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Abstract

In this paper we address multi-target domain adaptation

(MTDA), where given one labeled source dataset and mul-

tiple unlabeled target datasets that differ in data distribu-

tions, the task is to learn a robust predictor for all the tar-

get domains. We identify two key aspects that can help to

alleviate multiple domain-shifts in the MTDA: feature ag-

gregation and curriculum learning. To this end, we pro-

pose Curriculum Graph Co-Teaching (CGCT) that uses a

dual classifier head, with one of them being a graph con-

volutional network (GCN) which aggregates features from

similar samples across the domains. To prevent the clas-

sifiers from over-fitting on its own noisy pseudo-labels we

develop a co-teaching strategy with the dual classifier head

that is assisted by curriculum learning to obtain more re-

liable pseudo-labels. Furthermore, when the domain la-

bels are available, we propose Domain-aware Curriculum

Learning (DCL), a sequential adaptation strategy that first

adapts on the easier target domains, followed by the harder

ones. We experimentally demonstrate the effectiveness of

our proposed frameworks on several benchmarks and ad-

vance the state-of-the-art in the MTDA by large margins

(e.g. +5.6% on the DomainNet).

1. Introduction

Deep learning models suffer from the well known draw-

back of failing to generalize well when deployed in the real

world. The gap in performance arises due to the differ-

ence in the distributions of the training (a.k.a source) and

the test (a.k.a target) data, which is popularly referred to

as domain-shift [46]. Since, collecting labeled data for ev-

ery new operating environment is prohibitive, a rich line of

research, called Unsupervised Domain Adaptation (UDA),

has evolved to tackle the task of leveraging the source data

to learn a robust predictor on a desired target domain.

In the literature, UDA methods have predominantly been

designed to adapt from a single source domain to a single

target domain (STDA). Such methods include optimizing

*Equal contribution
†Corresponding author

statistical moments [48, 26, 45, 35, 4, 5, 6, 36], adversar-

ial training [11, 47, 25], generative modelling [39, 17, 23],

to name a few. However, given the proliferation in unla-

beled data acquisition, the need to adapt to just a single tar-

get domain has lost traction in the real world scenarios. As

the number of target domains grows, the number of models

that need to be trained also scales linearly. For this rea-

son, the research focus has very recently been steered to ad-

dress a more practical scenario of adapting simultaneously

to multiple target domains from a single source domain.

This adaptation setting is formally termed as Multi-target

Domain Adaptation (MTDA). The goal of the MTDA is to

learn more compact representations with a single predictor

that can perform well in all the target domains. Straight-

forward application of the STDA methods for the MTDA

may be sub-optimal due to the presence of multiple domain-

shifts, thereby leading to negative transfer [54, 9]. Thus, the

desideratum to align multiple data distributions makes the

MTDA considerably more challenging.

In this paper we build our framework for the MTDA piv-

oted around two key concepts: feature aggregation and cur-

riculum learning. Firstly, we argue that given the intrinsic

nature of the task, learning robust features in a unified space

is a prerequisite for attaining minimum risk across multiple

target domains. For this purpose we propose to represent

the source and the target samples as a graph and then lever-

age Graph Convolutional Networks [19] (GCN) to aggre-

gate semantic information from similar samples in a neigh-

bourhood across different domains. For the GCN to be op-

erative, partial relationships among the samples (nodes) in

the graph must at least be known apriori in the form of class

labels. However, this information is absent for the target

samples. To this end, we design a co-teaching framework

where we train two classifiers: a MLP classifier and a GCN

classifier that provide target pseudo-labels to each other.

On the one hand, the MLP classifier is utilized to make

the GCN learn the pairwise similarity between two nodes

in the graph. While, on the other hand, the GCN classi-

fier, due to its feature aggregation property, provides better

pseudo-labels to assist the training of the MLP classifier.

Given that co-teaching works on the assumption that differ-
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Method
Domain

labels

Feature

aggregation

Curriculum

learning

Co-

teaching

AMEAN [9] ✗ ✗ ✗ ✗

DADA [34] ✗ ✗ ✗ ✗

MTDA-ITA [12] ✓ ✗ ✗ ✗

HGAN [53] ✓ ✓ ✗ ✗

CGCT (Ours) ✗ ✓ ✓ ✓

D-CGCT (Ours) ✓ ✓ ✓ ✓

Table 1. Comparison with recent the state-of-the-art MTDA

methods in terms of the operating regimes.

ent networks capture different aspects of learning [2], it is

beneficial for suppressing noisy pseudo-labels. his feature

aggregation and/or co-teaching aspects are largely missing

in existing MTDA methods [9, 12, 34, 53] (see Tab. 1).

Secondly, we make a crucial observation, very peculiar

to the MTDA setting, i.e., during training as the network

tries to adapt to multiple domain-shifts of varying degree,

pseudo-labels obtained on-the-fly from the network for the

target samples are very noisy. Self-training the network

with unreliable pseudo-labeled target data further deterio-

rates the performance. To further combat the impact of

noisy pseudo-labels, we propose to obtain pseudo-labels in

an episodic fashion, and advocate the use of curriculum

learning in the context of MTDA. In particular, when the

domain labels of the target are latent, each episode or cur-

riculum step consists of a fixed number of training itera-

tions. Fairly consistent and reliable pseudo-labels are ob-

tained from the GCN classifier at the end of each curricu-

lum step. We call this proposed framework as Curriculum

Graph Co-Teaching (CGCT) (see Fig. 1 (a)).

Furthermore, when the domain labels of the target are

available, we propose an Easy-To-Hard Domain Selection

(EHDS) strategy where the feature alignment process be-

gins with the target domain that is closest to the source and

then gradually progresses towards the hardest one. This

makes adaptation to multiple targets smoother. In this

case, each curriculum step involves adaptation with a sin-

gle new target domain. The CGCT when combined with

this proposed Domain-aware Curriculum Learning (DCL)

(see Fig. 1 (b)) is referred to as D-CGCT. The Tab. 1 high-

lights the operating regimes of our frameworks versus the

state-of-the-art MTDA methods. To summarize, the contri-

butions of this work are threefold:

• We propose Curriculum Graph Co-Teaching (CGCT)

for MTDA that exploits the co-teaching strategy with

the dual classifier head, together with the curriculum

learning, to learn more robust representations across

multiple target domains.

• To better utilize the domain labels, we propose a

Domain-aware Curriculum Learning (DCL) strategy to

make the feature alignment process smoother.

• In the MTDA setting, we outperform the state-of-the-

art for several UDA benchmarks by significant margins

(including +5.6% on the large scale DomainNet [33]).

2. Related Works

Single-source single-target DA (STDA) refers to the

task of adapting a classifier from a single labeled source

dataset to a single unlabeled target dataset. In the UDA lit-

erature, a plethora of STDA methods have been proposed,

which can be broadly classified into three major categories

based upon the adaptation strategy. The first category uses

first (Maximum Mean Discrepancy [48, 26, 27, 49]) or sec-

ond order (correlation alignment [45, 31, 35, 22, 4, 6, 30,

36, 38]) statistics of the source and target features to align

the marginal feature distributions. The second category of

STDA methods [11, 47, 3, 25, 8] adopts adversarial train-

ing strategy to align the marginal feature distributions of

the two domains. Essentially, these methods use a gradient

reversal layer [11] to make the feature extractor network ag-

nostic to domain specific information. The final category of

STDA methods [39, 17, 42, 23] resort to pixel-level adap-

tation by generating synthetic target-like source images or

source-like target images with the help of generative adver-

sarial network (GAN) [13]. However, practical applications

go beyond the single-source and single-target setting and

often involve multiple source [51, 37, 52] or target domains.

Multi-target DA aims to transfer knowledge from a

single labeled source dataset to multiple unlabeled tar-

get datasets. While the research in STDA is quite ma-

ture, most STDA methods can not be trivially extended

to a multi-target setting. So far only a handful of meth-

ods [9, 34, 18, 24, 12, 53] for MTDA can be found in the

literature. AMEAN [9] performs clustering on the blended

target domain samples to obtain sub-targets and then learns

domain-invariant features from the source and the obtained

sub-targets using a STDA method [43]. The approaches in-

troduced in [34, 18, 12] are derived from STDA and do not

exploit any peculiarity of the MTDA setting. Conversely,

our CGCT and D-CGCT are tailor-made for the multi-target

setting as we propose to use feature aggregation of similar

samples across multiple domains.

Curriculum for DA involves adopting an adaptive strat-

egy that evolves over time to better address the adaptation

across domains. Shu et. al. [44] propose a strategy based on

curriculum learning that exploits the loss of the network as

weights to identify and eliminate unreliable source samples.

An Easy-to-Hard Transfer Strategy (EHTS) is proposed in

PFAN [7] that progressively selects the pseudo-labeled tar-

get samples which have higher cosine similarity to the per-

category source prototypes. Similarly, our CGCT is in-

spired by the EHTS strategy except we progressively recruit

the pseudo-labeled targets [1] from the robust GCN clas-

sification head to better train the MLP classifier, which in

turn regularizes the GCN head (see Sec.3.2). For the multi-

source DA setting, CMSS [52] trains a separate network to

weigh the most relevant samples across several source do-

mains for adapting to a single target domain. However, dif-
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ferently from CMSS, our proposed DCL utilizes the domain

information to adapt over time from the easiest to the hard-

est target domain in the MTDA setting (see Sec. 3.3).

Graph Neural Networks (GNN) are neural network

models applied on graph-structured data that can capture

the relationships between the objects (nodes) in a graph via

message passing through the edges [14, 50]. Relevant to

our work are GNN-derived Graph Convolutional Networks

(GCN) [19] that have recently been applied for addressing

DA [29, 28, 53]. For instance, Luo et. al. [28] propose PGL

for open-set DA to capture the relationship between the

overlapping classes in the source and the target. Notably,

Yang et. al. [53] introduce heterogeneous Graph Attention

Network (HGAN) for MTDA to learn the relationship of

similar samples among multiple domains and then utilize

the graph-based pseudo-labeled target samples to align their

centroids with that of the source. Unlike [28, 53], we in-

corporate the idea of co-teaching [15] in a GCN framework

for combating noisy pseudo-labels.

3. Method

In this section we present our proposed Curriculum

Graph Co-Teaching (CGCT) and thereafter Domain Cur-

riculum Learning (DCL) for the task of MTDA. We also

discuss some preliminaries that are used to address the task.

Problem Definition. In the MTDA scenario, we are pro-

vided with a single source dataset S = {(xs,i, ys,i)}
ns

i=1,

containing ns labeled samples, and N unlabeled target

datasets T = {Tj}
N
j=1, where Tj = {xtj ,k}

nj

k=1 with each

containing nj unlabeled samples. As in any DA scenario,

the fundamental assumption is that the underlying data dis-

tributions of the source and the targets are different from

each other. It is also assumed that the label space of the

source and targets are the same. Under these assumptions,

the goal of the MTDA is to learn a single predictor for all

the target domains by using the data in S ∪ {Tj}
N
j=1.

3.1. Preliminaries

Baseline for Multi-target Domain Adaptation. Do-

main Adversarial Network (DANN) [11], originally de-

signed for STDA, aligns the feature distributions of the

source and the target domains by using an adversarial train-

ing. DANN comprises of three networks: the feature extrac-

tor, the classifier and the domain discriminator. The classi-

fier is responsible for classifying the features obtained from

the feature extractor into nc classes. On the one hand, the

domain discriminator distinguishes the source from the tar-

get features. While on the other hand, the feature extractor

is trained to fool the discriminator and simultaneously learn

good features for semantic classification.

Formally, let Fθ : R
3xwxh → R

d be the feature ex-

tractor network, parameterized by θ, that outputs a feature

f = F (x) for a given sample x. The classifier network,

parameterized by φ, is denoted by Gφ : Rd → R
nc , which

takes as input a feature f and outputs class logits g = G(f).
The discriminator network Dψ : Rd → R

1, parameterized

by ψ, takes in the same feature f and outputs a single logit.

By treating all the target domains as one combined target

domain, the overall training objective of DANN for MTDA

is given by:

max
ψ

min
θ,φ

ℓce − λadv ℓadv, (1)

where ℓce = −E(xs,i,ys,i)∼S ỹs,ilogG(F (xs,i)),

and ℓadv = −Exs,i∼S logD(F (xs,i))

− Ext,j∼T log [1−D(F (xt,j))].

ỹs,i is the one-hot label for a source label ys,i. The first

term, ℓce, in Eq. 1 is the cross-entropy loss computed on

the source domain samples and minimized w.r.t. θ, φ. The

second term, ℓadv , in Eq. 1 is the adversarial loss that is

maximized w.r.t ψ but minimized w.r.t θ. λadv is the weigh-

ing factor for ℓadv . To capture the multi-modal nature of

the distributions, CDAN [25] is proposed where D can be

additionally conditioned on the classifier predictions g. In

CDAN [25], the D takes as input h = (f ,g), the joint vari-

able of f and g, instead of just f . In this work we use CDAN

for aligning the feature distributions.

Graph Convolutional Network. For the GCN [19] clas-

sifier we construct an undirected and fully-connected graph

Γ = (V, E ,A) from all samples in mini-batch. In details,

given a mini-batch of images, we represent each image xi
as a node vi ∈ V in the Γ. ei,j ∈ E indicates an edge be-

tween nodes vi and vj , and ai,j is the semantic similarity

score for nodes (vi, vj) forming an affinity matrix A.

Following [28], we compute the semantic similarity

scores â
(l)
i,j at the l-th layer for all pairs (vi,vj) ∈ E :

â
(l)
i,j = f

(l)
edge(v

(l−1)
i ,v

(l−1)
j ), (2)

where f
(l)
edge is a non-linear similarity function parameter-

ized by ϕ, and v
(l−1)
i is features at l-1 GCN layer of a sam-

ple vi. The initial node features vi are instantiated with

fi, the embedding obtained from F . Then, we add self-

connections for nodes in the graph and normalize the ob-

tained similarity scores as:

A(l) =M− 1

2 (Â(l) + I)M− 1

2 , (3)

where M is the degree matrix, I is the identity matrix, and

Â is the un-normalized affinity matrix.

Finally, given the affinity matrix A(l), we update the

node features with the following propagation rule:

v
(l)
i = f

(l)
node

(
[v

(l−1)
i ,

∑

j∈B

a
(l)
i,j · v

(l−1)
j ]

)
, (4)

where f
(l)
node is a non-linear function parameterized by ϕ′, B

is a set of samples in the mini-batch, and [·, ·] is the feature
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Figure 1. The pipeline of the proposed framework: a) CGCT: Curriculum Graph Co-Teaching and b) DCL: Domain-aware

curriculum learning. (a) In the CGCT, the MLP Classifier provides pseudo-labels (PL) (99K arrow) for the target samples to

guide the Edge Network to learn the Affinity Matrix, whereas the Node Classifier of the GCN provides PL (bold → arrow)

to the MLP Classifier at the end of each curriculum step, realizing the co-teaching. (b) In the DCL, the target domains are

selected for adaptation, one at a time per domain curriculum step t
q
dcl, with the “easier” domains selected first and then the

“harder” ones. After PL are obtained, the pseudo-labeled target dataset is added to the Pseudo Source dataset, which is then

used in the next adaptation step.

concatenation function. The final f
(L)
node layer is the output

layer with nc outputs. We slightly abuse the notations and

drop the superscript l in our subsequent formulations for the

sake of clarity.

3.2. Curriculum Graph Co­Teaching
In this work we introduce the Curriculum Graph Co-

Teaching (CGCT) that employs feature aggregation with a

GCN and uses curriculum learning for pseudo-labeling. In

details, as shown in Fig. 1(a), it is composed of: a feature

extractor F , a domain discriminator D, a MLP classifier

Gmlp and a GCN classifier Ggcn. The Gmlp is a fully-

connected output layer with nc output logits. TheGgcn con-

sists of an edge network fedge and a node classifier fnode.

The fnode aggregates the features of the samples in B by

considering the learnt pairwise similarity in the affinity ma-

trix Â produced by the fedge. The Ggcn also outputs nc
logits. Since, the Gmlp and the Ggcn capture different as-

pects of learning, they are exploited to provide feedback to

each other in a co-teaching fashion. The CGCT is trained

for Q curriculum steps where a curriculum step, tqcur, is an

episode in which the network is trained for K training it-

erations. Each curriculum step tqcur is further decomposed

into two stages: i) Adaptation stage and ii) Pseudo-labeling

stage. Each stage in a tqcur is described below. Note that, as

in [9], we assume that the domains labels of the target are

latent and not observed during training.

Adaptation stage. In this stage we mainly perform the

feature alignment using CDAN [25]. In details, initially at

step t0cur we start with a source set Ŝ0 = {S} and a tar-

get set T . We sample mini-batches B0 = {B0
s ,B

0
t } =

{B0
s,i,B

0
t,i}

B
i=1 with size B such that B0

s,i ∼ Ŝ and B0
t,i ∼

T . Each mini-batch of images is first fed to the feature ex-

tractor F to obtain F0 = {f0s,i, f
0
t,i}

B
i=1 which are then si-

multaneously fed to both the Gmlp and Ggcn. When fed to

the Gmlp it outputs the logits Ĝ0 = {ĝ0
s,i, ĝ

0
t,i}

B
i=1. On the

other hand, F0 are input to the fedge to estimate the pair-

wise similarity of the samples in B0. Specifically, the fedge

outputs an affinity matrix Â following Eq. 2, where the en-

tries âi,j in Â denote the strength of similarity between

samples i and j in B0. Intuitively, higher the value of âi,j ,

higher is the likelihood of samples i and j belonging to the

same semantic category. Finally, following Eq. 4, the fnode
aggregates the features in F0 based on the estimated Â such

that for each node the most similar samples in the neigh-

bourhood contribute more to its final representation. Subse-

quently, the fnode outputs its logits as Ḡ0 = {ḡ0
s,i, ḡ

0
t,i}

B
i=1.

The elements in Ĝ0 and Ḡ0 are then passed through a soft-

max function to obtain the probabilities for each sample as

p(ŷ = c|ĝ; c ∈ nc) and p(ȳ = c|ḡ; c ∈ nc), where ŷ and ȳ

are the predictions, respectively.

To guide the fedge to learn the pairwise similarity be-

tween the samples in B0 we propose the concept of co-

teaching where the Gmlp provides feedback to the fedge.

Since, Gmlp makes instance-level independent predictions

on the samples in B0, it is not susceptible to the accumula-

tion of potential noise from the dissimilar neighbours. To

this end, for a B0 we construct a “target” affinity matrix

Âtar and enforce the predictions of fedge to be as close as

possible to the Âtar. Each entry âtari,j in the Âtar is given

by:

âtari,j =

{
1, if yi = yj = c

0, otherwise
, (5)

where c is the class label. While the class labels of B0
s are

provided as ground truth, we do not have access to the la-

bels of B0
t . Therefore, a target domain sample xt,j ∈ B0

t

is assigned a definitive pseudo-label ŷt,j = c′ where c′ =
argmaxc∈nc

p(ŷt,j = c|ĝt,j) if the maximum likelihood

maxc∈nc
p(ŷt,j = c|ĝt,j) is greater than a threshold τ . The
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entries âtari,j involving xt,j ∈ B0
t not passing the τ are not

optimized during training. We train the fedge using a binary

cross-entropy loss as:

ℓ
edge
bce = âtari,j log p(âi,j)+(1−âtari,j ) log (1−p(âi,j)). (6)

Finally, for training the Gmlp and the fnode in the Ggcn
we compute the standard cross-entropy loss with the sam-

ples in B0
s as:

ℓmlpce = −
1

|B0
s |

|B0

s |∑

i=1

ỹi log p(ŷs,i|ĝ
0
s,i), (7)

ℓnodece = −
1

|B0
s |

|B0

s |∑

i=1

ỹi log p(ȳs,i|ḡ
0
s,i). (8)

We feed the features {ĥ0
s,i, ĥ

0
t,i}

B
i=1 =

{(f0s,i, ĝ
0
s,i), (f

0
t,i, ĝ

0
t,i)}

B
i=1, corresponding to B0, to

the domain discriminator D and compute the conditional

adversarial loss following Eq. 1. Thus, the final objective

function for the CGCT can be written as:
max
ψ

min
θ,φ,ϕ,ϕ′

ℓmlpce + λedgeℓ
edge
bce

+ λnodeℓ
node
ce − λadvℓadv,

(9)

where λedge, λnode and λadv are the weighing factors.

Pseudo-labelling stage. Upon completion of the adap-

tation stage in a curriculum step tqcur we put the network in

inference mode and obtain pseudo-labels ∀xt,j ∈ T . The

Ggcn is employed for this task because, owing to its ag-

gregating characteristics, it learns more robust features [53]

than the Gmlp. This is the curriculum aspect of our pro-

posed co-teaching training strategy in CGCT where the ob-

tained pseudo-labeled target samples are then used to train

the Gmlp, besides the fnode.

At any step tqcur, the criterion for pseudo-label selection

is formally written as:

∀xt,j ∈ T , wj =

{
1, if maxc∈nc

p(ȳt,j = c|ḡt,j) > τ

0, otherwise
,

(10)
where wj = 1 signifies that xt,j is selected with a pseudo-

label ȳt,j = c′ where c′ = argmaxc∈nc
p(ȳt,j = c|ḡt,j),

whereas wj = 0 denotes no pseudo-label is assigned. Af-

ter the pseudo-labeling stage in a tqcur we obtain a pseudo-

labeled target set Dq
t = {(xt,j , ȳt,j)}

n̄t

j=1 where n̄t is the

number of recruited pseudo-labeled target samples. Post

pseudo-labeling we update and prepare the source set for

the succeeding step tq+1
cur as:

Ŝq+1 = S ∪ Dq
t . (11)

The update rule in Eq. 11 allows us to compute the super-

vised losses ℓnodece and ℓmlpce from Eq. 9 for xt,j ∼ Dt. Note

that we do not alter the domain labels in Dq
t and hence, the

formulation for ℓadv remains unchanged.

At the culmination ofQ curriculum steps, ŜQ is obtained

using Eq. 11 and the network is fine-tuned with only the

supervised losses in Eq. 9 for K ′ training iterations.

3.3. Domain­aware Curriculum Learning

Now we consider the case when the domain labels of the

target are available, i.e. T = {Tj}
N
j=1, N being the num-

ber of target domains. In principle, when the domain labels

are available, one can either train N domain discriminators

or a (N + 1) way single domain discriminator. Apart from

over-parameterization, it also suffers from limited gradients

coming from the discriminator(s) due to single point esti-

mates [20]. Thus, we propose Domain-aware Curriculum

Learning (DCL) as an alternate learning paradigm to better

utilize the target domain labels in the MTDA setting.

To this end we design the DCL that is based on our

proposed Easy-to-Hard Domain Selection (EHDS) strategy.

Our proposal for the DCL stems from the observation that

different target domains exhibit different domain shifts from

the source domain, where some domain shifts are larger

than the others. Evidently, the network will find it eas-

ier to adapt to the closest target domain while perform-

ing sub-optimally on the domain with the largest domain

shift. When adaptation is performed with N domains at

tandem then the large domain shifts of harder domains will

interfere with the feature alignment on the easier target do-

mains, thereby compromising the overall performance. To

overcome this problem, in the EHDS strategy, as the name

suggests, the network performs feature adaptation one do-

main at a time, starting from the easiest target domain and

gradually moving towards the hardest. The “closeness” of

a target domain from the source is measured by the uncer-

tainty in the target predictions with a source-trained model.

Lesser the uncertainty in predictions, closer the target from

the source domain. Therefore, measuring the entropy on a

target domain can serve as a good proxy for domain selec-

tion, and is defined as:

H(Tj) = − E
xtj ,k

∼Tj

|nc|∑

c=1

p(ŷtj ,k,c|xtj ,k)log p(ŷtj ,k,c|xtj ,k).

(12)
Due to this step-by-step adaptation through domain

traversal, the intermediate target domains help in reduc-

ing large domain shifts by making the farthest domain shift

considerably closer than that at the start. Differently from

the CGCT, in the DCL, each curriculum step, defined as

t
q
dcl, consist in learning over one target domain, with a to-

tal of N steps. Since, the simulation of single-source and

single-target adaptation inside the MTDA setup yields bet-

ter domain-invariant features, at the end of each t
q
dcl we

also consider extracting pseudo-labels for the target sam-

ples from the classifier and add them to the source set (see

Fig. 1(b)) for computing the supervised losses. This fur-

ther reduces the domain gaps for the forthcoming harder

domains. The t
q
dcl is split into three stages and are described

below:

Domain selection stage. Given a source-trained model

Fθ∗(Gφ∗), where θ∗ and φ∗ are the trained parameters of
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F and G, and initial source and target sets Ŝ0 = {S} and

T̂ 0 = {Tj}
N
j=1, the closest target domain is selected as:

D
0 = argmin

j

{Hj(Tj) | ∀Tj ∈ T̂ 0}, (13)

where D
0 is the target domain selected at step t0dcl and is

used for performing adaptation in the subsequent stage.

Adaptation stage. This stage is similar to the one in

tqcur, described in Sec. 3.2, except the feature adaptation at

any step t
q
dcl is performed using Ŝq ∪ TDq , rather than the

entire target set T . The model is trained using the losses

described in Eq. 9.

Pseudo-labeling stage. The criterion for pseudo-label

selection still remains the same, as described in Eq. 10, with

the exception of target samples being drawn only from the

current target domain D
q , yielding a pseudo-labeled target

set DD
q

t . Consequently, the source and target set update

changes as following:

Ŝq+1 = Ŝq ∪ DD
q

t , (14)

T̂ q+1 = T̂ q \ TDq . (15)

These three stages are repeated until all N domains have

been exhausted. Then similarly, as in CGCT, the final

model is fine-tuned with ŜQ. When CGCT is trained us-

ing the DCL strategy we refer to the model as D-CGCT.

We would like to point that the DCL can also be realized

with a single classifier model (see Sec. 4).

4. Experiments

4.1. Dataset and Experimental Details

Datasets. We conduct experiments on five stan-

dard UDA benchmarks: Digits-five [51], Office-31 [40],

PACS [21], Office-Home [49] and the very large scale Do-

mainNet [33] (0.6 million images). The statistics of the

datasets are summarized in Tab. 2. More details on the

datasets can be found in the Supp. Mat.

Dataset #domains #classes #images

Digits-five 5 10 ∼ 145K
PACS 4 7 9,991
Office-31 3 31 4,652
Office-Home 4 65 15,500
DomainNet 6 345 ∼ 0.6M

Table 2. Dataset details for multi-target domain adaptation.

Evaluation protocol. We use the classification accuracy

to evaluate the performance. The classification accuracy is

computed for every possible combination of one source do-

main and the rest of the target domains. The performance

for a given direction, i.e., source→rest, is given by aver-

aging the accuracy on all the target domains, where source

signifies the source domain and rest indicates all the unla-

beled domains except the source. Importantly, in all our ex-

periments we always report the final classification accuracy

obtained with the Gmlp because the Ggcn always requires a

mini-batch at inference, an assumption which is easily vio-

lated when deployed in the real world.

Implementation details. To be fairly comparable with

the state-of-the-art methods, we adopt the backbone feature

extractor networks used in [9, 53, 34] for the corresponding

datasets. We train the networks by using a Stochastic Gradi-

ent Descent (SGD) optimizer having an initial learning rate

of 1e-3 and decay exponentially. More details about the net-

work architecture and experimental set-up can be found in

the Supp. Mat.

Hyperparameter selection. In our final model we used

only a single set of hyperparameters, which are λedge =
1, λnode = 0.3, λadv = 1 and τ = 0.7. Following the

standard protocol in [43], we used a held-out validation set

of 1000 samples for the MNIST → rest direction to tune

these hyper-parameters.

4.2. Ablations

In this section we discuss the design choices of our pro-

posed contributions and report the results of a thorough ab-

lation study. Our ablation analysis highlights the impor-

tance of the graph co-teaching and the curriculum learn-

ing. We run the ablation experiments on Office-Home with

ResNet-18 [16] as backbone network and on Digits-five

with a network adopted from AMEAN [9]. We adopt the

CDAN as a baseline for adaptation in Tab. 3 and Tab. 5.

Pseudo-labels from

Model Co-teaching Gmlp fedge fnode Avg(%)

M1 ✗ self Gmlp Gmlp 57.4

M2 ✗ Ggcn Ggcn Ggcn 59.6

M3 ✓ self
Gmlp,

Ggcn
Gmlp 58.2

D-CGCT (Ours) ✓ Ggcn Gmlp Ggcn 60.8

Table 3. Ablation study of different co-teaching strategies

on Office-Home. We reported the classification accuracy

averaged across all the source → rest directions.

Graph co-teaching. The goal of this particular ablation

study is to analyse why our proposed graph co-teaching is

beneficial and the manner in which it should be realised

in an adaptation framework. To this end, as shown in the

Tab. 3, we design some baselines that can be distinguished

in the manner in which the Gmlp and the Ggcn provide

pseudo-labels to the each other (columns 3 to 5) and then

compare it to our D-CGCT. In more details, the baseline

models can be described as: i) M1: a baseline where the

Gmlp provides pseudo-labels to itself, fedge and fnode after

each curriculum step t
q
dcl; ii) M2: a baseline similar to M1,

except that the Ggcn provides the pseudo-labels; iii) M3:

another baseline which is similar to M1 but with an excep-

tion that the Ggcn also provides pseudo-labels to fedge for

the current target domain in an ongoing t
q
dcl step.
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Office-31 Office-Home
Setting Model Amazon DSLR Webcam Avg(%) Art Clipart Product Real Avg(%)

w/o Target Source train 68.6 70.0 66.5 68.4 47.6 42.6 44.2 51.3 46.4

Single-

Target

DAN [26] 79.5 80.3 81.2 80.4 56.1 54.2 51.7 63.0 56.3
RevGrad [11] 80.8 82.5 83.2 82.2 58.3 55.4 52.8 63.9 57.6
JAN [27] 85.0 83.0 85.6 84.3 58.7 57.0 53.1 64.3 58.3
CDAN [25] 91.4 84.1 84.0 86.6 64.2 62.9 59.9 68.1 63.8
CGCT (ours) 89.6 85.5 87.6 87.6 67.9 68.7 62.3 70.7 67.4

Target-

Combined

DAN [26] 78.0 64.4 66.7 69.7 55.6 56.6 48.5 56.7 54.4
RevGrad [11] 78.2 72.2 69.8 73.4 58.4 58.1 52.9 62.1 57.9
JAN [27] 84.2 74.4 72.0 76.9 58.3 60.5 52.2 57.5 57.1
CDAN [25] 93.6 80.5 81.3 85.1 59.5 61.0 54.7 62.9 59.5
AMEAN [9] 90.1 77.0 73.4 80.2 64.3 65.5 59.5 66.7 64.0
CGCT (ours) 93.9 85.1 85.6 88.2 67.4 68.1 61.6 68.7 66.5

Multi-

Target

MT-MTDA [32] 87.9 83.7 84.0 85.2 64.6 66.4 59.2 67.1 64.3
HGAN [53] 88.0 84.4 84.9 85.8 - - - - -
CDAN+DCL (ours) 92.6 82.5 84.7 86.6 63.0 66.3 60.0 67.0 64.1
D-CGCT (ours) 93.4 86.0 87.1 88.8 70.5 71.6 66.0 71.2 69.8

Table 4. Comparison with state-of-the-art methods on Office-31 and Office-Home. All methods use the ResNet-50 as the

backbone. Single-Target indicates methods are performed on one source to one target setting. Target-Combined indicates

methods are performed on one source to aggregated targets setting, while the Multi-Target indicates methods are performed

on one source to multi-target setting.

Unsurprisingly, M1 performs the worst of all the base-

lines because the pseudo-labels computed by the Gmlp are

less accurate due toGmlp not taking into account the feature

aggregation from multiple domains. Contrarily, the base-

line M2 performs better than the M1 due to the fact that

M2 uses Ggcn for pseudo-labeling, which are more accu-

rate. This highlights the importance of feature aggregation

in the MTDA setting. One other thing that separates D-

CGCT from both M1 and M2 is the co-teaching, which is

absent in the latter baselines. Since, the D-CGCT enables

co-teaching, with theGmlp and theGgcn providing pseudo-

labels to each other, it does not overfit on the same “incor-

rect” pseudo-label, thereby achieving more robust predic-

tions. Contrarily, M3 uses co-teaching and yet it fails to

achieve comparable performance. We speculate that, since

the fedge is also trained with the pseudo-labels obtained

from the Ggcn for the current target domain in a t
q
dcl step, it

becomes susceptible to noise. Thus, in summary, the graph

co-teaching is the most effective when theGgcn is exploited

to provide pseudo-labels only after each curriculum step.

Curriculum learning. We also study the effect of

domain-aware curriculum learning in isolation from co-

teaching. For that purpose, as shown in the Tab. 5, we start

with the baseline model CDAN by treating all the target do-

mains as one single domain. When the domain labels of the

target are available, the baseline improves by 1.33%, indi-

cating that the domain labels can indeed improve the perfor-

mance of an adaptation model. To show the benefit of the

DCL without co-teaching, we train the Base† + DCL, and it

yields an average accuracy that is higher than the Base.† +

PL counterpart. The advantage of using DCL is further am-

plified when coupled with the CGCT, where the D-CGCT

Office-Home
Model Art Clipart Product Real Avg(%)

Source train 51.45 43.93 42.41 54.50 48.07
Baseline 50.70 50.78 47.95 57.63 51.77

Base.† 52.08 53.21 48.62 58.49 53.10

Base.†+PL 54.61 56.13 50.25 61.04 55.51

Base.† + DCL 55.94 56.66 52.85 60.18 56.41

Base.†+GCN‡ 50.19 49.09 46.52 60.76 51.64

Base.†+GCN‡ + PL 54.52 57.60 53.20 65.49 57.70
CGCT 60.81 60.00 54.13 62.62 59.39
D-CGCT 61.42 60.73 57.27 63.8 60.81

Table 5. Ablation results of different baselines us-

ing ResNet-18 as backbone on Office-Home. Baseline:

CDAN [25] model that combines all the target domains into

a single target domain. “†” indicates the baseline models

that use the domain labels of the target. GCN‡: the base-

line model with the GCN as the single classification head.

PL: using pseudo-labels.

outperforms all other baselines, including the CGCT. Due

to the gradual adaptation, the D-CGCT also leads to the bet-

ter cluster formation than the CGCT, as shown by the t-SNE

visualization in the Fig. 2.

To demonstrate that the order of target domains selec-

tion in the DCL indeed makes a difference, we consider a

reverse-domain curriculum learning where the hardest do-

main is selected first, followed by the less hard ones. To

this end, we train two models: i) Baseline†+DCL; and

ii) Baseline†+Rev-DCL and compare their performances

in the Fig. 3. In both the datasets we observe the same

phenomenon that the reverse-curriculum being detrimental.

This once again re-establishes the importance of the pro-

posed DCL in the MTDA setting.

5357



DomainNet
Model Cli. Inf. Pai. Qui. Rea. Ske. Avg(%)

Source train 25.6 16.8 25.8 9.2 20.6 22.3 20.1
SE [10] 21.3 8.5 14.5 13.8 16.0 19.7 15.6
MCD [41] 25.1 19.1 27.0 10.4 20.2 22.5 20.7
DADA [34] 26.1 20.0 26.5 12.9 20.7 22.8 21.5
CDAN [25] 31.6 27.1 31.8 12.5 33.2 35.8 28.7
MCC [18] 33.6 30.0 32.4 13.5 28.0 35.3 28.8

CDAN + DCL 35.1 31.4 37.0 20.5 35.4 41.0 33.4
CGCT 36.1 33.3 35.0 10.0 39.6 39.7 32.3
D-CGCT 37.0 32.2 37.3 19.3 39.8 40.8 34.4

Table 6. Comparison with the state-of-the-art methods on

DomainNet. All methods use the ResNet-101 as the back-

bone. The classification accuracy are reported for each

source→rest direction, with each source domain being in-

dicated in the columns. All the reported numbers are evalu-

ated on the multi-target setting.

Source (product)
Target (art)
Target (clipart)
Target (real)

Source (product)
Target (art)
Target (clipart)
Target (real)

Figure 2. t-SNE plots of the feature embeddings with Prod-

uct → rest in Office-Home. Left: CGCT. Right: D-CGCT.

4.3. Comparison with State­of­The­Art

We compare our proposed method and its variants with

several state-of-the-art methods that are designed exclu-

sively for the MTDA as well as the STDA methods that can

be extended and used in the MTDA setting. In the main

paper we only report the results for the Office-31, Office-

Home and DomainNet experiments. Due to lack of space

we report the numbers for Digits-five and PACS in the Supp.

Mat.

In Tab. 4 we report the numbers for Office-31 and Office-

Home for single-target, target-combined and multi-target

setting. The single-target setting denotes training single-

source to single-target models, the target-combined means

treating all the target domains as one aggregated target,

while the multi-target setting comprise of training a single

model for single-source to multiple-targets. As can be ob-

served, in all the settings our proposed CGCT and D-CGCT

outperform all the state-of-the-art methods. Specifically, for

the Office-31, our CGCT without using domain labels is al-

ready 2.4% better than the HGAN [53], which is a MTDA

method exploiting domain labels for feature aggregation

with a single GCN classifier besides pseudo-labeling. This

highlights the importance of having a co-teaching strategy

with two classifiers and curriculum learning for counteract-

ing the impact of noisy pseudo-labels in the GCN frame-

work. We also observed that incorporating domain informa-

tion following the proposed DCL strategy improves the per-

formance in the Office-Home, with the D-CGCT achieving

5.5% improvement over MT-MTDA [32], a MTDA method

that also utilizes domain labels. Finally, as can be seen from

the Tab. 6, the D-CGCT advances the state-of-the-art results

for the very challenging DomainNet dataset by a non-trivial

margin of 5.6%. This further verifies the effectiveness of

our proposed methods for addressing the MTDA.
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Figure 3. Comparison of the DCL with the reverse-domain

curriculum model on Office-Home and Digits-Five. In the

reverse-domain curriculum model the order of selection of

target domains is exactly opposite to that of the DCL model.

Overcoming negative transfer. Careful inspection of

the Tab. 4 tells us that the single-target DA methods al-

ways outperform the same STDA method when applied in

the multi-target setting. For e.g., CDAN is 4.3% better in

the single-target than in the multi-target setting. The drop

in performance for the multi-target setting clearly hints at

the fact that negative transfer [34, 9] is quite prevalent in

the MTDA, despite having access to more data. Contrar-

ily, our proposed CGCT when applied to both the settings

fares equally well for the Office-Home and outperforms the

single-target counterpart by 0.6% for the Office-31. This

once again shows that the design choices made in our CGCT

and D-CGCT lead to learning more robust domain-invariant

features and provide resilience against negative transfer.

5. Conclusion

To address multi-target domain adaptation (MTDA), we

proposed Curriculum Graph Co-Teaching (CGCT) that uses

a graph convolutional network to perform robust feature ag-

gregation across multiple domains, which is then trained

with a co-teaching and curriculum learning strategy. To

better exploit domain labels of the target we presented

a Domain-aware curriculum (DCL) learning strategy that

adapts easier target domains first and harder later, en-

abling a smoother feature alignment. Through extensive ex-

periments we demonstrate that our proposed contributions

handsomely outperform the state-of-the-art in the MTDA.
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