory

bank allows a stable convergence behavior [47]. Our learn-

ing objective is as follows:

Lin = −
1

M

M−1
∑

m=0

log (h(vr
,v

m))

{

m 6= 0 → vr = v0

m = 0 → vr = ṽ0
(3)
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where, m denotes the transformation index, ṽ0 represents a

previous copy of the reference v0 held in the memory and

the function h(·) is defined as,

h(vr,vm) =
exp

(

s(vr,vm)
τ

)

exp
(

s(vr,vm)
τ

)

+
∑

v
′
∈Dn

exp
(

s(v′
,vm)
τ

) .

Here, s(.) is a similarity function, τ is the temperature, and

Dn is the set of negative samples drawn from the memory

bank for a particular minibatch. Note that we also maximize

the similarity between the reference embedding v0 and its

past representation ṽ0 which helps stabilize the learning.

3.2.3 Multi-head Distillation

Once the invariant and equivariant representations are

learned by our model, we use self-distillation to train a

new model using outputs from the previous model as an-

chor points (Fig. 2). Note that in typical knowledge distil-

lation [31], information is exchanged from a larger model

(teacher) to a smaller one (student) by matching their soft-

ened outputs. In contrast, the outputs from the same models

are matched in the self-distillation [21] where the smooth

predictions encode inter-label dependencies, thereby help-

ing the model to learn better representations.

In our case, a simple knowledge distillation by pair-

ing the logits [72] would not ensure the transfer of invari-

ant and equivariant representations learned by the previous

model version. Therefore, we extend the idea of logit-based

knowledge distillation and employ it to our invariant and

equivariant embedding embeddings. Specifically, in paral-

lel to minimizing the Kullback Leibler (KL) divergence for

the soft output of supervised classifier head fΦ, we also

minimize the KL divergence between the outputs of the

equivariant head fΨ. Since the output of our invariant head

fΩ is not a probability distribution, we minimize a L2 loss

for distilling the knowledge at this head. The overall learn-

ing objective for knowledge distillation is as follows:

Lkd =KL(f t
Θ,Φ(x), fΘ,Φ(x)) + KL(f t

Θ,Ψ(x), fΘ,Ψ(x))

+ L2(f
t
Θ,Ω(x), fΘ,Ω(x)). (4)

Here, f t
(.,.) and f(.,.) are the teacher and student networks

for distillation, respectively.

3.2.4 Overall Objective

Finally, we obtain the resultant loss for injecting the desired

inductive biases by combining both equivariant Leq , invari-

ant Lin, and multi-head distillation Lkd losses:

Linductive = E
x∼Db,v′∼Dn

[

Leq(fΘ,Ψ(x),u)+

Lin(fΘ,Ω(x),v
′) + Lkd(f

.,t
Θ,Φ(x), f

.,t
Θ,Ψ(x), f

.,t
Θ,Ω(x))

]

.

The overall loss is simply a combination of inductive and

baseline objectives,

L = Lbaseline + Linductive. (5)

3.3. Few­Shot Evaluation

For evaluation, we test our base learner fΘ by sampling

FSL tasks from a held-out test set comprising of images

from novel classes. Each FSL task contains a support set

and a corresponding query set {Dsupp, Dquery}; both con-

tain images from the same subset of test classes. Using

fΘ, we obtain embeddings for the images of both Dsupp

and Dquery . Following [72], we train a simple logistic re-

gression classifier based on the image embeddings and the

corresponding labels from the Dsupp. We use that linear

classifier to infer the labels of the query embeddings.

4. Experimental Evaluation

Datasets: We evaluate our method on five popular bench-

mark FSL datasets. Two of these datasets are subset of

the CIFAR100 dataset: CIFAR-FS [4] and FC100 [50].

Another two are derivatives of the ImageNet [14] dataset:

miniImageNet [76] and tieredImageNet [60]. The CIFAR-

FS dataset is constructed by randomly splitting the 100

classes of the CIFAR-100 dataset into 64, 16, and 20 train,

validation, and test splits. FC100 dataset makes the FSL

task more challenging by making the splits more diverse;

the FC100 train, validation, and test splits contain 60, 20,

and 20 classes. Following [58], we use 64, 16, and 20

classes of the miniImageNet dataset for training, validation,

and testing. The tieredImageNet dataset contains 608 Ima-

geNet classes that are grouped into 34 high-level categories,

and we use 20/351, 6/97, and 8/160 categories/classes for

training, validation, and testing. We also evaluate our

method on the newly proposed Meta-Dataset [75], which

contains 10 diverse datasets to make the FSL task more

challenging and closer to realistic classification problems.

Implementation Details: Following [72, 46, 50, 40], we

use a ResNet-12 network as our base learner to conduct ex-

periments on CIFAR-FS, FC100, miniImageNet, tieredIm-

ageNet datasets. Following [72, 40], we also apply Drop-

block [22] regularizer to our Resnet-12 base learner. For

Meta-Dataset experiments we use a Resnet-18 [29] network

as our base learner to be consistent with [72]. We instanti-

ate both of our equivariant and invariant embedding learners

(fΨ, fΩ) with an MLP consisting of a single hidden layer.

The classifier, fΦ, is instantiated with a single linear layer.

We use SGD optimizer with a momentum of 0.9 in all ex-

periments. For CIFAR-FS, FC100, miniImageNet, tiered-

ImageNet datasets we set the initial learning rate to 0.05 and

use a weight decay of 5e − 4. For experiments on CIFAR-

FS, FC100, miniImageNet datasets, we train for 65 epochs;

the learning rate is decayed by a factor of 10 after the first
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Methods Backbone 1-Shot 5-Shot

MAML[19] 32-32-32-32 58.90± 1.90 71.50± 1.00

Proto-Net†[65] 64-64-64-64 55.50± 0.70 72.00± 0.60
Relation Net[70] 64-96-128-256 55.00± 1.00 69.30± 0.80
R2D2[4] 96-192-384-512 65.30± 0.20 79.40± 0.10
Shot-Free[59] ResNet-12 69.20 84.70
TEWAM[54] ResNet-12 70.40 81.30

Proto-Net†[65] ResNet-12 72.20± 0.70 83.50± 0.50
MetaOptNet[40] ResNet-12 72.60± 0.70 84.30± 0.50
Boosting[23] WRN-28-10 73.60± 0.30 86.00± 0.20
Fine-tuning[15] WRN-28-10 76.58± 0.68 85.79± 0.50
DSN-MR[64] ResNet-12 75.60± 0.90 86.20± 0.60
MABAS[34] ResNet-12 73.51± 0.92 85.49± 0.68
RFS-Simple[72] ResNet-12 71.50± 0.80 86.00± 0.50
RFS-Distill[72] ResNet-12 73.90± 0.80 86.90± 0.50

Ours ResNet-12 76.83± 0.82 89.26± 0.58
Ours-Distill ResNet-12 77.87± 0.85 89.74± 0.57

Table 1. Average 5-way few-shot classification accuracy with 95%

confidence intervals on CIFAR-FS dataset; †trained on train and

validation sets. Top two results are shown in red and blue.

Methods Backbone 1-Shot 5-Shot

Proto-Net†[65] 64-64-64-64 35.30± 0.60 48.60± 0.60

Proto-Net†[65] ResNet-12 37.50± 0.60 52.50± 0.60
TADAM[50] ResNet-12 40.10± 0.40 56.10± 0.40
MetaOptNet[40] ResNet-12 41.10± 0.60 55.50± 0.60
MTL[68] ResNet-12 45.10± 1.80 57.60± 0.90
Fine-tuning[15] WRN-28-10 43.16± 0.59 57.57± 0.55
MABAS[34] ResNet-12 42.31± 0.75 57.56± 0.78
RFS-Simple[72] ResNet-12 42.60± 0.70 59.10± 0.60
RFS-Distill[72] ResNet-12 44.60± 0.70 60.90± 0.60

Ours ResNet-12 47.38± 0.79 64.43± 0.77
Ours-Distill ResNet-12 47.76± 0.77 65.30± 0.76

Table 2. Average 5-way few-shot classification accuracy with 95%

confidence intervals on FC100 dataset; †trained on train and vali-

dation sets. Top two results are shown in red and blue.

60 epochs. We train for 60 epochs for experiments on the

tieredImageNet dataset; the learning rate is decayed by a

factor of 10 for 3 times after the first 30 epochs. For Meta-

Dataset experiments, we set the initial learning rate to 0.1

and use a weight decay of 1e−4. We train our method for 90

epochs and decay the learning rate by a factor of 10 every 30

epochs. We use a batch size of 64 in all of our experiments

except on Meta-Dataset where the batch size is set to 256

following [72]. For Meta-dataset experiments, we use stan-

dard data augmentation which includes random horizontal

flip and random resized crop. For all the other dataset exper-

iments we use random crop, color jittering and random hor-

izontal flip for data augmentation following [72, 40]. Con-

sistent with [72], we use a temperature coefficient of 4.0 for

our knowledge distillation experiments. For all datasets, we

perform one stage of distillation. We sample 600 FSL tasks

to report our scores on all datasets except Meta-Dataset.

For our geometric transformations, we sample from a

Methods Backbone 1-Shot 5-Shot

MAML[19] 32-32-32-32 48.70± 1.84 63.11± 0.92
Matching Net [76] 64-64-64-64 43.56± 0.84 55.31± 0.73

Proto-Net†[65] 64-64-64-64 49.42± 0.78 68.20± 0.66
Relation Net[70] 64-96-128-256 50.44± 0.82 65.32± 0.70
R2D2[4] 96-192-384-512 51.20± 0.60 68.80± 0.10
SNAIL[46] ResNet-12 55.71± 0.99 68.88± 0.92
AdaResNet[48] ResNet-12 56.88± 0.62 71.94± 0.57
TADAM[50] ResNet-12 58.50± 0.30 76.70± 0.30
Shot-Free[59] ResNet-12 59.04 77.64
TEWAM[54] ResNet-12 60.07 75.90
MTL[68] ResNet-12 61.20± 1.80 75.50± 0.80
MetaOptNet[40] ResNet-12 62.64± 0.61 78.63± 0.46
Boosting[23] WRN-28-10 63.77± 0.45 80.70± 0.33
Fine-tuning[15] WRN-28-10 57.73± 0.62 78.17± 0.49

LEO-trainval†[61] WRN-28-10 61.76± 0.08 77.59± 0.12
Deep DTN[8] ResNet-12 63.45± 0.86 77.91± 0.62
AFHN[42] ResNet-18 62.38± 0.72 78.16± 0.56
AWGIM[25] WRN-28-10 63.12± 0.08 78.40± 0.11
DSN-MR[64] ResNet-12 64.60± 0.72 79.51± 0.50
MABAS[34] ResNet-12 65.08± 0.86 82.70± 0.54
RFS-Simple[72] ResNet-12 62.02± 0.63 79.64± 0.44
RFS-Distill[72] ResNet-12 64.82± 0.60 82.14± 0.43

Ours ResNet-12 66.82± 0.80 84.35± 0.51
Ours-Distill ResNet-12 67.28± 0.80 84.78± 0.52

Table 3. Average 5-way few-shot classification accuracy with 95%

confidence intervals on miniImageNet dataset; †trained on train

and validation sets. Top two results are shown in red and blue.

complete space of similarity transformation and use four ro-

tation transformations: {0◦, 90◦, 180◦, 270◦}, two scaling

transformations: {0.67, 1.0} and three aspect ration trans-

formations: {0.67, 1.0, 1.33}. These geometric transfor-

mations can be applied in any combination. For all of our

experiments, we set the total number of applied transforma-

tions to 16. Additional details and experiments with more

geometric transformations are included in the supplemen-

tary materials. For the contrastive loss, we use a memory

bank that stores 64-dimensional embedding of instances;

we sample 6400 negative samples from the memory bank

for each mini-batch and set the value of τ to 1.0.

4.1. Results

We present our results on five popular benchmark FSL

datasets in Table 1-5 which demonstrates that even without

multi-head distillation our proposed method consistently

outperforms the current state-of-the-art (SOTA) FSL meth-

ods on both 5-way 1-shot and 5-way 5-shot tasks. By virtue

of our novel representation learning approach which re-

tains both the transformation invariant and equivariant fea-

tures in the learned embeddings, our proposed method im-

proves over the baseline RFS-Simple [72] method across

all datasets by 2-5% for both 1-shot and 5-shot tasks. To

be more specific, our method outperforms the current best

results on CIFAR-FS dataset (Table 1) by 1.3% in the 1-
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Methods Backbone 1-Shot 5-Shot

MAML[19] 32-32-32-32 51.67± 1.81 70.30± 1.75

Proto-Net†[65] 64-64-64-64 53.31± 0.89 72.69± 0.74
Relation Net[70] 64-96-128-256 54.48± 0.93 71.32± 0.78
Shot-Free[59] ResNet-12 63.52 82.59
MetaOptNet[40] ResNet-12 65.99± 0.72 81.56± 0.53
Boosting[23] WRN-28-10 70.53± 0.51 84.98± 0.36
Fine-tuning[15] WRN-28-10 66.58± 0.70 85.55± 0.48

LEO-trainval†[61] WRN-28-10 66.33± 0.05 81.44± 0.09
AWGIM[25] WRN-28-10 67.69± 0.11 82.82± 0.13
DSN-MR[64] ResNet-12 67.39± 0.82 82.85± 0.56
RFS-Simple[72] ResNet-12 69.74± 0.72 84.41± 0.55
RFS-Distill[72] ResNet-12 71.52± 0.69 86.03± 0.49

Ours ResNet-12 71.87± 0.89 86.82± 0.58
Ours-Distill ResNet-12 72.21± 0.90 87.08± 0.58

Table 4. Average 5-way few-shot classification accuracy with 95%

confidence intervals on tieredImageNet dataset; †trained on train

and validation sets. Top two results are shown in red and blue.

Dataset
fo-Proto- RFS

Ours Ours-Distill
MAML Simple Distill

ILSVRC 49.53 60.14 61.48 60.64 61.36
Omniglot 63.37 64.92 64.31 65.55 65.53
Aircraft 55.95 63.12 62.32 65.65 66.58
Birds 68.66 77.69 79.47 77.84 78.23
Textures 66.49 78.59 79.28 81.07 80.42
Quick Draw 51.52 62.48 60.83 57.91 59.02
Fungi 39.96 47.12 48.53 49.26 49.50
VGG Flower 87.15 91.60 91.00 92.06 92.66
Traffic Signs 48.83 77.51 76.33 78.92 79.92
MSCOCO 43.74 57.00 59.28 55.07 55.68

Mean Accuracy 57.52 68.02 68.28 68.40 68.89

Table 5. Results on Meta-Dataset. Average accuracy (%) is re-

ported with variable number of ways and shots, following the setup

in [75]. 1000 tasks are sampled for evaluation. Top two results are

shown in red and blue.

shot task whereas for the 5-shot task it improves the score

by 2.8%. However, unlike [15], which achieves the current

best results on the CIFAR-FS 1-shot task, we do not per-

form any transductive fine-tuning. For FC100 dataset (Table

2) we observe an even bigger improvement; 2.7% and 4.4%

for 1 and 5-shot, respectively. We see similar trends in mini-

ImageNet and tieredImageNet (Table 3,4) where we consis-

tently improve over the current SOTA methods by 0.7-2.2%.

For the Meta-Dataset [75], we train our model on the

ILSVRC train split and test on 10 diverse datasets. Our re-

sults in Table 5 demonstrate that our method outperforms

the fo-Proto-MAML [75] across all 10 datasets. Even with-

out multi-head distillation, we outperform both simple and

distilled version of the RFS method on 6 out of 10 datasets.

Overall, we perform favorably well against the RFS, achiev-

ing a new SOTA result on the challenging Meta-Dataset.

4.2. Ablations

To study the contribution of different components of our

method we do a thorough ablation study on three bench-

mark FSL datasets: miniImageNet, CIFAR-FS, and FC100

(Table 6). On these three datasets, our baseline super-

vised training achieves 62.02%, 71.50%, and 42.60% av-

erage accuracy on 5-way 1-shot task respectively; which

is the same as RFS-Simple [72]. By enforcing invariance

we obtain 2.62%, 2%, and 3.5% improvements respectively.

Likewise, enforcing equivariance gives 4.07%, 4.87%, and

4.13% improvements over the baseline respectively. On the

other hand, we get even bigger improvements by simulta-

neously optimizing for both equivariance and invariance;

achieving 4.8%, 5.33%, and 4.78% improvements on top

of the baseline supervised training. Besides, joint training

gives 1.3%-3.3% improvement over only invariance train-

ing and 0.5%-0.7% improvement in comparison to only

equivariance training. We observe similar trends for 5-way

5-shot task. This consistent improvement across all datasets

for both tasks empirically validates our claim that joint op-

timization for both equivariance and invariance is beneficial

for FSL tasks. Our ablation study also shows that the multi-

head distillation improves the performance over the stan-

dard logit-level supervised distillation across all datasets.

Effect of the number of Transformations: To investigate

the effect of the total number of applied transformations, we

perform an ablation study on the CIFAR-FS validation set

by varying the number of transformations, M . We present

the results in Table 7, which demonstrates that initially, the

performance of our method improves with the increasing

M . However, the performance starts to saturate beyond a

particular point. We hypothesize that the performance for

an increasing number of transformations decreases since

discriminating a higher number of transformations is more

difficult and the model spends more representation capabil-

ity for solving this harder task. A similar trend is observed

in [24], where increasing the number of recognizable rota-

tions does not lead to better performance. Based on Table

7 results, we set the value of M to 16 for all of our experi-

ments and do not tune the M value from dataset to dataset.

4.3. Analysis

We do a t-SNE visualization of the output embeddings

from fΘ for the test images of miniImageNet to demonstrate

the effectiveness of our method (see Fig. 3). We observe

that the base learner trained in a supervised manner can re-

tain good class discrimination even for unseen test classes.

However, as evident in Fig. 3, the class boundaries are not

precise and compact. Enforcing invariance on top of the

base learner leads to more compact class boundaries; how-

ever, the sample embeddings of different classes are still

relatively closer to one another. On the other hand, enforc-

ing equivariance leads to class representations that are well

spread out since it retains the transformation equivariant in-

formation in the embedding space. Finally, our proposed

method takes advantage of both of these complementary
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Method
miniImageNet, 5-Way CIFAR-FS, 5-Way FC100, 5-Way

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Baseline Training 62.02± 0.63 79.64± 0.44 71.50± 0.80 86.00± 0.50 42.60± 0.70 59.10± 0.60
Ours with only Invariance 64.64± 0.80 82.59± 0.54 73.50± 0.86 87.55± 0.61 46.10± 0.78 63.18± 0.76

Ours with only Equivariance 66.09± 0.80 84.03± 0.53 76.37± 0.83 89.08± 0.58 46.73± 0.79 64.09± 0.75
Ours with Equi and Invar (W/O KD) 66.82± 0.80 84.35± 0.51 76.83± 0.82 89.26± 0.58 47.38± 0.79 64.43± 0.77

Ours with Supervised KD 66.95± 0.78 84.39± 0.52 76.92± 0.85 89.34± 0.57 47.70± 0.81 65.09± 0.76
Ours Full 67.28± 0.80 84.78± 0.52 77.87± 0.85 89.74± 0.57 47.76± 0.77 65.30± 0.76

Table 6. Ablation study on miniImageNet, CIFAR-FS, and FC100 datasets.

M Description 1-Shot 5-Shot

3 Aspect-Ratio 65.13± 0.93 81.22± 0.66
4 Rotation 66.56± 0.92 82.64± 0.64
8 Rotation, Scale 67.46± 0.92 82.80± 0.64

12 Aspect-Ratio, Rotation 68.04± 0.93 83.48± 0.64
16 Aspect-Ratio, Rotation, Scale 68.20± 0.92 83.63± 0.62
20 Aspect-Ratio, Rotation, Scale 68.07± 0.90 83.53± 0.61

Table 7. Ablation Study on CIFAR-FS validation set with differ-

ent values of M . We choose M = 16 for all the experiments.

Baseline Baseline+INV

Baseline+EQ Ours
Figure 3. t-SNE visualization of features for 1000 randomly sam-

pled images from 5 randomly selected test classes of miniIma-

geNet dataset. In our case, the learned embeddings provide better

discrimination for unseen test classes.

properties and generates embeddings that lead to more com-

pact clusters and discriminative class boundaries.

4.4. Alternate Self­Supervision Losses

In Table 8, to further analyze the performance improve-

ment of our method, we conduct a set of experiments where

commonly used self-supervised objectives like solving jig-

saw puzzles [49], patch location prediction [69], context

prediction [17], rotation classification [24] are added on top

of the base learner as an auxiliary task. We found that our

proposed method which aims to learn representations that

retain both transformation invariant and equivariant infor-

mation outperforms all of these SSL tasks by a good margin.

Besides, we have noticed that the patch-based SSL tasks

Method 1-Shot 5-Shot

Baseline Training 62.02± 0.63 79.64± 0.44
Baseline + Jigsaw Puzzle [49] 63.98± 0.79 81.08± 0.55
Baseline + Location Pred [69] 64.39± 0.81 81.75± 0.54
Baseline + Context Pred [17] 64.72± 0.79 81.83± 0.54

Baseline + Rotation [24] 65.25± 0.80 82.85± 0.54
Ours (W/O KD) 66.82± 0.80 84.35± 0.51

Table 8. FSL with different SSL objectives on miniImageNet

dataset.

[49, 69, 17] generally underperform in comparison to SSL

tasks that rely on changing the global statistics of the image

while maintaining the local statistics; this conclusion is in

line with the experimental results from [23].

5. Conclusion

In this work, we explored a set of inductive biases that

help us learn highly discriminative and transferable repre-

sentations for FSL. Specifically, we showed that simultane-

ously learning equivariant and invariant representations to

a set of generic transformations results in retaining a com-

plimentary set of features that work well for novel classes.

We also designed a novel multi-head knowledge distillation

objective which delivers additional gains. We conducted ex-

tensive ablation to empirically validate our claim that joint

optimization for invariance and equivariance leads to more

generic and transferable features. We obtained new state-

of-the-art results on four popular benchmark FSL datasets

as well as on the newly proposed challenging Meta-Dataset.

Acknowledgements This research is based upon work sup-

ported by the Office of the Director of National Intelli-

gence (ODNI), Intelligence Advanced Research Projects Activ-

ity (IARPA), via IARPA RD Contract No. D17PC00345. The

views and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the offi-

cial policies or endorsements, either expressed or implied, of the

ODNI, IARPA, or the U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright annotation thereon.

810843



References

[1] Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua

Tenenbaum. Infinite mixture prototypes for few-shot learn-

ing. volume 97 of Proceedings of Machine Learning Re-

search, pages 232–241, Long Beach, California, USA, 09–

15 Jun 2019. PMLR. 1

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-

varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Ma-

linowski, Andrea Tacchetti, David Raposo, Adam Santoro,

Ryan Faulkner, et al. Relational inductive biases, deep learn-

ing, and graph networks. arXiv preprint arXiv:1806.01261,

2018. 2

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas

Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A

holistic approach to semi-supervised learning. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and
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