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Abstract

An efficient approach for handling hyperspectral image

(HSI) denoising issue is to impose weights on different HSI

pixels to suppress negative influence brought by noisy ele-

ments. Such weighting scheme, however, largely depends on

the prior understanding or subjective distribution assump-

tion on HSI noises, making them easily biased to compli-

cated real noises, and hardly generalizable to diverse prac-

tical scenarios. Against this issue, this paper proposes a

new scheme aiming to capture general weighting princi-

ple in a data-driven manner. Specifically, such weighting

principle is delivered by an explicit function, called hyper-

weight-net (HWnet), mapping from an input noisy image

to its properly imposed weights. A Bayesian framework

as well as a variational inference algorithm for inferring

HWnet parameters is elaborately designed, expecting to ex-

tract the latent weighting rule for general diverse and com-

plicated noisy HSIs. Comprehensive experiments substanti-

ate that the learned HWnet can be not only finely general-

ized to different noise types from those used in training, but

also effectively transferred to other weighted models. Be-

sides, as a sounder guidance, HWnet can help to more faith-

fully and robustly achieve deep hyperspectral prior(DHP).

The extracted weights by HWnet are verified to be able to

effectively capture complex noise knowledge underlying in-

put HSI, revealing its working insight in experiments.

1. Introduction

Hyperspectral images (HSIs) record various adjacent

electromagnetic spectrums of the same scene and provide

more plentiful information than gray-scale or RGB images.

Accordingly, over the past decades, HSIs have contributed

to many practical applications such as food security [29],

disease diagnosis [35], remote sensing [50] and so on.

The practically collected HSIs, however, are often cor-

rupted with complex noises due to sensor erros, atmosphere,

photon, etc., like stripe and deadline ones [3]. Especially,
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Figure 1: (a) Our method learns an explicit HWnet function, ca-

pable of directly obtaining a proper weighting scheme for an input

noisy HSI image. (b) The learned HWnet can be used in plug &

play for weight setting of a general weighted denoising model.

the real HSI noises are usually distributed non-i.i.d. across

both spatial and spectral modes, i.e., different in different

spatial locations [4], and varied in different bands [9]. This

tends to largely hamper the performance of subsequent HSI

processing tasks, and a pre-processing step for HSI denois-

ing is thus necessary. But the complexity of real HSI noises

makes it extremely hard to design a unique model for effi-

cient and general HSI denoising.

An efficient utilized approach is to impose weights on

different HSI pixels, expressed as:

min
X

||W ⊙ (Y −X)||F + λR(X), (1)

where Y,X ∈ Rhw×b represent the observed noisy and

the recovered HSIs, respectively, h,w, b denote the spatial

height, width, and spectral band number of the investigated

HSI. Note that we have reshape the spatial width and height

modes as one unique dimension. || · ||F denotes the Frobe-

nius norm, and ⊙ means the element-wise Hadamard pro-

duction. R(·) denotes a general regularization term. The

rationality of this scheme can be easily interpreted: larger

weights should be assigned to less polluted HSI pixels/areas

and vice verse, so as to suppress the negative influence

brought by the noisy elements.

There are mainly two manners used for presetting the

weighting scheme in (1). One is to pre-specify a certain

weighting function [10] or directly pre-fix weights on all el-

ements [41] based on prior understanding to the problem or
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the data. A main clue is to assign weights inversely propor-

tional to the estimated standard deviations on pixel noises

before or during algorithm iterations [16]. Albeit easy to

implement, such weighting scheme is generally hard to be

properly pre-specified for real diversely complicated noises.

Another manner is to make all weights included in the

model capable of being automatically and adaptively eval-

uated. The main idea is to make certain noise distribution

assumptions, like mixture models [25][3][43], and then us-

ing EM or variational inference algorithms to optimize all

involved variables (including the desired images and noise

distribution parameters). During the learning process, the

step of updating the recovered image naturally corresponds

to a weighting scheme similar as (1), in which all weights

can be automatically ameliorated in iterations based on the

noise information delivered in the current step. The perfor-

mance of this strategy, however, too much depends on the

properness of the subjectively pre-assumed noise distribu-

tion. When the pre-assumption is largely deviated from real

ones, the performance of the algorithm will be unavoidably

degraded. It is thus critical to achieve a weighting regime

which is able to adapt diverse and complex noise distribu-

tions for handling real-world HSI denoising issues.

Against this issue, this study raises a new weighting

scheme on the model (1) to make it well self-adaptable to

complex HSI noises. The basic understanding is that: since

the proper weight scheme for W depends on the underlying

noise extents embedded in the input noisy HSI Y , there ra-

tionally exists an implicit relationship mapping from Y to

W . Accordingly, the proposed method aims to make this

mapping explicit by designing it as a parametric function,

called hyper-weight-net(HWnet), and learn all its parame-

ters through a data-driven way. By learning such an ex-

plicit mapping function, which is expected to be capable

of capturing the common and general weighting principle

for HSIs, it can be readily used to insert weights into gen-

eral weighted HSI recovery models (1) for any newly tested

HSIs (as shown in Fig. 1), with no need of any noise distri-

bution pre-assumptions.

Our contribution can be mainly summarized as follows:

1) A novel method is proposed to capture the general

weighting principle for HSI denoising models in a data-

driven manner. The extracted explicit weighting scheme is

expected to adapt a wide range of complex HSI noises.

2) The learned weighting scheme is verified to have an

excellent generalization capability, not only able to be finely

used for test HSIs with noises evidently different from those

contained in the training data, but also capable of being

readily used in general HSI recovery weighted methods for

direct weight assigning with no need of manual noise pre-

assumptions.

3) It is verified that the weights extracted by our method

can effectively reveal complex noise insights underlying the

input noisy HSI. Remarkably, it can be easily used as an

ameliorated loss for the known DHP network[32]. Instead

of orienting to the input noisy images, the network can be

better trained under a sounder guidance by using the recti-

fied weighted loss deduced with our method.

Sec. 2 briefly introduces related work. Sec. 3 provides

the proposed model as well as its solving strategy. Sec. 4 re-

ports experimental results for performance evaluation of the

proposed method. The paper is finally concluded. Through-

out the paper, we denote scalar, vector, matrix as non-bold

lower case, bold lower case, upper case letters, respectively.

2. Related Works

Existing HSI denoising methods have deeply explored

HSI internal prior structures. As known in [2], HSI is

with evident low-rank property along its spectral mode. By

using this prior, [8][5] used PCA to extract clean image

from noisy HSI. [46] adopted nuclear norm to describe this

prior, and [40] extended this idea to weighted Schatten p-

norm. [51] combined low rank models with sparse coding

to jointly extract global and local features. [53] proposed

a fast denoising algorithm based on low rank and sparse

representation. [15] applied non-local similarigy in the de-

noising. [22] considered to plug an off-the-shell denoising

network to a non-negative matrix factorization model. [17]

combined spectral low rank constrain with spatial TV con-

straint to better preserve spatial structures. [19][36][27] fur-

ther extended 2d TV regularization to spatial and spectral

space. Seeing HSI as a 3D cube, [24][28][38][7] proposed

tensor based recovery using tensor factorization methods.

Some other works focused on encoding complex noise

contained in HSIs. [52] found that less bands of HSIs are

corrupted by noise and proposed to select quality superior

bands to help denoising targeted noisy bands. [5] combined

PCA with noise adjust strategy. [16] took spectral noise dis-

tinction into consideration and adjusts output image in each

iteration using estimated noise variance. [17] used sparse

constraint on image residuals, which assume that noises fol-

lows i.i.d. Laplace distribution. [40] applied l2,1 constraint

on noise to make the denoising model more robust.

To make the model better adapt the real complex noises,

[4] proposed to globally model noise using more powerful

mix EP distributions. [9] further noticed the noise distinc-

tions among bands, and proposed to model noise as a non-

i.i.d. manner along spectrum. Later, [45] extend this idea

to model HSI noise structure by a two-level hierarchical

Dirichlet process, which better adapts such non-i.i.d. noise

structures in real HSIs.

Recently, based on powerful learning ability of deep neu-

ral network, several deep learning (DL) methods have been

proposed for the task. [6] designed a 2D CNN with dilation

and residual learning. By concatenating adjacent bands,

[44] proposed a jointly spatial-spectral network. Besides,
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since HSIs are 3D data, several 3D networks are designed

to better extract spatial-spectral features [11][23][37].

Albeit achieving good performance, DL approach is

known to rely on the pre-collected training data. If there are

evident bias between testing and training samples, the over-

fitting issue tends to easily occur. Comparatively, traditional

model-driven methodology is with better interpretability

and less relies on pre-collected training samples. But their

performance largely rely on the proper pre-assumptions on

data, especially on noises in our task. This work thus mainly

aims to alleviate such subjective prior-assumption issue for

traditional models, and make them better adapt real com-

plex noises in real scenarios, so as to appeal that besides

popular DL regimes, such conventional model-driven man-

ner is also hopeful to be further explored.

3. The Proposed Method

Our aim is to learn an explicit function mapping from a

noisy image Y to the weight matrix W , which can be read-

ily imposed on the model (1) for adapting complex image

noises. We denote the desired HWnet as Cθ(·) with θ as its

parameters. Given the training data {Y m, Xm
gt}

M
m=1, where

Y m and Xm
gt represent a pair of noisy and expected clean

images, respectively, and M denotes the training sample

number, we expect to learn the form of Cθ(·) in an end-to-

end data-driven manner. To realize this aim, our main strat-

egy is to construct a variational parametric approximation

to the posterior of the latent variables, including the noise

knowledge W and the latent clean image X , conditioned on

the noisy image Y . Such an explicit parametric variational

posterior can then easily guide to form Cθ(Y ), and directly

infer the weight matrix from any test noisy image. To this

aim, we first require to formulate a rational full Bayesian

model of the problem based on training image pairs.

3.1. Full Bayesian Model Based on Training Image
Pairs

Denote Aij as the element of a matrix A in its i-th row

and j-th column. For an image pair {Y,Xgt} in training set,

Eq. (1) implies the following model to express the genera-

tion process of Y conditioned on latent variables W , X:

Yij ∼ N (Yij |Xij , 1/W
2
ij), i ∈ [hw], j ∈ [b]. (2)

Note that we directly take the latent variable W 2
ij as preci-

sion of the Gaussian distribution for generating Yij . This

can be naturally deduced by understanding the determinis-

tic model (1) under the maximum a posteriori framework.

This is also why W implicitly delivers the noise informa-

tion underlying the input image Y [21]. Besides, different

Wijs across the entire image represent the non-i.i.d. noise

property for the problem, make the model capable of suffi-

ciently flexible to adapt complex noises in real noisy HSIs.

To achieve the full Bayesian model for the latent vari-

ables W and X conditioned on Y , we need to construct

possibly faithful priors for W and X , respectively. Fortu-

nately, the supervised noisy-clean image pairs are provided

in the training data, making such task easy to be attained.

For the latent clean image variable X , it should be close

to the given groundtruth image Xgt. We thus impose the

following conjugate Gaussian distribution on it:

X ∼ N (X|Xgt, ε
2), (3)

where ε2 is set as a small value (1e-5 throughout all our

experiments) to make X largely distributed close to Xgt
1.

For latent variable W 2
ij representing the noise precision,

we can easily set it as a conjugate prior distribution:

W 2
ij ∼ Γ(ρ+ 1, ρσ2

ij), (4)

which can guarantee W 2
ij with mode 1/σ2

ij(σ2
ij is the noise

variance in Yij). Such noise knowledge can be directly ob-

tained for synthetic noisy images, or easily estimated by cal-

culating the average of image noises (i.e., Y −Xgt) around

a local area of a pixel. We need to set a large ρ the make

the distribution concentrated around the expected precision,

and we just easily set it as 25, which is large enough to

guarantee a good performance of our method consistently.

Combining (2), (4) and (3), a full Bayesian model for the

problem can then be obtained:

p(X,Y,W 2) = p(Y |X,W 2)p(X)p(W 2). (5)

Our aim is then to construct a variational parametric poste-

rior to approximate p(X,W 2|Y ), through which to obtain

the expected explicit weight function Cθ(·).

3.2. Variational Parametric Posterior

We then need to construct a variational distribution

q(X,W 2|Y ) to approximate the real posterior p(X,W 2|Y )
as following:

q(X,W 2|Y ) = q(W 2|Y )q(X|Y,W 2),

=
∏

ij

q(W 2
ij |Y )

∏

ij

q(Xij |Y,W
2). (6)

Based on the conjugate priors in (3) and (4), it is rational to

formulate the variational posterior forms of W 2 and X as:

q(W 2
ij |Y ) = Γ(W 2

ij |α(Y ; θ)ij , β(Y ; θ)ij), (7)

q(Xij |Y,W
2) = N (Xij |(G(Y ;W ))ij , η

2). (8)

where (α(Y ; θ)ij , β(Y ; θ)ij) represent the prediction func-

tions for getting posterior parameters of latent variable W 2.

The mapping G(Y ;W ) denotes the algorithm for solving

(1) to input a noisy image Y and output a recovery image

under imposed weight W . Our aim is then to optimize the

parameter θ to get an explicit scheme Cθ(Y ) = (α, β) for

predicting weights directly from a test noisy image2.

1The given Xgt is actually not the exact latent clean image X since

any “clean” image definitely contain certain noises. Even when it is suffi-

ciently clean, we can set ε extremely small to make X close to an impulse

response on Xgt.
2When we obtain Cθ(Y ), the weight for each Yij of a test image Y can

be easily valued as the mode W 2
ij = (αij − 1)/βij of the corresponding

predicted Gamma distribution.
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Figure 2: Training phase: We highlight all variables that are related to network parameter θ in red to show how θ flows to loss function in

feedforward process. (a) Cθ takes noisy HSI Y as input and outputs parameters α, β of variational distribution of W 2, i.e. q(W 2|Y ) =
Γ(W 2|α, β). (b) Sample (W 2)s from Γ(α, β). Then algorithm G that solves WLRMF problem takes the noisy HSI Y and the sampling

(W 2)s as input and outputs evaluated image X(N). The variational distribution of latent image X takes the form N (X|X(N), η
2). (c)The

loss function is to inference variational posterior distributions of W 2 and X .

Two remarks are necessary to be clarified. One is that the

variance parameter η2 can also be optimized. But since it is

not very relevant to our concerned Cθ(·), we just easily set it

as a small constant value 1e-2. Besides, we want to empha-

size that the parameter θ is shared by posteriors calculated

on all training pairs, and thus our method is expected to ex-

tract the general statistical inference insight from the noisy

image to its proper weight values.

Then we have three questions required to be answered.

How to construct the form of Cθ(·), how to express the al-

gorithm as an explicit function G, and how to design the

loss objective to calculate the parameter θ.

3.3. Design HWnet Cθ

To deal with HSIs with different spatial-spectral sizes

and make use of abundant spectral information, we design

the HWnet Cθ(·) using pseudo-3d block(P3D) in [30] as

basic convolution block. P3D separates a 3d conv-layer

with kernel size 3×3×3 to two 3d conv-layers connected

by ‘ReLU’: ‘3× 3× 1 conv + ReLU + 1× 1× 3 conv’,

which halves the needed parameters. Similar to a 5-layer

DnCNN architecture [48], the overall Cθ has the structure

of ‘(P3D+ReLU)+(P3D+BN+ReLU)*3+full 3d conv’, and

the feature channels in each layer is 64.

3.4. Taking WLRMF Algorithm as An Explicit
Function

As widely known for general HSIs, a clean HSI X pos-

sesses evident low-rank structure along its spectral mode.

Similar as many current works, we can formulate the fol-

lowing optimization model for (1):

min
X,U,V

||W ⊙ (Y −X)||2F + λ||X − UV T ||2F (9)

where U ∈ Rhw×r, V ∈ Rb×r, and r ≪ hw, implying the

low-rank penalty imposed on the recovery image X . This

model exactly complies with the one known as WLRMF

[33]. We employ it due to its simplicity for our weighting

function construction task.

(9) can be easily solved using alternating minimization

strategy. In each iteration, the updating step can be exactly

written as the closed-form expression. Specifically, in the k-

th iteration, the low-rank approximation UV T of the input

matrix can be updated by calculating

{U(k)V
T
(k)} = arg min

UV T

||X(k−1) − UV
T ||2F

= SVDr(X(k−1)),
(10)

where SVDr(·) corresponds to the closed form solution by

applying SVD to X(k−1) to get its rank-r approximation3.

Then, X can be updated by computing:

X(k) = argmin
X

||W ⊙ (Y −X)||2F + λ(k)||X − U(k)V
T
(k)||

2
F

=
W 2 ⊙ Y + λ(k)U(k)V

T
(k)

W 2 + λ(k)

(11)
where the trade-off parameter λ(k) is set by λ(k) =
γλ(k−1), where γ > 1, along iterations. Division in

Equ. (11) is in element-wise meaning.

For each iteration of the algorithm, we can thus write the

an explicit updating equation as:

X(k) = gk(X(k−1), Y ;W 2)

=
W 2 ⊙ Y + λ(k)SVDr(X(k−1))

W 2 + λ(k)

.
(12)

Furthermore, assume we set the iteration number as N , and

take X(0) as initialization, we can express the algorithm ex-

actly as the following function expression:

3The solution of U and V actually are not unique due to they have a

freedom of scalar transformation. But the low-rank approximation UV T is

unique for the problem. We thus directly use it as the optimization variable.
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X(N) = gN (...g1(X(0), Y ;W 2), Y ;W 2) = G(Y ;W 2), (13)

which can be depicted as a “pseudo deep network”, contain-

ing only shared W as its parameter in each of its layers, as

can be seen in Fig. 2 (b).

3.5. Loss Designing for Parameter Training

Our goal is to then minimize the KL-divergence be-

tween the variational posterior q(X,W 2|Y ) and true pos-

terior p(X,W 2|Y ). The objective is expressed as follows:

min
θ

KL[q(X,W 2|Y )||p(X,W 2|Y )]. (14)

Based on the variational inference principle [13], (14) is

equivalent to the following optimization problem:

min
θ

−Eq(X,W2|Y )[ln p(Y |X,W 2)] +KL[q(W 2|Y )||p(W 2)]

+ Eq(W2|Y ){KL[q(X|Y,W 2)||p(X)]}.

(15)
The objective function (15) contains three parts:

L1 = −Eq(X,W2|Y )[ln p(Y |X,W 2)]

≈
M
∑

m=1

{

1

S

S
∑

s=1

1

2
||(Wm)s ⊙ (Y m − (Xm

(N))
s)||2F+

∑

ij

{η2αm
ij

2βm
ij

+
1

2
ln 2π −

1

2
[ψ(αm

ij )− lnβm
ij ]

}

}

,

(16)

L2 = KL[q(W 2|Y )||p(W 2)]

=
M
∑

m=1

{

∑

ij

{

(αm
ij − ρ− 1)ψ(αm

ij )− ln Γ(αm
ij )

+ ln Γ(ρ+ 1) + (ρ+ 1)(lnβm
ij − ln ρ(σm

ij )
2)

+ α
m
ij (
ρ(σm

ij )
2

βm
ij

− 1)
}

}

,

(17)

L3 = Eq(W2|Y )

[

KL[q(X|Y,W 2)||p(X)]
]

≈
M
∑

m=1

{

1

S

S
∑

s=1

{ 1

2ε2
||(Xm

(N))
s −X

m
gt ||

2
F

}

+
η2

2ε2
−

1

2
ln
η2

ε2
−

1

2

}

.

(18)

Parts of integrations over W 2
ij in L1 and L3 is intractable.

We thus approximate them by randomly sampling S sam-

ples {[(W 2
ij)

m]s}Ss=1 from q(W 2
ij |Y

m). (Xm
(N))

s means al-

gorithm output image with input [(W 2)m]s as in Equ. (13).

It is convenient to use automatic differentiation tools in

Pytorch[26] framework to calculate stochastic gradients.

Another complex operator is SVD in (12). We refer to [18]

to directly calculate derivatives wrt SVD.

3.6. Compared with Deep Unfolding Methods

Our proposed training strategy, especially the algorithm

function G as defined in (13), seems similar to the deep

unfolding approach by constructing deep network architec-

ture through simulating the unrolling form of an algorithm

[39][47][12]. However, our “unfolded” network G exactly

accords with the iterative calculation process of the algo-

rithm. Comparatively, conventional deep unfolding net-

works cannot exactly comply with the algorithm due to

some inevitable approximations. In this sense, this new

“deep unfolding” attempt is more interpretable and with

more essential relationship with model-driven approaches.

4. Experimental Results

20 images were randomly selected from CAVE

dataset [42] as training samples, and the left 12 ones are

taken as test ones. The original image size is 512×512×31.

We crop 1250 overlapping patches of size 96×96×20 from

them for implementation convenience. Data augmentation

schemes including rotation and flipping are used, resulting

in total 10000 patches. In the WLRMF, the rank r is set as 3
due to its strong correlation among all spectral bands. The

iteration number N is set as 20. In Equ. (12), the interme-

diate output X(k) stays invariant if W 2 and λ(k) scale with

equal proportion, and we easily set initial trade-off parame-

ter λ(0) as 0.5 ∗ mean(W 2). We use ADAM optimizer [20]

to train Cθ for 50 epoches. The initial learning rate is set as

1e-3 and decays by factor 0.8 every 4 epoches.

To create paired training patches, we firstly generate

spatial-spectral variant sigma map Σ of size 96 × 96 × 20,

and then generate Gaussian noise to each patch as:

Y m = Xm
gt + nm,

nm ∼ N (0, 1)⊙ Σm.
(19)

For testing, ICVL dataset[1], CAVE dataset and remote

sensed image PaviaU4 are employed. HYDICE Urban5 im-

age is used for real noisy HSI experiment. We finetune the

pretrained Cθ(·) on part of PaviaU for 8 epoches. The fine-

tuned Cθ(·) is used for testing the rest PaviaU image and

HYDICE Urban image. Each band of HSI is normalized to

[0,1] as in [46][9]. The iteration number N in WLRMF can

be adjusted during testing phase and we set it as 150.

For synthetic experiments, we generate 7 different noise

types. Albeit trained on noise type as (19), we expect the

learned Cθ to be generalized to more diverse noise cases.

Case 1(i.i.d Gaussian): All bands of HSI are corrupted

by Gaussian noise with zero mean and noise level σ = 30.

Case 2(non i.i.d Gaussian): The entire HSI is corrupted

by zero-mean Gaussian noise with different intensities from

band to band. The intensity ranges from 10 to 70.

Case 3(spatial-spectral variant Gaussian): HSI is cor-

rupted by spatial-spectral variant Gaussian noise as in (19).

Case 4(Gaussian + Stripe): HSI is corrupted by non-i.i.d

Gaussian noise in Case 2. 10 bands for ICVL and CAVE

and 40 bands for PaviaU are randomly chosen to add stripe

noise with 0.05-0.2 percentages.

4http://www.ehu.eus/ccwintco/index.php/Hyperspectral Remote

Sensing Scenes
5https://hdl.handle.net/11681/2925
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(a) Original (b) Noisy (c) SVD (d) LRMR (e) LRTA (f) PARAFAC (g) NMoG (h) TDL (i) HW-LRMF

Figure 3: Visual comparison results at 15th band of ICVL HSI. The noisy HSI is corrupted with Gaussian and stripe noise. The figures can

be better observed by zooming in on the screen.

(a) Original (b) SVD (c) LRMR (d) LRTA (e) PARAFAC (f) NMoG (g) TDL (h) HW-LRMF

Figure 4: Visual denoising results at 104th band on real noisy HYDICE Urban image.

Case 5(Gaussian + Impulse): Each band of HSI is con-

taminated by Gaussian noise in Case 2. 10 bands for ICVL

and CAVE and 40 bands for PaviaU are added with impulse

noise. The intensity ranges from 0.1 to 0.5.

Case 6(Gaussian + Deadline): All bands are corrupted

by Gaussian noise in Case 2. 10 bands for ICVL and CAVE

and 40 bands for PaviaU are randomly added with deadline.

The number of deadline account for 0.05-0.2 percentages.

Case 7(Mixture Noise): Each band is randomly cor-

rupted by at least one kind of noise in Cases 2-6.

The peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) are used for quantitatively evaluation.

4.1. Comparison Experiments

As mentioned above, once HWnet Cθ(·) is obtained

in the training stage, it can be readily used to WLRMF

model (9) for new coming noisy HSIs by estimating W 2

as mode of Γ(α, β), where (α, β) are outputs of Cθ(·).
We denote the pre-trained Cθ(·) together with WLRMF

as HW-LRMF. In this section, we directly compare the

HW-LRMF with SVD(baseline), LRMR[46], LRTA[31],

PARAFAC[24], TDL[28] and NMoG[9]. All parameters

are set as in their papers or in their provided codes.

From Tab. 16, one can see the superiority of the predicted

weights W . Specifically, the proposed method outperforms

SOTA low rank methods, LRMR and NMoG, under all

noise settings. Although using very simple low rank matrix

factorization framework, HW-LRMF surpasses SOTA ten-

sor based methods LRTA, PARAFAC and TDL in almost all

cases. Besides, although Cθ is only trained with noise Case

2, it still finely generalized to all rest different noise types.

More results can be found in supplementary materials (SM).

Fig. 3 shows visual comparison of denoising effects un-

der Case 4. LRTA and PARAFAC fail to remove stripes

and vestige of stripes can be seen in TDL. SVD, LRMR

and NMoG remove most stripes while still exist obvious

random noise. Our HW-LRMF achieves best visual perfor-

6The results on CAVE and PaviaU are presented in SM due to page

limitation.

mance with less apparent stripes and random noise.

Fig. 4 shows results of real HSI noise removal of all

competing methods. Except for NMoG and HW-LRMF,

other methods can not efficiently remove their heavy noises.

Comparatively, it is clear that our method preserves more

details and achieves better visual results.

4.2. Transferring Weights to Other Models

One of our major interests is whether the pre-trained

Cθ(·) can be finely transferred on other weighted models (1)

for weight imposing. To this aim, we select NAILRMA[16],

LLRT[7] and NGmeet[15] for verification. NAILRMA em-

ploys HSI’s low rank structure and thus shares some com-

mon property with LRMF model. It adjusts intermediate

output using estimated noise variance in each band by a

prefixed noise estimation function. NGmeet and LLRT are

SOTA Gaussian denoising methods. Both global low rank

property and local features on reduced images are consid-

ered in NGmeet. LLRT is a tensor based method, whose

image prior is far more different from low rank property.

We reformulate their original models as weighted vi-

sion (1) and imposing weights predicted by HWnet, namely

HW-NAILRMA, HW-NGmeet and HW-LLRT. Their orig-

inal optimization methods are used to solve the weighted

models. HW-NAILRMA and HW-NGmeet do not intro-

duce extra hyper-parameters and all other parameters are

set as the original ones. HW-LLRT needs one extra hyper-

parameter and other parameters also inherit from original

models. More details are introduced in SM.

In Tab. 2, it is seen that overall pretrained Cθ is ben-

eficial for other denoising models to cope with complex

noises. HW-NAILRMA surpasses original method in all

noise settings. NGmeet achieves better restoration results

for i.i.d Gaussian noise removal. But for complicated noise

cases, the imposed weights W by HWnet greatly help boost

performance. Although image prior used in LLRT is dif-

ferent from that in LRMF, W still helps improve the de-

noising results. Note that for NGmeet and LLRT, improve-

ments brought by weighting scheme gradually decreases
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Table 1: Quantitative comparison of HW-LRMF and other denoising methods on ICVL dataset. The best results are in bold.

Case Index
Methods

Noisy SVD LRMR LRTA PARAFAC NMoG TDL HW-LRMF

1
PSNR 18.59 29.21 30.24 34.95 30.93 30.99 37.09 34.93

SSIM 0.5063 0.8886 0.9122 0.9353 0.8715 0.9371 0.9697 0.9431

2
PSNR 16.30 26.89 26.27 28.42 32.43 30.13 28.23 32.52

SSIM 0.3273 0.7776 0.6975 0.7368 0.8748 0.8691 0.7822 0.8946

3
PSNR 17.53 27.84 24.92 19.57 31.49 30.71 22.11 33.67

SSIM 0.4611 0.8173 0.7635 0.5052 0.8539 0.9078 0.6687 0.9295

4
PSNR 16.16 25.41 27.00 27.26 27.38 29.13 28.14 31.80

SSIM 0.4471 0.8111 0.8439 0.7873 0.8068 0.9159 0.8607 0.9258

5
PSNR 14.58 21.98 27.30 24.51 27.64 28.91 23.74 31.58

SSIM 0.2854 0.6204 0.7844 0.6248 0.7867 0.8475 0.6254 0.8960

6
PSNR 15.59 24.15 25.40 23.21 23.46 28.08 22.84 31.26

SSIM 0.4596 0.8114 0.8305 0.6893 0.6808 0.9120 0.7379 0.9324

7
PSNR 14.08 21.28 23.97 20.46 22.05 25.38 20.11 28.38

SSIM 0.3665 0.6973 0.7549 0.5288 0.6021 0.8461 0.5686 0.8838

Original Noisy NAILRMA
HW-

NAILRMA
NGmeet HW-NGmeet LLRT HW-LLRT

C
as

e
3

C
as

e
6

Figure 5: Denoising results of transfer experiments. The first row is for ’spatial-spectral variant Gaussian’ noise at 71th band of PaviaU

image, and the second row is for ’Gaussian + deadline’ noise at 13th band of image in ICVL dataset.

when noise becomes more complex. This is in accordance

with expectation since Cθ is trained with WLRMF model

and is thus still certainly biased towards WLRMF model.

Fig. 5 shows the denoising results obtained by original

models and its corresponding weighted vision under Case 3

and 6. It can be observed that the weighted models achieves

better visual results for all competing methods. Results on

real noise removal can be seen on SM.

4.3. Deep Hyperspectral Prior Experiments

In this part, we apply pre-trained Cθ to deep hyperspec-

tral prior (DHP)[32]. DHP extends deep image prior [34] to

HSI denoising, where the latter finds that the CNN Cµ itself

contains descriptions for image prior. One can retrieve rel-

atively clean image from only noisy image by feeding ran-

dom input Z to a CNN and directly minimizing the MSE

loss between the output and noisy image

min
µ

||Cµ(Z)− Y ||2F . (20)

Attributed to the noise extraction capability of HWnet, we

further extends DHP to its weighted vision HW-DHP:

min
µ

||W ⊙ (Cµ(Z)− Y )||2F . (21)

where W is estimated from Cθ(Y ) as square root of mode

of q(W 2|Y ) as aforementioned. The clean image is ex-

pected to be captured under a sounder guidance considering

the complex noise embedded in Y .

We test the two training strategies under Case 2 and Case

5. Fig. 6 compares their denoising results. For ‘non i.i.d

Gaussian’ noise, both DHP and HW-DHP firstly learn im-

age prior and the PSNR value continues to rise. Then DHP

quickly overfits to noise after around 5000 iteration, while

HW-DHP slowly starts to overfit at around 10000 iteration.

For ‘Gaussian and impulse’ noise, DHP can not efficiently

extract image features from noisy observation due to the

noise complexity. However, our HW-DHP attains much ro-

bust and better denoising results.

Fig. 6 seeds two useful messages: 1) The weight W
trained with the help of handcrafted image prior could in

turn assists unsupervised network learning, i.e., explore im-

age feature in neural networks. 2) Weighted loss (21) holds

more resistance to overfitting to noise patterns and interfer-

ence from violent noise.

4.4. Physical Meanings of Weights by HWnet

In this part, we take a deeper look at the shape of

the extracted weight W by pre-trained Cθ. The noise

is generated as (19). We visualize Σ on one band in

Fig. 7b. As presented in (2), W 2 is interpreted as pre-

cision of Gaussian distribution. Since we inference the
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Table 2: Quantitative comparison of transfer experiments on ICVL dataset. The best results are in bold.

Case Index NAILRMA
HW-

NAILRMA
NGmeet

HW-

NGmeet
LLRT

HW-

LLRT
ablation

1
PSNR 32.47 36.52 40.23 39.98 39.55 39.48 39.55

SSIM 0.9451 0.9680 0.9813 0.9798 0.9771 0.9769 0.9771

2
PSNR 31.11 34.96 34.93 37.18 38.66 38.82 38.66

SSIM 0.8576 0.9287 0.9369 0.9424 0.9621 0.9626 0.9621

3
PSNR 30.64 34.47 34.68 38.35 38.42 39.24 38.42

SSIM 0.8468 0.9508 0.9487 0.9708 0.9700 0.9734 0.9700

4
PSNR 29.79 33.83 32.79 34.95 35.79 35.92 35.79

SSIM 0.9123 0.9555 0.9473 0.9571 0.9601 0.9612 0.9601

5
PSNR 26.25 29.07 30.10 30.81 30.82 30.84 30.82

SSIM 0.7823 0.8578 0.8467 0.9000 0.8810 0.8814 0.8810

6
PSNR 27.89 31.62 26.52 31.73 29.34 29.56 29.34

SSIM 0.9093 0.9513 0.8546 0.9284 0.8878 0.8899 0.8878

7
PSNR 24.71 28.13 26.43 27.57 26.62 26.89 26.62

SSIM 0.8030 0.8913 0.8061 0.8630 0.8108 0.8206 0.8108

(a) Case2: non i.i.d Gaussian noise (b) Case5: Gaussian + impulse

noise

Figure 6: Comparison results of DHP and HW-DHP

posterior distribution of W 2 as Γ(α, β), then 1/W 2 ∼
IG(α, β). The mode of 1/W 2 is β/(α + 1). Fig. 7c

plots two lines from
√

β/(α+ 1) and Σ from the same

position. The trend of
√

β/(α+ 1) is consistent with

that of Σ overall, because in loss function (15), the term

KL[q(W 2|Y )||p(W 2)] controls the variational posterior

distribution of W 2 not too far from prior distribution (4)

whose mode is 1/σ2. Eq(W 2|Y ){KL[q(X|Y,W 2)||p(X)]}

in (15) causes
√

β/(α+ 1) to vibrate around Σ. Specif-

ically, we plot local part of
√

β/(α+ 1) and the absolute

residual in Fig. 7d. The tendencies of this two lines are

also consistent, yet on pixel level. This explains that loss

term Eq(W |Y ){KL[q(X|Y,W )||p(X)]} intrinsically recti-

fies the proportion of residuals in (1) elementwisely.

To further verify the noise knowledge extraction ca-

pability of HWnet, like FFDnet[49] and CBDnet[14], we

concatenate the estimated 1/W with noisy image as input

to blind denoising networks, and take HSI-DeNet[6] and

DSSnet[11] as baseline networks. The main modification

to network structure is doubling the channels numbers in

the first convolution layer, while for HSI-DeNet(2D CNN),

a single layer of 3D convolution is additionally added be-

fore original first layers. We find that the modified networks

with additional input 1/W evidently outperforms baseline

networks. The improvement reveals that such predicted

weights do provide insightful noise information and help

network for better denoising. Details on experiment settings

(a) noisy image (b) sigma map Σ of one band

(c) Two lines from Σ and
√

β/(α+ 1) in the same

position as highlighted in (b).

(d) local part of
√

β/(α+ 1)
and absolute residual between

noisy image and clean one.

Figure 7: Physical meanings of weights extracted by Cθ

and results are included in SM.

5. Conclusion

In this paper, we have proposed a novel strategy to learn

an explicit weighting function, called HWnet, for guiding

to impose weights for any testing noisy HSIs. By taking

the HWnet as a PnP weighting imposer, it has been verified

that it can not only help the method finely adapt diverse and

complex noises, but also can be readily extended to be used

in general weighted models for improve their denoising ca-

pability. The weighted loss by HWnet can also be taken

as a ameliorated loss beyond traditional MSE, to help get a

sounder guidance for network training. Such new weight-

ing scheme thus possesses a potential usefulness for perfor-

mance enhancement for both traditional model-driven and

more popular data-driven DL approaches.
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Fox, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 32, pages 8024–8035. Curran Asso-

ciates, Inc., 2019.

[27] Jiangjun Peng, Qi Xie, Qian Zhao, Yao Wang, Leung Yee,

and Deyu Meng. Enhanced 3dtv regularization and its ap-

96747



plications on hsi denoising and compressed sensing. IEEE

Transactions on Image Processing, 29:7889–7903, 2020.

[28] Yi Peng, Deyu Meng, Zongben Xu, Chenqiang Gao, Yi

Yang, and Biao Zhang. Decomposable nonlocal tensor dic-

tionary learning for multispectral image denoising. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2949–2956, 2014.

[29] Jianwei Qin, Kuanglin Chao, Moon S Kim, Renfu Lu, and

Thomas F Burks. Hyperspectral and multispectral imaging

for evaluating food safety and quality. Journal of Food En-

gineering, 118(2):157–171, 2013.

[30] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In proceedings of the IEEE International Conference on

Computer Vision, pages 5533–5541, 2017.

[31] Nadine Renard, Salah Bourennane, and Jacques Blanc-

Talon. Denoising and dimensionality reduction using multi-

linear tools for hyperspectral images. IEEE Geoscience and

Remote Sensing Letters, 5(2):138–142, 2008.

[32] Oleksii Sidorov and Jon Yngve Hardeberg. Deep hyper-

spectral prior: Single-image denoising, inpainting, super-

resolution. In Proceedings of the IEEE International Con-

ference on Computer Vision Workshops, pages 0–0, 2019.

[33] Nathan Srebro and Tommi Jaakkola. Weighted low-rank ap-

proximations. In Proceedings of the 20th International Con-

ference on Machine Learning (ICML-03), pages 720–727,

2003.

[34] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 9446–

9454, 2018.

[35] Tuan Vo-Dinh. A hyperspectral imaging system for in vivo

optical diagnostics. IEEE Engineering in Medicine and Bi-

ology Magazine, 23(5):40–49, 2004.

[36] Yao Wang, Jiangjun Peng, Qian Zhao, Yee Leung, Xi-Le

Zhao, and Deyu Meng. Hyperspectral image restoration via

total variation regularized low-rank tensor decomposition.

IEEE Journal of Selected Topics in Applied Earth Observa-

tions and Remote Sensing, 11(4):1227–1243, 2017.

[37] Kaixuan Wei, Ying Fu, and Hua Huang. 3-d quasi-recurrent

neural network for hyperspectral image denoising. IEEE

Transactions on Neural Networks and Learning Systems,

2020.

[38] Qi Xie, Qian Zhao, Deyu Meng, and Zongben Xu.

Kronecker-basis-representation based tensor sparsity and its

applications to tensor recovery. IEEE transactions on pattern

analysis and machine intelligence, 40(8):1888–1902, 2017.

[39] Qi Xie, Minghao Zhou, Qian Zhao, Zongben Xu, and Deyu

Meng. Mhf-net: an interpretable deep network for multi-

spectral and hyperspectral image fusion. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2020.

[40] Yuan Xie, Yanyun Qu, Dacheng Tao, Weiwei Wu,

Qiangqiang Yuan, and Wensheng Zhang. Hyperspectral im-

age restoration via iteratively regularized weighted schatten

p-norm minimization. IEEE Transactions on Geoscience

and Remote Sensing, 54(8):4642–4659, 2016.

[41] Jun Xu, Lei Zhang, and David Zhang. A trilateral weighted

sparse coding scheme for real-world image denoising. In

Proceedings of the European conference on computer vision

(ECCV), pages 20–36, 2018.

[42] F. Yasuma, T. Mitsunaga, D. Iso, and S.K. Nayar. General-

ized Assorted Pixel Camera: Post-Capture Control of Reso-

lution, Dynamic Range and Spectrum. Technical report, Nov

2008.

[43] Hongwei Yong, Deyu Meng, Wangmeng Zuo, and Lei

Zhang. Robust online matrix factorization for dynamic back-

ground subtraction. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 40(7):1726–1740, 2017.

[44] Qiangqiang Yuan, Qiang Zhang, Jie Li, Huanfeng Shen, and

Liangpei Zhang. Hyperspectral image denoising employ-

ing a spatial–spectral deep residual convolutional neural net-

work. IEEE Transactions on Geoscience and Remote Sens-

ing, 57(2):1205–1218, 2018.

[45] Zongsheng Yue, Deyu Meng, Yongqing Sun, and Qian Zhao.

Hyperspectral image restoration under complex multi-band

noises. Remote Sensing, 10(10):1631, 2018.

[46] Hongyan Zhang, Wei He, Liangpei Zhang, Huanfeng Shen,

and Qiangqiang Yuan. Hyperspectral image restoration using

low-rank matrix recovery. IEEE transactions on geoscience

and remote sensing, 52(8):4729–4743, 2013.

[47] Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfold-

ing network for image super-resolution. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3217–3226, 2020.

[48] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising. IEEE Transactions on Image

Processing, 26(7):3142–3155, 2017.

[49] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward

a fast and flexible solution for cnn-based image denoising.

IEEE Transactions on Image Processing, 27(9):4608–4622,

2018.

[50] Lefei Zhang, Liangpei Zhang, Dacheng Tao, and Xin Huang.

On combining multiple features for hyperspectral remote

sensing image classification. IEEE Transactions on Geo-

science and Remote Sensing, 50(3):879–893, 2011.

[51] Yong-Qiang Zhao and Jingxiang Yang. Hyperspectral im-

age denoising via sparse representation and low-rank con-

straint. IEEE Transactions on Geoscience and Remote Sens-

ing, 53(1):296–308, 2014.

[52] Xiangtao Zheng, Yuan Yuan, and Xiaoqiang Lu. Hy-

perspectral image denoising by fusing the selected related

bands. IEEE Transactions on Geoscience and Remote Sens-

ing, 57(5):2596–2609, 2018.
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