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Abstract

Recently, a large number of channel attention blocks

are proposed to boost the representational power of deep

convolutional neural networks (CNNs). These approaches

commonly learn the relationship between global contexts

and attention activations by fully-connected layers or linear

transformations. However, we empirically find that though

many parameters are introduced, these attention blocks may

not learn the relationship well. In this paper, we hypothesize

that the relationship is predetermined. Based on this hy-

pothesis, we propose a simple yet extremely efficient chan-

nel attention block, called Gaussian Context Transformer

(GCT), which achieves contextual feature excitation using

a Gaussian function that satisfies the presupposed relation-

ship. According to whether the standard deviation of the

Gaussian function is learnable, we develop two versions of

GCT: GCT-B0 and GCT-B1. GCT-B0 is a parameter-free

channel attention block by fixing the standard deviation. It

directly maps global contexts to attention activations with-

out learning. In contrast, GCT-B1 is a parameterized ver-

sion, which adaptively learns the standard deviation to en-

hance the mapping ability. Extensive experiments on Im-

ageNet and MS COCO benchmarks demonstrate that our

GCTs lead to consistent improvements across various deep

CNNs and detectors. Compared with a bank of state-of-the-

art channel attention blocks, such as SE [17] and ECA [42],

our GCTs are superior in effectiveness and efficiency.

1. Introduction

Deep convolutional neural networks (CNNs) have

achieved significant progresses in many computer vision

tasks, such as image classification [21, 13], segmentation
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Figure 1. Visualization of the sorted global contexts and the ac-

cording attention activations of different channel attention blocks

at different stages across 1000 classes on ImageNet validation set.

“SiBj” denotes the j-th attention block of stage i. In the second

row, the semitransparent lines and the opaque lines represent the

attention activations before and after a low-pass filter, respectively.

[28, 30], and object detection [9, 3]. However, the local con-

text characteristics of convolutional kernel prevent CNNs

from effectively capturing global context information in an

image, which is often essential for semantically understand-

ing. To tackle this problem, attention mechanisms are com-

monly adopted. Their core is to arm CNNs with additional

lightweight modules which can capture global long-range

dependencies [43, 8, 43]. As one of them, channel atten-

tion mechanism has become increasingly popular, owing to

its simplicity and effectiveness. The most pioneering work

in this scenario is squeeze-and-excitation networks (SENet)

[17], which aims to adaptively emphasize important chan-

nels and suppress trivial ones by capturing channel-wise de-

pendencies, bringing enormous benefits for various CNNs.
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Methods Pram-Free #Param Top-1 Top-5

ResNet50 - - 76.15 92.87
+SE × 2C2/r 77.18 93.67
+LCT × 2C 77.45 93.71
+ECA × |(log2C + 1)/2|odd 77.48 93.68
+GCT-B0 X 0 77.51 93.86
+GCT-B1 × 1 77.55 93.71

Table 1. Comparison of existing state-of-the-art channel attention

blocks on ImageNet validation set. Param-Free denotes whether

the attention block is free of parameters. #Param denotes the num-

ber of parameters introduced in one channel attention block. C de-

notes the number of channels. r denotes the reduction ratio of SE.

|·|
odd

indicates the nearest odd number of ·. Note that our GCTs

outperform other channel attention blocks with fewer parameters

introduced.

Several channel attention blocks have been thereafter

proposed to improve the SE block with different per-

spectives including simplifying feature transform module

[7, 42], changing fusion mode [4], and integrating with

spatial attention mechanism [44, 31]. Despite the perfor-

mance improvements, these approaches generally introduce

large amounts of parameters to learn the relationship be-

tween global contexts and attention activations. However,

the learnt relationship may not be good enough.

As observed in linear context transform (LCT) block [7],

SE tends to learn a negative correlation that the more global

contexts deviate from their mean, the smaller attention acti-

vations are attached, as shown in Fig. 1. To learn this corre-

lation more accurately, LCT uses a per-channel transforma-

tion to replace two fully-connected layers of SE. However,

we empirically find that this negative correlation may not

be well-learnt by LCT. As shown in Fig. 1, the attention

activations learnt by LCT fluctuate greatly.

To alleviate the above problem, we hypothesize a nega-

tive correlation between global contexts and attention acti-

vations. Based on this hypothesis, we propose a new chan-

nel attention block, called Gaussian Context Transformer

(GCT), which directly maps global contexts to attention ac-

tivations with a Gaussian function that represents the pre-

supposed negative correlation. The basic structure of GCT

is illustrated in Fig. 2. Specifically, after global average

pooling, GCT performs normalization to stabilize the global

contextual distribution. Then a Gaussian function is used to

excite (transform and activate) the normalized global con-

texts to obtain the attention activations. When the Gaussian

function is fixed, we refer to this model as GCT-B0. Note

that GCT-B0 is a parameter-free attention block that model

global contexts without contextual feature transform learn-

ing. As shown in Table 1, GCT-B0 yields significant per-

formance gains over baselines and outperforms other state-

of-the-art channel attention blocks without introducing any

parameters, indicating that the contextual feature transform

learning is not essential. Further, we develop a learnable

GCT, called GCT-B1, which adaptively learns the standard

deviation of Gaussian function. We empirically show that

GCT-B1 generally performs better than GCT-B0 on Ima-

geNet. On object detection/segmentation tasks, GCT-B0

and GCT-B1 achieve similar performance.

In summary, our main contributions can be summarized

as follows:

• Our work provides a new insight into the channel at-

tention mechanism: parameterized contextual feature

transform learning is not essential. This will inform

further research progress in designing more efficient

channel attention blocks.

• We propose a simple yet extremely efficient channel

attention block (GCT), which hypothesizes the rela-

tionship between global contexts and attention activa-

tions and excites global contexts only using a Gaussian

function. Our GCTs can significantly boost various

deep CNNs and detectors.

• Comprehensive experiments on ImageNet and MS

COCO consistently demonstrate the superiority and

generalization ability of our proposed GCTs. In partic-

ular, GCT-B0 generally outperforms other state-of-the-

art channel attention blocks without introducing any

parameters.

2. Related Work

Deep Networks. A wide range of work has shown

that excellent network design can substantially improve net-

work performance. AlexNet [21] and VGGNet [35] pio-

neer the use of convolutional networks, significantly out-

performing non-convolutional learning approaches. Incep-

tion family [37, 20, 38, 36] proposes to model features in

multi-scale formulation by combining convolution kernels

of different sizes. Residual learning is first introduced in

[13], to mitigate the exploding/vanishing gradient problem

when the network is deep. Since then, a new network de-

sign paradigm has been opened up, and most of subsequent

networks are built upon it [18, 45, 10, 47, 48, 46].

To meet requirements under the common mobile and em-

bedded settings, studies on designing lightweight convolu-

tional networks achieve great attention. SqueezeNet [19],

MobileNets [15, 34, 14], and ShuffleNets [49, 29] are con-

sequently proposed, showing good trade-offs between ac-

curacy and number of operations, as well as actual latency

and the number of parameters. Recently, neural architecture

search (NAS) became a mainstream trend in designing effi-

cient mobile-size networks and shows better efficiency than

hand-crafted convolutional networks [39, 2, 40].

Different from these networks, our work is an add-on

that aims to improve the representational power of deep
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convolutional networks by recalibrating the channel-wise

features.

Attention blocks. A large number of attention blocks

have been proposed to improve the performance of deep

convolutional networks, which can be basically divided

into spatial attention [41, 23, 43, 1, 6], channel attention

[17, 24, 4, 7, 42], and a combination of both [44, 31]. Since

GCT is a channel attention block, we briefly review the

channel attention blocks proposed in recent years.

SE [17] and GE [16] recalibrate feature maps by captur-

ing channel-wise dependencies, significantly boosting net-

work performance. Further, CBAM [44] and BAM [31]

integrate spatial and channel attentions to refine feature

maps via rescaling. GC [4] combines NL [43] and SE

to model global contexts, and achieves better performance

with lightweight property. More recently, LCT [7] observes

a negative correlation between global contexts and attention

activations and proposes to use a per-channel linear trans-

formation to transform global contexts, achieving compa-

rable performance compared to SE. ECA [42] targets en-

hancing efficiency via constraining cross-channel interac-

tion within a local range.

Instead of learning the relationship between global con-

texts and attention activation, we predetermine the relation-

ship and use a Gaussian function to achieve contextual fea-

ture excitation. Experimental results show that our method

can achieve better performance than most channel attention

blocks across various tasks with fewer parameters.

3. Method

Inspired by the observation in LCT [7], we hypothesize

that the channel attention mechanism learns a negative cor-

relation that the more global contexts deviate from their

mean, the smaller attention activations are attached. Based

on this hypothesis, we propose the gaussian context trans-

former (GCT) to model global contexts. In this section,

we present the architecture of GCT in detail. A diagram

of GCT is illustrated in Fig. 2.

3.1. Gaussian Context Transformer

GCT consists of three operations: global context aggre-

gation (GCA), normalization, and gaussian context excita-

tion (GCE). The GCA operation aims to obtain channel-

wise statistics via spatially aggregating global context in-

formation in feature maps, so as to help the network cap-

ture long-range dependencies. Following SE, we use the

simplest aggregation form, global average pooling. Con-

cretely, given a feature map X ∈ R
C×H×W , the global

contexts can be formulated as z = avg(X) = {zk =
1

H×W

∑W

i=1

∑H

j=1
Xk(i, j) : k ∈ {1, ..., C}}, where C

is the number of channels and H , W are the spatial dimen-

sions.

Previous works excite the obtained global contexts by

sequentially performing two operations: transform and ac-

tivation. First, the transform operation transforms global

contexts using fully-connected layers or linear transforma-

tions. Then a sigmoid function is used to activate the trans-

formed global contexts to the attention activations. Differ-

ent from these works, we propose a new context excitation

way, which performs the transform and activation opera-

tions by a simple function f(·) that certainly represents the

hypothetical negative relationship.

Specifically, we define the mean shift as z − µ, where

µ = 1

C

∑C

k=1
zk stands for the mean of the global contexts

z. The mean shift measures the deviation between z and

µ. However, directly setting the mean shift as input will

make f(·) unstable because of the inconsistent mean shift

distributions caused by different input samples. To alleviate

this problem, we introduce an instance-specific factor σ to

stabilize it in distribution with a mean of 0 and a variance

of 1, which can be expressed as:

ẑ =
1

σ
(z− µ), (1)

where σ denotes the standard deviation of global contexts

computed by

√

1

C

∑C

k=1
(zk − µ)2 + ǫ , with ǫ as a small

constant. We observe that this formulation of ẑ turns to be

same as the normalization of the global contexts z. For sim-

plification, we denote this formulation as the normalization

operation on z: ẑ = norm(z).
To satisfy the hypothesis, we seek a continuous func-

tion f(ẑ) that meets the following conditions: 1. f(ẑ) is

in the semi-closed interval (0, 1], i.e., f(ẑ) ∈ (0, 1]; 2. f(ẑ)
reaches unique maxima 1 when ẑ equals to zero; 3. f(ẑ)
monotonically increases when ẑ is smaller than zero and

monotonically decreases when ẑ is larger than zero; 4. f(ẑ)
asymptotically approaches zero when ẑ approximates infin-

ity, i.e., limẑ→±∞ f(ẑ) = 0. Among the well-known func-

tions, Gaussian function fits these properties well, thus se-

lected in our paper. Formally, we define the GCA operation

to be a Gaussian function G:

G(ẑ) = ae−
(ẑ−b)2

2c2 , (2)

where a denotes the amplitude of the Gaussian function and

is set to 1 to satisfy the first condition. b denotes the mean

of the Gaussian function and is set as 0 to meet the second

condition. c denotes the standard deviation of the Gaussian

function that controls the difference in channel attention ac-

tivations: the larger the standard deviation is, the smaller

the difference in attention activations between channels is.

Hence G can be simplified as:

g = G(ẑ) = e−
ẑ
2

2c2 , (3)

where c can be a constant or a learnable parameter. g repre-

sents the attention activations.
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22ẑ2ˆ(z)=e cG ฀

1.0

avg(·) norm(·)

avg:	global	average	pooling
norm:	normalization
G:	Gaussian	context	excitation

Figure 2. Diagram of our gaussian context transformer (GCT). c denotes the standard deviation of Gaussian function, which is either a

constant or a learnable parameter. When c is a constant, GCT is a parameter-free channel attention block. ⊗ denotes broadcast element-wise

product.

We combine the above operations to form our proposed

gaussian context transformer (GCT), which can be formu-

lated as:

Y = e−
norm(avg(X))2

2c2 X. (4)

3.2. Parameter­free GCT

When the standard deviation c is a constant, GCT is a

parameter-free channel attention block. We refer to this

module as GCT-B0. In Sec. 4.1.1, we vary the standard de-

viation of GCT-B0 on ImageNet. We empirically find that

the setting of c = 2 achieves the best Top-1 accuracy. Ex-

cept where noted otherwise, we set c = 2 in our experi-

ments. Furthermore, we also find that GCT-B0 generally

achieves better performance than existing channel attention

blocks, such as SE, LCT, and ECA, without introducing any

parameters.

3.3. Parameterized GCT

We also develop a parameterized GCT, in which c is a

learnable standard deviation. We refer to this module as

GCT-B1. To constrain c ∈ [β, α + β], we set its upper

bound and lower bound in the following way:

c = α · sigmoid(θ) + β, (5)

where α and β are constants. θ is a learnable parameter, ini-

tialized as 0. Note that GCT-B1 has only one parameter θ,

and adaptively learns the most appropriate Gaussian func-

tion from the dataset. As shown in Table 3, GCT-B1 with

c ∈ [1, 4] achieves better performances. By default, we set

α = 3 and β = 1 in our experiments. The experimental

results in Sec. 4 demonstrate that GCT-B1 performs better

than GCT-B0 on ImageNet. On MS COCO dataset GCT-B0

and GCT-B1 achieve similar performance.

3.4. Comparisons to Other Channel Attention
Blocks

Our approach markedly differs from other channel atten-

tion blocks in the following ways. First, instead of learn-

ing the aforementioned negative correlation, GCT uses a

Gaussian function to predetermine such a correlation with-

out learning process. Therefore, as shown in Fig. 3, the

attention activations of GCT show better stability. Second,

GCT transforms and activates global contexts with a Gaus-

sian function, breaking the traditional excitation paradigm

followed by other attention blocks. In the end, our GCT is

more efficient than other channel attention blocks. In par-

ticular, GCT-B0 outperforms SE, LCT, and ECA without

introducing any parameters.

4. Experiments

In this section, we evaluate the proposed GCT on two

basic tasks, image classification on ImageNet [22] and ob-

ject detection/segmentation on COCO [25]. Experimental

results show that GCT generally outperforms other state-

of-the-art channel attention blocks.

4.1. Image Classification on ImageNet

The ImageNet 2012 dataset contains 1.28 million train-

ing images and 50K validation images with 1000 classes.

Setup. Our experiments are implemented with PyTorch

framework [32]. Unless otherwise noted, the standard de-

viation c in GCT-B0 is set to 2. The range of the standard

deviation c in GCT-B1 is 1 ∼ 4 where c is initialized to 2.5.

Implementation details. We train all models from

scratch on 8 GPUs with 32 images per GPU (total batch size

of 256) for 100 epochs, using synchronous SGD optimizer

with a weight decay of 0.0001 and momentum 0.9. The ini-

tial learning rate is set to 0.1, and decreases by a factor of

0.1 every 30 epochs. The weight initialization is adopted
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c 1 2 3 4 5 6

Top-1 77.15 77.51 77.24 77.27 77.11 77.06
Top-5 93.59 93.86 93.71 93.73 93.61 93.47

Table 2. Classification accuracy (%) of GCT-ResNet50-B0 with

different standard deviation c on the ImageNet validation set.

c 1 ∼ 3 1 ∼ 4 2 ∼ 3 2 ∼ 4

Top-1 77.52 77.55 77.48 77.39
Top-5 93.77 93.71 93.72 93.81

Table 3. Classification accuracy (%) of GCT-ResNet50-B1 with

different ranges of c on the ImageNet validation set.

in [12]. For training ShuffleNetV2, we follow the settings

in [29], where networks are trained within 300 epochs us-

ing SGD with weight decay of 4e−5, momentum of 0.9,

label smoothing of 0.1 and mini-batch size of 1024 (128
images per GPU). The initial learning rate is set to 0.5, and

is decreased by a linear decay strategy. We perform stan-

dard data augmentation for training: a 224 × 224 crop is

randomly sampled from a 256 × 256 image or its horizon-

tal flip using the scale and aspect ratio augmentation. The

Top-1 and Top-5 classification accuracy are reported on the

single 224× 224 center crop in the validation set.

4.1.1 Ablation Study

We report the ablation studies based on ResNet50 back-

bone. GCT is placed after the last BatchNorm [20] layer

inside each bottleneck of ResNet.

Standard deviation of GCT-B0. We investigate the ef-

fect of fixed standard deviation c in GCT-B0 on classifica-

tion accuracy. The results are shown in Table 2. We ob-

serve that with the increase of c, the network performance

presents a trend of first increasing and then decreasing. It

is reasonable because a large variance reduces the differ-

ence in attention activations between channels, preventing

the deviant global contexts from being well suppressed. On

contrary a small variance excessively suppresses the global

deviant contexts. When c = 2, GCT-ResNet50-B0 achieves

the best Top-1 and Top-5 accuracy. Hence we set c = 2 for

GCT-B0 by default.

Standard deviation of GCT-B1. Compared to GCT-B0,

the standard deviation c of GCT-B1 is a learnable parameter

whose range is determined by α and β. We constrain c by

setting different α and β. For example, when α = 3 and

β = 1, the range of c is 1 ∼ 4. As observed in Table 2, the

reasonable standard deviation should be between 1 and 4, so

we explore its performance in this range. Table 3 shows the

experimental results. It can be seen that the Top-1 accuracy

of range 1 ∼ 4 is similar to that of range 1 ∼ 3. To make

GCT more exploratory, we set the range of c as 1 ∼ 4 by

default.

4.1.2 Comparisons with state-of-the-art Channel At-

tention Blocks.

To evaluate our approach, we compare GCT with a series

of state-of-the-art channel attention blocks including SE

[17], LCT [7], and ECA [42]. Here we select four popular

networks as the backbones, including BN-Inception [20],

ResNet [13], ResNext [45] and ShuffleNetV2 [29]. Table 4

presents the main results of our experiments.

BN-Inception. We first evaluate GCT on the non-

residual network BN-Inception [20]. All attention blocks

are placed after the Inception module. We can see that GCT-

B1 outperforms other channel attention blocks with fewer

parameters. GCT-B0 is superior to ECA, but slightly infe-

rior to SE and LCT, probably because the setting of c = 2
is not suitable for BN-Inception. Furthermore, our GCT-

B0 improves the original BN-Inception by 0.5% in terms

of Top-1 accuracy without parameter increase. The results

show that our GCT can be used to improve the performance

of the non-residual network.

ResNet/ResNeXt. We further verify the effectiveness

of our approach on two popular residual networks ResNet

[13] and ResNeXt [45]. All attention blocks are placed af-

ter the last BatchNorm [20] layer inside each bottleneck

of ResNet/ResNext. We make the following four observa-

tions. First, GCT-B0 and GCT-B1 consistently bring sig-

nificant performance improvements across different depths.

In particular, GCT-ResNet-B0 achieves a ∼ 1.3% gain over

ResNet without introducing any parameters. Second, ex-

cept for ECA-ResNet101, the results of GCT-B0 are bet-

ter than those of other approaches. Third, GCT-B1 outper-

forms SE, LCT, and ECA across different depths and back-

bones with fewer parameters and similar computational

costs. Last but not the least, GCT-B1 performs better than

GCT-B0 at the cost of one parameter per introduced block,

which suggests that adaptive learning of Gaussian function

is effective.

ShuffleNetV2. Finally, we investigate the performance

of our approach on a lightweight model. To this end, we

employ ShuffleNetV2 as backbone and integrate all atten-

tion blocks before channel shuffle. The results in Table 4

show that both GCT-B0 and GCT-B1 are better than other

channel attention blocks. In particular, GCT-B0 outper-

forms SE by 1.0% Top-1 accuracy. Compared to vanilla

ShuffleNetV2, our GCTs achieve a 1.4% gain in Top-1 ac-

curacy. These results indicate that GCT can be successfully

applied to lightweight model.

All the above results fully demonstrate the effectiveness

and generality of our proposed GCT.
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Methods #Param GFLOP Top-1 Top-5

BN-Inception 11.30M 2.050 74.48 91.96
+SE +0.64M 2.052 75.11 92.24
+LCT +13.25K 2.051 75.12 92.32
+ECA +0.05K 2.051 74.76 92.06
+GCT-B0 +0K 2.051 74.98 92.20
+GCT-B1 +0.01K 2.051 75.35 92.40

ResNet18 11.69M 1.822 69.76 89.08
+SE +0.09M 1.823 70.59 89.78
+LCT +3.84K 1.823 70.85 89.75
+ECA +0.03K 1.823 70.50 89.56
+GCT-B0 +0K 1.823 70.90 90.03
+GCT-B1 +0.01K 1.823 71.21 90.04

ResNet50 25.56M 4.122 76.15 92.87
+SE +2.54M 4.130 77.18 93.67
+LCT∗ +30.21K 4.127 77.45 93.71
+ECA∗ +0.09K 4.127 77.48 93.68
+GCT-B0 +0K 4.127 77.51 93.86
+GCT-B1 +0.01K 4.127 77.55 93.71

ResNet101 44.55M 7.849 77.37 93.56
+SE +4.78M 7.863 78.47 94.10
+LCT∗ +65.02K 7.858 78.55 94.26
+ECA∗ +0.17K 7.858 78.65 94.34
+GCT-B0 +0K 7.858 78.60 94.23
+GCT-B1 +0.03K 7.858 78.85 94.41

ResNeXt50 25.03M 4.273 77.62 93.70
+SE +2.54M 4.281 78.12 93.90
+LCT +30.21K 4.279 78.11 93.93
+ECA +0.09K 4.279 77.71 93.88
+GCT-B0 +0K 4.279 78.47 94.24
+GCT-B1 +0.01K 4.279 78.66 94.17

ShuffleNetV2 2.28M 0.150 69.36 88.32
+SE +0.17M 0.151 69.79 89.05
+LCT +8.36K 0.151 70.59 89.51
+ECA +0.08K 0.151 70.36 89.37
+GCT-B0 +0K 0.151 70.79 89.80
+GCT-B1 +0.01K 0.151 70.74 89.66

Table 4. Comparisons with the state-of-the-art channel attention

blocks on ImageNet validation set. #Param denotes the number

of parameters of the channel attention block. GFLOPs denote the

computations. The best results are marked as bold. ∗ indicates that

the results are from the original paper.

4.2. Object Detection/Segmentation on COCO

We evaluate our GCT on object detection and instance

segmentation on COCO 2017, which has 80 object cate-

gories. Its training set is with 115k images, and validation

set with 5k images. We report the standard COCO-style av-

erage precisions (AP) at different IoU thresholds (AP0.5 and

AP0.75) or object scales (APS , APM , and APL ). For Mask

RCNN, both box AP (APbbox) and mask AP (APmask) are

evaluated.

Setup. To validate the effectiveness and generality of

our approach, we carry out experiments with different com-

binations of popular backbone ResNet, and state-of-the-art

detection architectures including Faster RCNN [33], Mask

RCNN [11], and RetinaNet [27]. By default, GCT is inte-

grated into stages c3-c5 of ResNet. Similar to the setting

in Sec. 4.1, the standard deviation c in GCT-B0 is 2. The

range of the standard deviation c in GCT-B1 is 1 ∼ 4 where

θ is initialized to 0.

Implementation details. All experiments are imple-

mented with mmdetection v2.6 [5]. The short edge of the

input image is resized to 800, and the long edge is limited

to 1333. All models are trained on 8 GPUs with two im-

ages per each (mini-batch size of 16). The training is opti-

mized by synchronized SGD with a weight decay of 1e−4

and momentum of 0.9. And the total training epoch is 12.

The initial learning rate is set as 0.02, decreased by a factor

of 10 at the 9th and 12th epochs. The backbone networks

of all models are pre-trained on ImageNet. All attention

blocks are trained from scratch in the same training set-

ting. Following the conventional finetuning setting [11], we

use frozen BatchNorm instead of synchronized BatchNorm.

All layers except for c1 and c2 are jointly finetuned with

FPN [26], detection and segmentation heads. Other hyper-

parameters follow the default settings in the mmdetection

framework.

4.2.1 Object Detection

Table 5 shows the performances of four channel attention

blocks (SE, LCT, ECA, and GCT) based on three detectors

with ResNet as backbone on object detection task. Com-

pared to vanilla ResNet50/ResNet101, our GCTs can yield

a significant gain of 1.0 ∼ 1.6% APbbox for various detec-

tors at the cost of no more than 0.03K parameters. Note

that GCT can also be successfully used in one-stage detec-

tor RetinaNet, suggesting our approach’s excellent gener-

ality. What’s more, it can be seen that our GCTs consis-

tently outperform SE, ECA, and LCT across different back-

bones and detectors with fewer parameters and similar com-

putational burdens. In particular, GCT-B0 achieves state-

of-the-art performance without introducing any parameters,

suggesting our module’s high efficiency in modeling global

contexts. We also observe no significant performance dif-

ference between GCT-B0 and GCT-B1 on object detection,

which is inconsistent with the results on ImageNet. This

may be because the object detection dataset is relatively

small.

4.2.2 Instance Segmentation

We further evaluate GCT by comparing it with SE, LCT,

and ECA on instance segmentation task. We select Mask
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Detector Methods #Param GFLOPs APbbox
0.5:0.95 APbbox

0.5 APbbox
0.75 APS APM APL

Faster R-CNN

ResNet50 41.53M 207.07 37.4 58.1 40.4 21.2 41.0 48.1
+SE +2.54M 207.19 38.1 59.5 41.1 22.4 41.8 49.1
+LCT +30.21K 207.19 38.3 59.5 41.8 22.7 42.2 49.0
+ECA +0.09K 207.19 38.7 60.3 41.9 22.4 42.7 49.2
+GCT-B0 +0K 207.19 38.8 60.4 42.0 23.3 42.8 49.7
+GCT-B1 +0.01K 207.19 38.9 60.4 42.3 22.8 43.1 49.7
ResNet101 60.52M 283.14 39.4 60.1 43.1 22.4 43.7 51.1
+SE +4.78M 283.33 39.7 60.7 43.2 23.1 43.7 52.0
+LCT +65.02K 283.32 40.3 61.6 43.8 23.8 44.4 52.2
+ECA +0.17K 283.32 40.5 62.0 44.1 23.7 44.7 52.8
+GCT-B0 +0K 283.32 40.7 62.1 44.6 23.7 45.1 52.6
+GCT-B1 +0.03K 283.32 40.7 61.9 44.6 23.3 45.3 52.8

Mask R-CNN

ResNet50 44.18M 275.58 38.2 58.8 41.4 21.9 40.9 49.5
+SE +2.54M 275.69 38.8 60.0 42.3 22.7 42.6 50.0
+LCT +30.21K 275.69 39.0 60.0 42.7 23.1 42.8 50.5
+ECA +0.09K 275.69 39.2 60.6 42.4 23.1 43.1 50.6
+GCT-B0 +0K 275.69 39.3 60.7 42.8 23.4 43.1 50.7
+GCT-B1 +0.01K 275.69 39.4 60.8 42.9 23.6 43.3 50.7
ResNet101 63.17M 351.65 40.4 60.5 44.0 22.6 44.0 52.6
+SE +4.78M 351.84 40.5 61.2 44.1 23.6 44.5 52.7
+LCT +65.02K 351.83 41.1 62.0 45.1 24.5 45.3 53.8
+ECA +0.17K 351.83 41.2 62.4 44.8 23.9 45.4 54.2
+GCT-B0 +0K 351.83 41.4 62.5 45.1 23.7 45.6 53.9
+GCT-B1 +0.03K 351.83 41.5 62.6 45.3 24.1 45.6 53.9

RetinaNet

ResNet50 37.74M 239.32 36.5 55.4 39.1 20.4 40.3 48.1
+SE +2.54M 239.43 36.9 56.2 39.5 21.6 40.6 48.3
+LCT +30.21K 239.43 36.7 55.8 39.2 20.7 40.5 47.6
+ECA +0.09K 239.43 37.5 56.9 40.1 21.0 41.2 49.1
+GCT-B0 +0K 239.43 38.1 57.6 40.5 22.2 41.6 50.1
+GCT-B1 +0.01K 239.43 37.8 57.1 40.4 21.8 41.7 49.7
ResNet101 56.74M 315.39 38.4 57.6 41.0 21.7 42.8 50.4
+SE +4.78M 315.58 38.7 57.8 41.5 22.0 42.7 51.4
+LCT +65.02K 315.57 39.1 58.3 42.2 22.3 43.3 51.5
+ECA +0.17K 315.57 39.2 58.5 42.0 21.9 43.0 52.0
+GCT-B0 +0K 315.57 39.6 59.1 42.6 22.5 43.8 51.8
+GCT-B1 +0.03K 315.57 39.6 59.0 42.4 22.6 43.9 52.0

Table 5. Comparisons with other state-of-the-art channel attention blocks based on Faster R-CNN, Mask R-CNN, and RetinaNet with

ResNet backbone on the task of object detection. #Param denotes the number of parameters. GFLOPs denote the computations. The best

results are marked as bold.

R-CNN to demonstrate the superiority of our approach. The

results are shown in Table 6. We can clearly see that both

GCT-B0 and GCT-B1 also improve the segmentation per-

formance of two backbone networks. Note that the perfor-

mance improvement of GCT-B0 comes with zero parame-

ter overhead, indicating that our approach is extremely ef-

ficient. Furthermore, our GCTs also outperform most ex-

isting state-of-the-art channel attention blocks with less pa-

rameters and computational overhead. These results ver-

ify the effectiveness and good generalization ability of our

GCTs for various tasks.

4.3. Visualization Analysis

To better understand the channel attention mechanism,

we visualize the global contexts and the attention dis-

tribution of existing channel attention blocks, including

SE, LCT, ECA, and GCT. Specifically, we first compute

the average global contexts before the attention blocks,

i.e., z̄ = 1

n

∑n

i=1
avg(X), across 1000 classes on Ima-

geNet, where n is the number of images in the valida-

tion set. For better visualization, we define the absolute

mean shift η of the average global contexts z̄ as follows:
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Figure 3. Visualization of the absolute mean shift η and the attention activations of different channel attention blocks at different stages

across 1000 classes on ImageNet validation set. “SiBj‘’ denotes the j-th attention block of stage i. In the second row, the semitransparent

lines and the opaque lines represent the attention activations before and after a low-pass filter, respectively. Best viewed in color.

Methods APmask
0.5:0.95 APmask

0.5 APmask
0.75 APS APM APL

ResNet50 34.7 55.7 37.2 18.3 37.4 47.2
+SE 35.2 56.8 37.4 18.9 38.5 47.9
+LCT 35.3 56.8 37.6 18.6 39.0 47.5
+ECA 35.7 57.5 38.1 19.5 39.3 48.5
+GCT-B0 35.8 57.5 38.1 19.8 39.4 48.2
+GCT-B1 35.7 57.6 38.0 19.7 39.5 48.2

ResNet101 36.1 57.5 38.6 18.8 39.7 49.5
+SE 36.5 58.1 39.0 19.5 40.0 49.5
+LCT 36.9 58.7 39.7 20.4 40.8 50.3
+ECA 37.1 59.2 39.7 19.9 41.1 50.8
+GCT-B0 37.2 59.5 39.6 19.7 41.0 50.8
+GCT-B1 37.3 59.5 39.7 19.9 41.1 50.9

Table 6. Comparisons with other state-of-the-art channel attention

blocks based on Mask R-CNN with ResNet backbone on the task

of instance segmentation. The best results are marked as bold.

η = |sort(z̄−mean(z̄))|, where mean(·) denotes calcu-

lating the mean. sort(·) denotes sort in ascending order.

Finally, we plot η and the corresponding attention activa-

tions. To better demonstrate the correlation, we also plot

the attention activations after a low-pass filter. Fig. 3 shows

the visualization results of different attention blocks at dif-

ferent stages. Since the number of channels of the blocks at

different stages is different, the x-axis is represented by the

channel percentage.

From Fig. 3, we make the following observations. First,

for SE, some blocks, such as S3B1 and S2B1, learn a possi-

ble negative correlation that the more the global contexts de-

viate from their mean, the smaller the attention activations

are attached, while others learn only partial correlation. For

example, SE S4B2 tends to decrease monotonically, i.e.,

the larger the global context, the smaller the attention acti-

vation. Second, although LCT learns the negative relation-

ship, the attention activations fluctuate greatly. The reason

may be the limited learning ability of linear transformation.

Third, we observe ECA only learns the trend of monotonic

increase or decrease, perhaps because ECA uses a shared

linear transformation to transform the global contexts across

all channels. Finally, since GCT assumes the negative rela-

tionship between the absolute mean shift and the attention

activations, GCT doesn’t learn this relationship in the train-

ing process. It makes GCT transform global contexts more

stably than other channel attention blocks, which provides

a possible explanation for the efficiency of GCT.

5. Conclusion

In this paper, we propose a new channel attention block,

Gaussian Context Transformer (GCT), which only uses a

Gaussian function to model global contexts. Our method

improves network performance with almost no extra pa-

rameters and calculations. In particular, our GCT-B0,

a parameter-free attention block, shows that parameter-

ized contextual feature transform learning is not necessary.

Comprehensive experiments on ImageNet and MS COCO

benchmarks are conducted to evaluate our approach. The

experimental results show that our GCTs can provide a solid

improvement over baselines across various backbones and

detectors, outperforming other channel attention blocks. In

further work, we plan to explore more efficient functions to

perform context feature transform.
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