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Abstract

In this paper, we propose a novel Feature Decomposition

and Reconstruction Learning (FDRL) method for effective

facial expression recognition. We view the expression infor-

mation as the combination of the shared information (ex-

pression similarities) across different expressions and the

unique information (expression-specific variations) for each

expression. More specifically, FDRL mainly consists of two

crucial networks: a Feature Decomposition Network (FDN)

and a Feature Reconstruction Network (FRN). In particu-

lar, FDN first decomposes the basic features extracted from

a backbone network into a set of facial action-aware latent

features to model expression similarities. Then, FRN cap-

tures the intra-feature and inter-feature relationships for la-

tent features to characterize expression-specific variations,

and reconstructs the expression feature. To this end, two

modules including an intra-feature relation modeling mod-

ule and an inter-feature relation modeling module are de-

veloped in FRN. Experimental results on both the in-the-

lab databases (including CK+, MMI, and Oulu-CASIA) and

the in-the-wild databases (including RAF-DB and SFEW)

show that the proposed FDRL method consistently achieves

higher recognition accuracy than several state-of-the-art

methods. This clearly highlights the benefit of feature de-

composition and reconstruction for classifying expressions.

1. Introduction

Facial expression is one of the most natural and univer-

sal signals for human beings to express their inner states

and intentions [4]. Over the past few decades, Facial Ex-

pression Recognition (FER) has received much attention in

computer vision, due to its various applications including

virtual reality, intelligent tutoring systems, health-care, etc.

[29]. According to psychological studies [9], the FER task

is to classify an input facial image into one of the follow-

ing seven categories: angry (AN), disgust (DI), fear (FE),
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Figure 1 – The images in each group show a similar facial action,

but they are from different expressions. Images are from the

RAF-DB database [13].

happy (HA), sad (SA), surprise (SU), and neutral (NE).

A variety of FER methods [3, 13, 20, 26] have been pro-

posed to learn holistic expression features by disentangling

the disturbance caused by various disturbing factors, such

as pose, identity, illumination, and so on. However, these

methods neglect the fact that the extracted expression fea-

tures corresponding to some expressions may still not be

easily distinguishable, mainly because of high similarities

across different expressions.

An example is shown in Figure 1. We can observe that

some facial images corresponding to the NE, SA, HA, and

DI expressions exhibit closing eyes. The facial images cor-

responding to the SU, FE, AN, and HA expressions all show

opening mouths, while those corresponding to the AN, DI,

SA, and FE expressions show frowning brows. The images

from different facial expressions in each group give a sim-

ilar facial action, where the distinctions between some ex-

pressions are subtle. Therefore, how to learn effective fine-

grained expression features to identify subtle differences in

expressions by considering similar facial actions is of great

importance.

The expression information is composed of the shared

information (expression similarities) across different ex-

pressions and the unique information (expression-specific

variations) for each expression. The expression similari-
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ties can be characterized by shared latent features between

different expressions, while the expression-specific varia-

tions can be reflected by importance weights for latent fea-

tures. Therefore, the expression features can be represented

by combining a set of latent features associated with their

corresponding importance weights. Traditional FER meth-

ods [15, 18, 31, 5] adopt Principal Component Analysis

(PCA) or Linear Discriminant Analysis (LDA) to extract

eigenvectors (corresponding to latent features) and eigen-

values (corresponding to importance weights). However,

these eigenvectors only capture holistic structural informa-

tion rather than fine-grained semantic information of facial

images, which is critical for FER.

Motivated by the success of deep learning in various vi-

sion tasks, here we propose a novel Feature Decomposition

and Reconstruction Learning (FDRL) method for effective

FER. FDRL is mainly comprised of two crucial networks,

including a Feature Decomposition Network (FDN) and a

Feature Reconstruction Network (FRN). The two networks

are tightly combined and jointly trained in an end-to-end

manner.

Specifically, a backbone convolutional neural network

is first used to extract basic features. Then, FDN decom-

poses the basic feature into a set of facial action-aware la-

tent features, which effectively encode expression similari-

ties across different expressions. In particular, a compact-

ness loss is developed to obtain compact latent feature rep-

resentations. Next, FRN, which includes an Intra-feature

Relation Modeling module (Intra-RM) and an Inter-feature

Relation Modeling module (Inter-RM), models expression-

specific variations and reconstructs the expression feature.

Finally, an expression prediction network is employed for

expression classification.

In summary, our main contributions are summarized as

follows.

• A novel FDRL method is proposed to perform FER.

In FDRL, FDN and FRN are respectively devel-

oped to explicitly model expression similarities and

expression-specific variations, enabling the extraction

of fine-grained expression features. Thus, the subtle

differences between facial expressions can be accu-

rately identified.

• Intra-RM and Inter-RM are elaborately designed to

learn an intra-feature relation weight and an inter-

feature relation weight for each latent feature, respec-

tively. Therefore, the intra-feature and inter-feature re-

lationships between latent features are effectively cap-

tured to obtain discriminative expression features.

• Our FDRL method is extensively evaluated on both

the in-the-lab and the in-the-wild FER databases. Ex-

perimental results show that our method consistently

outperforms several state-of-the-art FER methods. In

particular, FDRL achieves 89.47% and 62.16% recog-

nition accuracy on the RAF-DB and SFEW databases,

respectively. This convincingly shows the great poten-

tials of feature decomposition and reconstruction for

FER.

2. Related work

With the rapid development of deep learning, extensive

efforts have been made to perform FER. State-of-the-art

deep learning-based FER methods mainly focus on two as-

pects: 1) disturbance disentangling, and 2) expression fea-

ture extraction.

2.1. Disturbance Disentangling

Many FER methods have been proposed to predict ex-

pressions by disentangling the disturbance caused by vari-

ous disturbing factors, such as pose, identity, illumination,

and so on. Wang et al. [22] propose an adversarial fea-

ture learning method to tackle the disturbance caused by

facial identity and pose variations. Ruan et al. [20] propose

a novel Disturbance-Disentangled Learning (DDL) method

to simultaneously disentangle multiple disturbing factors.

Note that the above methods depend largely on the label in-

formation of disturbing factors. A few methods address the

occlusion problem of FER. Wang and Peng [24] propose a

novel Region Attention Network (RAN) to adaptively ad-

just the importance of facial regions to mitigate the prob-

lems of occlusion and variant poses for FER.

Recently, some methods are concerned with the noisy

label problem in the FER databases. Zeng et al. [28] pro-

pose an Inconsistent Pseudo Annotations to Latent Truth

(IPA2LT) method to deal with the problem of inconsistency

in different FER databases. Wang et al. [23] introduce a

Self-Cure Network (SCN) to prevent the trained model from

over-fitting uncertain facial images.

The above methods perform FER by alleviating the influ-

ence caused by disturbing factors or noisy labels. However,

they do not take into account subtle differences between dif-

ferent facial expressions. In this paper, we formulate the

FER problem from the perspective of feature decomposition

and reconstruction, which successfully models expression

similarities and expression-specific variations. Therefore,

high-level semantic information can be effectively encoded

to classify facial expressions.

2.2. Expression Feature Extraction

Some FER methods design effective network architec-

tures and loss functions to reduce inter-class similarities and

enhance intra-class compactness for expression feature ex-

traction. Li et al. [13] propose a deep locality-preserving

loss based method, which extracts discriminative expres-

sion features by preserving the locality closeness. Cai et
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Figure 2 – Overview of our proposed FDRL method. (a) The backbone network (ResNet-18) that extracts basic CNN features; (b) A

Feature Decomposition Network (FDN) that decomposes the basic feature into a set of facial action-aware latent features; (c) A Feature

Reconstruction Network (FRN) that learns an intra-feature relation weight and an inter-feature relation weight for each latent feature,

and reconstructs the expression feature. FRN contains two modules: an Intra-feature Relation Modeling module (Intra-RM) and an

Inter-feature Relation Modeling module (Inter-RM); (d) An Expression Prediction Network (EPN) that predicts an expression label.

al. [3] design a novel island loss to simultaneously increase

inter-class separability and intra-class compactness.

A few FER methods employ attention mechanisms [26]

to improve the discriminative ability of expression features.

Xie et al. [26] design an attention layer to focus on salient

regions of a facial expression. Wang et al. [24] determine

the importance of different facial regions by leveraging an

attention network.

The above methods enhance the discriminative capabil-

ity of expression features by designing different loss func-

tions or attention mechanisms. These methods consider the

expression features as holistic features. In contrast, we de-

compose the basic features into a set of facial action-aware

latent features and then model the intra-feature and inter-

feature relationships for latent features. Compared with

holistic features used in traditional methods, the latent fea-

ture representations developed in our method are more fine-

grained and facial action-aware. Such a manner is benefi-

cial to learn expression features for identifying subtle dif-

ferences between facial expressions.

3. Our Method

Overview The proposed FDRL method consists of a back-

bone network, a Feature Decomposition Network (FDN), a

Feature Reconstruction Network (FRN), and an Expression

Prediction Network (EPN). An overview of the proposed

method is shown in Figure 2.

Given a batch of facial images, we first feed them into a

backbone network (in this paper, we use ResNet-18 [11]

as the backbone) to extract basic CNN features. Then,

FDN decomposes the basic features into a set of facial

action-aware latent features, where a compactness loss is

designed to extract compact feature representations. Next,

FRN learns an intra-feature relation weight and an inter-

feature relation weight for each latent feature, and recon-

structs the expression feature. Finally, EPN (a simple linear

fully-connected layer) predicts a facial expression label.

In particular, FRN consists of two modules: an Intra-

feature Relation Modeling module (Intra-RM) and an Inter-

feature Relation Modeling module (Inter-RM). To be spe-

cific, Intra-RM is first introduced to assign an intra-feature

relation weight to each latent feature according to the im-

portance of the feature, and thus an intra-aware feature is

obtained. To ensure similar distributions of intra-feature

relation weights for facial images from the same expres-

sion category, a distribution loss and a balance loss are

employed in Intra-RM. Then, Inter-RM computes an inter-

feature relation weight by investigating the relationship be-

tween intra-aware features, and thus an inter-aware feature

is extracted. At last, the expression feature is represented

by a combination of the intra-aware feature and the inter-

aware feature. FRN exploits both the contribution of each

latent feature and the correlations between intra-aware fea-

tures, enabling the extraction of discriminative expression

features.

3.1. Feature Decomposition Network (FDN)

Given the i-th facial image, the basic feature extracted

by the backbone network is denoted as xi ∈ R
P ,

where P is the dimension of the basic feature. As men-
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tioned previously, FDN decomposes the basic feature into

a set of facial action-aware latent features. Let Li =
[li,1, li,2, · · · , li,M ] ∈ R

D×M denote a facial action-aware

latent feature matrix, where li,j ∈ R
D represents the j-th

latent feature for the i-th facial image. D and M represent

the dimension of each latent feature and the number of la-

tent features, respectively.

Specifically, to extract the j-th latent feature, we employ

a linear Fully-Connected (FC) layer and a ReLU activation

function, which can be formulated as:

li,j = σ1(W
T
dj

xi) for j = 1, 2, · · · ,M, (1)

where Wdj
denotes the parameters of the FC layer used

for extracting the j-th latent feature and σ1 represents the

ReLU function.

Compactness Loss. Since different facial expressions share

the same set of latent features, it is expected that a set

of compact latent feature representations are extracted. In

other words, the j-th latent feature extracted from one basic

feature should be similar to that extracted from another ba-

sic feature. To achieve this, inspired by the center loss [25],

we develop a compactness loss. The compactness loss LC

learns a center for the same latent features and penalizes the

distances between the latent features and their correspond-

ing centers, which can be formulated as:

LC =
1

N

N
∑

i=1

M
∑

j=1

‖ li,j − cj ‖
2

2
, (2)

where N denotes the number of images in a mini-batch.

‖ · ‖2 indicates the L2 norm. cj ∈ R
D denotes the center

of the j-th latent features, and is updated based on a mini-

batch. Thus, the intra-latent variations are minimized and a

set of compact latent features are effectively learned.

To visually demonstrate the interpretation of latent fea-

tures, we collect a group of images that corresponds to the

highest intra-feature relation weight (see Section 3.2) of the

same latent feature and then visualize them. In Figure 3,

we can observe that the images from each group show a

specific facial action. The images from the nine groups

show the facial actions of “Neutral”, “Lip Corner Puller”,

“Staring”, “Opening Mouths”, “Lips Part”, “Closing Eyes”,

“Grinning”, “Frowning Brows”, and “Lip Corner Depres-

sor”, respectively. Therefore, the latent features obtained

by FDN are fine-grained and facial action-aware features,

which can be useful for subsequent expression feature ex-

traction.

3.2. Feature Reconstruction Network (FRN)

In this section, FRN, which models expression-specific

variations, is carefully designed to obtain discriminative ex-

pression features. FRN contains two modules: Intra-RM

and Inter-RM.

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 7 Group 8 Group 9

Figure 3 – Visualization of the image groups from the RAF-DB

database when M is set to 9. Each group corresponds to the

highest intra-feature relation weight of the same latent feature.

Intra-feature Relation Modeling Module (Intra-RM).

Intra-RM consists of multiple intra-feature relation model-

ing blocks, where each block is designed to model the intra-

feature relationship between feature elements.

To be specific, each block is composed of an FC layer

and a sigmoid activation function, that is:

αi,j = σ2(W
T
sj

li,j) for j = 1, 2, · · · ,M, (3)

where αi,j ∈ R
D denotes the importance weights for the j-

th latent feature corresponding to the i-th facial image, Wsj

represents the parameters of the FC layer, and σ2 indicates

the sigmoid function.

With Eq. (3), we compute the L1 norm of αi,j as the

Intra-feature relation Weight (Intra-W) to determine the im-

portance of the j-th latent feature, that is:

αi,j =‖ αi,j ‖1 for j = 1, 2, · · · ,M, (4)

where ‖ · ‖1 denotes the L1 norm.

It is desirable that the distributions of Intra-Ws corre-

sponding to different images from the same expression cat-

egory are as close as possible. Therefore, similarly to the

compactness loss, a distribution loss is used to learn a cen-

ter for each expression category and penalize the distances

between the Intra-Ws from one class and the corresponding

center. Hence, the variations caused by different disturbing

factors are alleviated.
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Suppose that the i-th facial image belongs to the ki-th

expression category. Mathematically, the distribution loss

LD is formulated as:

LD =
1

N

N
∑

i=1

‖ wi −wki
‖2
2
, (5)

where wi = [αi,1, αi,2, · · · , αi,M ]T ∈ R
M represents the

Intra-W vector for the i-th facial image. wki
∈ R

M de-

notes the class center corresponding to the ki-th expression

category.

By optimizing the distribution loss, the Intra-W vectors

corresponding to different images from the same expression

category are closely distributed. Thus, they are able to focus

on expression-specific variations.

In practice, as shown in Figure 2, some Intra-Ws (corre-

sponding to one or two latent features) usually show much

higher values than the other Intra-Ws in the Intra-W vector

for each image, since these Intra-Ws are individually com-

puted. To alleviate this problem, we further design a balance

loss to balance the distributions of elements in each Intra-W

vector as:

LB =‖ w − wu ‖1, (6)

where w = [α1, α2, · · · , αM ]T ∈ R
M represents the

mean Intra-W vector for a batch of samples (i.e., w =
1

N

∑N

i=1
wi). wu = [ 1

M
, 1

M
, · · · , 1

M
]T ∈ R

M denotes a

uniformly-distributed weight vector.

After computing an Intra-W for each latent feature, we

assign this weight to the corresponding feature and obtain

an intra-aware feature for the i-th facial image as:

fi,j = αi,j li,j for j = 1, 2, · · · ,M, (7)

where fi,j ∈ R
D represents the j-th intra-aware feature for

the i-th facial image.

Inter-feature Relation Modeling Module (Inter-RM).

Intra-RM learns an Intra-W for each individual latent fea-

ture. However, these Intra-Ws are independently extracted.

Although the distribution loss imposes consistency regular-

ization on the Intra-W, it does not fully consider the inter-

relationship between latent features. In fact, for each fa-

cial expression, different kinds of facial actions usually si-

multaneously appear. For example, the FE expression often

involves the facial actions of frowning brows and opening

mouths. The HA expression contains the facial actions of

stretching brows, closing eyes, and opening mouths. There-

fore, it is critical to exploit the correlations between differ-

ent facial action-aware latent features. To achieve this, we

further introduce Inter-RM to learn an Inter-feature Rela-

tion Weight (Inter-W) between intra-aware features based

on Graph Neural Network (GNN) [2, 21].

Inter-RM learns a set of relation messages and estimates

the Inter-Ws between these messages. Specifically, for each

fi,j , it is first fed into a message network for feature encod-

ing. In this paper, the message network is composed of an

FC layer and a ReLU activation function, which is:

gi,j = σ1(W
T
ej

fi,j) for j = 1, 2, · · · ,M, (8)

where Wej denotes the parameters of the FC layer used

for feature encoding and σ1 represents the ReLU function.

gi,j ∈ R
D denotes the j-th relation message for the i-th

facial image.

Then, a relation message matrix Gi = [gi,1, gi,2, · · · ,

gi,M ] ∈ R
D×M is represented as nodes in the graph

G(Gi, E). In our formulation, G is an undirected complete

graph and E represents the set of relationships between dif-

ferent relation messages. ωi(j,m) is the Inter-W which de-

notes the relation importance between the node gi,j and the

node gi,m. It can be calculated as:

ωi(j,m) =

{

σ3(S(gi,j , gi,m)) j 6= m

0 j = m
, (9)

where gi,j and gi,m are the j-th and the m-th relation mes-

sages for the i-th facial image, respectively. S is a distance

function, which estimates the similarity score between gi,j
and gi,m. In our paper, we use the Euclidean distance func-

tion. Since the results of S(·) are all positive, we further

adopt the tanh activation function σ3 to normalize the posi-

tive distance value to [0,1). The purpose of setting ωi(j, j)
to 0 is to avoid self-enhancing. According to Eq. (9), an

Inter-W matrix Wi = {ωi(j,m)} ∈ R
M×M can be ob-

tained.

Hence, the j-th inter-aware feature f̂i,j ∈ R
D for the i-th

facial image can be formulated as:

f̂i,j =
M
∑

m=1

ωi(j,m)gi,m for j = 1, 2, · · · ,M. (10)

By combining the j-th intra-aware feature and the j-

th inter-aware feature, the j-th importance-aware feature

yi,j ∈ R
D for the i-th facial image is calculated as:

yi,j = δfi,j + (1− δ)̂fi,j for j = 1, 2, · · · ,M, (11)

where δ represents the regularization parameter that bal-

ances the intra-aware feature and the inter-aware feature.

Finally, a set of importance-aware features are added to

obtain the final expression feature, that is,

yi =
M
∑

j=1

yi,j , (12)

where yi ∈ R
D represents the expression feature for the

i-th facial image.
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3.3. Joint Loss Function

In the proposed FDRL, the backbone network, FDN,

FRN, and EPN are jointly trained in an end-to-end man-

ner. The whole network minimizes the following joint loss

function:

L = Lcls + λ1LC + λ2LB + λ3LD, (13)

where Lcls, LC , LB , and LD represent the classification

loss, the compactness loss, the balance loss, and the distri-

bution loss, respectively. In this paper, we use the cross-

entropy loss as the classification loss. λ1, λ2, and λ3 denote

the regularization parameters. By optimizing the joint loss,

FDRL is able to extract discriminative fine-grained expres-

sion features for FER.

4. Experiments

We first briefly introduce five public FER databases.

Then, we describe the implementation details, and perform

ablation studies with qualitative and quantitative results to

show the importance of each component in FDRL. Finally,

we compare FDRL with state-of-the-art FER methods.

4.1. Databases

CK+ [14] contains 327 video sequences, which are cap-

tured in controlled lab environments. We choose the three

peak expression frames from each expression sequence to

construct the training set and the test set, thus resulting in

a total of 981 images. MMI [19] is also a lab-controlled

database, containing 205 video sequences with six basic ex-

pressions. We choose the three peak frames from each se-

quence to construct the training set and the test set, thus re-

sulting in a total of 615 images. Oulu-CASIA [30] contains

videos captured in controlled lab conditions. We select the

last three frames in each sequence captured with the visible

light and strong illumination to construct the training set

and the test set (consisting of 1,440 images in total). Simi-

larly to [8, 17, 27, 32], we employ the subject-independent

ten-fold cross-validation protocol for evaluation on all the

three in-the-lab databases.

RAF-DB [13] is a real-world FER database, which contains

30,000 images labeled with basic or compound expressions

by 40 trained human labelers. The images with six basic

expressions and one neutral expression are used in our ex-

periment. RAF-DB involves 12,271 images for training and

3,068 images for testing. SFEW [6] is created by select-

ing static frames from Acted Facial Expressions in the Wild

(AFEW) [7]. The images in SFEW are labeled with six

basic expressions and one neutral expression. We use 958

images for training and 436 images for testing.

4.2. Implementation Details

For each database, all the facial images are detected and

cropped according to eye positions, and the cropped images

are further resized to the size of 256 × 256. During the

training process, the facial images are randomly cropped to

the size of 224 × 224, and then a random horizontal flip

is applied for data augmentation. During the test process,

the input image is center cropped to the size of 224 × 224
and then fed into the trained model. The FDRL method

is implemented with the Pytorch toolbox and the backbone

network is a lightweight ResNet-18 model [11]. Similarly

to [23], the ResNet-18 is pre-trained on the MS-Celeb-1M

face recognition database [10].

The dimension of the basic feature is 512. The dimen-

sions of both the latent feature and the expression feature

are 128. The value of δ in Eq. (11) is empirically set to

0.5. We train our FDRL in an end-to-end manner with a

single TITAN X GPU for 40 epochs, and the batch size for

all the databases is set to 64. The model is trained using the

Adam algorithm [12] with the initial learning rate of 0.0001,

β1 = 0.500, and β2 = 0.999. The learning rate is further

divided by 10 after 10, 18, 25, and 32 epochs.

4.3. Ablation Studies

To show the effectiveness of our method, we perform

ablation studies to evaluate the influence of key parameters

and components on the final performance. For all the exper-

iments, we use one in-the-lab database (MMI) and one in-

the-wild database (RAF-DB) to evaluate the performance.

Influence of the number of latent features. As shown in

Figure 4, we can see that the proposed method achieves the

best recognition accuracy when the number of latent fea-

tures is set to 9. On one hand, when a small number of

latent features are used, the expression similarities cannot

be effectively modeled. On the other hand, when a large

number of latent features are used, there exist redundancy

and noise among latent features, thus leading to a perfor-

mance decrease. In the following experiments, we set the

number of latent features to 9.

Influence of the parameters. We evaluate the recognition

performance of the proposed method with the different val-

ues of λ1, λ2, and λ3 in Eq. (13), as shown in Table 1.

Specifically, we first fix λ2 = 1.0 and λ3 = 0.0001, and

set the value of λ1 from 0 to 0.01. Experimental results

are given in Table 1 (a). We can observe that our method

achieves the best performance when the value of λ1 is set to

0.0001. When λ1 = 0, our method is trained without using

the compactness loss, and the performance decreases. Table

1 (b) shows the recognition performance obtained by our

method, when the values of λ1 and λ3 are both set to 0.0001,

and the value of λ2 varies from 0 to 2.0. When the value of

λ2 is set to 1.0, our method achieves the top performance.

Then, we fix λ1 = 0.0001 and λ2 = 1.0, and set the value
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Table 1 – Ablation studies for the different values of λ1, λ2, and λ3 (represent the balance parameters for compactness loss, balance loss,

and distribution loss, respectively) on MMI and RAF-DB. The recognition accuracy (%) is used for performance evaluation.

(a) Influence of λ1.

λ1 MMI RAF-DB

0 84.64 88.75

0.00001 85.02 89.02

0.0001 85.23 89.47

0.001 82.67 88.82

0.01 82.24 88.63

(b) Influence of λ2.

λ2 MMI RAF-DB

0 82.66 88.23

0.5 83.68 88.89

1.0 85.23 89.47

1.5 84.94 88.92

2.0 83.23 88.63

(c) Influence of λ3.

λ3 MMI RAF-DB

0 84.96 89.15

0.00001 85.07 88.89

0.0001 85.23 89.47

0.001 82.66 88.95

0.01 81.64 88.49
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Figure 4 – Ablation studies for the different numbers of latent

features on the MMI and RAF-DB databases.

Table 2 – Ablation studies for three key modules of our FDRL

on the MMI and RAF-DB databases. The recognition accuracy

(%) is used for performance evaluation.

FDN
FRN

MMI RAF-DB
Intra-RM Inter-RM

× × × 79.69 86.93√
× × 81.23 87.71√
×

√
83.44 88.76√ √

× 84.74 89.34√ √ √
85.23 89.47

of λ3 from 0 to 0.01. Experimental results are given in Table

1 (c). Our method obtains the top performance when λ3 =
0.0001. In the following, we set the values of both λ1 and

λ3 to 0.0001, and set the value of λ2 to 1.0.

Influence of the key modules. To evaluate the effective-

ness of the key modules in FDRL, we perform ablation

studies for FDN, Intra-RM, and Inter-RM on the MMI and

RAF-DB databases, respectively. Experimental results are

reported in Table 2.

We can see that incorporating FDN into the backbone

network improves the performance, which shows the impor-

tance of FDN. Moreover, by employing Intra-RM or Inter-

RM in FRN, we are able to achieve better recognition ac-

curacy than the method combining FDN and the backbone

network. This is because the features extracted by FDN are

(a) Baseline (b) FDRL

Figure 5 – Visualization of the expression features using t-SNE.

Features are extracted from the RAF-DB database.
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Figure 6 – Visualization of distribution of mean Intra-W vectors

for seven basic expression categories on the RAF-DB database.

not distinguishable enough to classify different expressions,

since FDN does not take expression-specific variations into

account. In contrast, Intra-RM and Inter-RM effectively

model the intra-feature relationship of each latent feature

and the inter-feature relationship between intra-aware fea-

tures, respectively, leading to performance improvements.

Our proposed FDRL method, which combines the backbone

network, FDN, and FRN in an integrated network, achieves

the best results among all the variants.

4.4. Visualization

2D feature visualization. We use t-SNE [16] to visualize

the expression features extracted by the baseline method

(which only adopts ResNet-18) and the proposed FDRL

method on the 2D space, respectively, as shown in Figure 5.

We can observe that the expression features extracted from
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Table 3 – Performance comparisons among different methods on several public FER databases. The best results are boldfaced. ‡ and †
respectively denote that seven expression categories and six expression categories are used in CK+.

(a) Comparisons on the in-the-lab databases.

Methods
Accuracy (%)

CK+ MMI Oulu-CASIA

PPDN [32] 97.30† - 72.40

IACNN [17] 95.37‡ 71.55 -

DLP-CNN [13] 95.78† 78.46 -

IPA2LT [28] 92.45‡ 65.61 61.49

DeRL [27] 97.37‡ 73.23 88.00

FN2EN [8] 98.60† - 87.71

DDL [20] 99.16‡ 83.67 88.26

Baseline 97.15‡ 79.69 86.18

FDRL (proposed) 99.54 ‡ 85.23 88.26

(b) Comparisons on the in-the-wild databases.

Methods
Accuracy (%)

RAF-DB SFEW

IACNN [17] - 50.98

DLP-CNN [13] 84.13 51.05

IPA2LT [28] 86.77 58.29

SPDNet [1] 87.00 58.14

RAN [24] 86.90 56.40

SCN [23] 87.01 -

DDL [20] 87.71 59.86

Baseline 86.93 58.03

FDRL (proposed) 89.47 62.16

the baseline method are not easily distinguishable for dif-

ferent facial expressions. In contrast, the features extracted

from our proposed method can effectively reduce intra-class

differences and enhance inter-class separability for different

expressions. Especially, compared with baseline, the differ-

ences between fear and surprise, disgust and sadness are

more distinct for FDRL.

Distribution of mean Intra-W vectors. We visualize the

distribution of mean Intra-W vectors (corresponding to nine

latent features) for seven basic expression categories on the

RAF-DB database, as shown in Figure 6. Generally, each

expression shows relatively high weights on the latent fea-

tures associated with facial actions (as shown in Figure 3)

closely related to this expression. Nevertheless, we can ob-

serve that some latent features (such as 2nd and 6th, 1st and

4th) have similar weights for different expressions. Hence,

we further develop Inter-RM to exploit the inter-feature re-

lationship between different intra-aware features.

4.5. Comparison with State­of­the­Art Methods

Table 3 shows the comparison results between our

method and several state-of-the-art FER methods on the in-

the-lab databases and the in-the-wild databases.

Among all the competing methods, IACNN, DDL, and

RAN aim to disentangle the disturbing factors in facial ex-

pression images. SCN and IPA2LT are proposed to solve

the noise label problem. FN2EN, DTAGN, and SPDNet

improve the model performance by designing new network

architectures. DLP-CNN alleviates intra-class variations by

using a novel loss function. The above methods improve the

FER performance by suppressing the influence of different

disturbing factors or noise labels, but they ignore large ex-

pression similarities among different expressions. In con-

trast, our method explicitly models expression similarities

and expression-specific variations with FDN and FRN, re-

spectively, leading to performance improvements.

PPDN is developed to focus on the differences between

expression images. DeRL claims that a facial expression

is composed of the expression component and the neutral

component. These two methods extract coarse-grained ex-

pression features. On the contrary, our proposed FDRL ex-

tracts more fine-grained features based on feature decom-

position and reconstruction. Such a manner is beneficial to

discriminate subtle differences between facial expressions,

especially similar expression categories (such as fear and

surprise). The above experimental results show the effec-

tiveness of our proposed method.

5. Conclusion

In this paper, we have proposed a novel FDRL method

for effective FER. FDRL consists of two main networks:

FDN and FRN. FDN effectively models the shared infor-

mation across different expressions based on a compactness

loss. FRN accurately characterizes the unique information

for each expression by taking advantage of Intra-RM and

Inter-RM, and reconstructs the expression feature. In par-

ticular, Intra-RM encodes the intra-feature relationship of

each latent feature and obtains an intra-aware feature. Inter-

RM exploits the inter-feature relationship between different

intra-aware features and extracts an inter-aware feature. The

expression feature is represented by combining the intra-

aware feature and the inter-aware feature. Experimental re-

sults on both the in-the-lab and the in-the-wild databases

have shown the superiority of our method to perform FER.
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