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Abstract

Traditional methods for Unsupervised Domain Adapta-

tion (UDA) targeting semantic segmentation exploit infor-

mation common to the source and target domains, using

both labeled source data and unlabeled target data. In this

paper, we investigate a setting where the source data is un-

available, but the classifier trained on the source data is;

hence named “model adaptation”. Such a scenario arises

when data sharing is prohibited, for instance, because of

privacy, or Intellectual Property (IP) issues.

To tackle this problem, we propose a method that re-

duces the uncertainty of predictions on the target domain

data. We accomplish this in two ways: minimizing the en-

tropy of the predicted posterior, and maximizing the noise

robustness of the feature representation. We show the ef-

ficacy of our method on the transfer of segmentation from

computer generated images to real-world driving images,

and transfer between data collected in different cities, and

surprisingly reach performance comparable with that of the

methods that have access to source data.

1. Introduction

The successes of deep learning, especially in semantic

segmentation, have been driven in large part by large ar-

chitectures [10, 9]. While architectural improvements have

made tremendous strides in improving performance, these

large computation machines require vast amounts of data to

be trained adequately. A few large densely labeled datasets

such as Cityscapes [17], or Berkeley Deep Drive [73] ex-

ist, but producing them, for instance for a new use case

due to a different environment, or sensors, is very labori-

ous and expensive; Cordts et al. [17] reports that each im-

age required about 90 minutes for labeling and verification.

Added to the difficulty of collecting data for segmentation,

minor changes in conditions like change of cities between

train and test results in a drop of performance [15], as so

does change in lighting conditions [19], as it violates the

pivotal assumption of test and train data being sampled from

the same distribution [57]. Thus, owing to the large costs,

both time and economic, creating annotated datasets for

each scenario is impractical, motivating the re-use or trans-

fer of knowledge from available images to requisite appli-

cation.

The problem of transfer for segmentation has been pre-

dominantly investigated in literature (see Section 4) in two

settings: adapting a model trained on synthetically gener-

ated images to real images, and adapting a model to cities

different than the ones it has been trained for. We too adopt

these settings for study in this paper. The synthetic-to-real

images adaptation has attracted a lot of attention as the cost

of generating segmentation ground truth for graphically ren-

dered frames like GTA [58], or Synthia [60] is substantially

lower. Richter et al. [58] labeled a total of 24,966 frames

at an average of 7 seconds per frame, a large drop from 90

minutes taken for Cityscapes. However, due the nature of

their generation, these synthetic images have a significant

domain gap to the real images, which results in a large drop

in the performance of networks trained on synthetic data

when they are used on real images. Similarly, given the ex-

isting real world datasets like Cityscapes, it is paramount

that the knowledge learned on these datasets is effectively

transferred to different scenarios, without having to provide

annotated data for each scenario.

A large portion of the methods that has been devoted to

tackling this problem, like some of the ones reviewed in

Section 4, require the labeled source data to be available

along with the unlabeled target data for the adaptation pro-

cess. We, in this paper, focus on the problem where the

source data itself is not available but the source trained clas-

sifier is [16]. This is similar to life-long learning [63], where

the goal is to adapt to several tasks over several domains,

and the only information payload that is carried over is the

model itself. Differing from that, we are not concerned with

preserving the performance on the source task. The current

problem of source data-less transfer is pertinent when there

exist data sharing restrictions on the source data; a common

way to circumvent this is to share the trained classifier from

which the input data itself cannot be reconstructed. A clas-

sical application is in medical image processing, where pa-

tient data cannot be freely shared due to privacy concerns,
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but a trained model can be. Another relevant application

where we envisage such a setting is in search-and-rescue

operations, where data is collected on a mobile drone, and

the segmentor network is adapted based on only the data

collected, without having the need to access the original la-

beled dataset. Thus the problem of domain adaptation in the

absence of source data, termed model adaptation [16], is of

practical significance.

In this work, we study the problem of model adaptation

for semantic segmentation. To the best of our knowledge,

ours is the first work to do so. In the absence of source

labeled data that has been effectively exploited by previ-

ous works, we enforce auxiliary properties that are desir-

able in a system, namely confident predictions for the tar-

get data, and noise resilience, and thereby increased stabil-

ity of classification to parameter choices. To this end, we

propose a method that uses feature corruption [16, 47, 54],

and entropy regularization [29, 69]. We find that having ac-

cess only to the source classifier, along with unlabeled tar-

get data, can result in performance comparable to the case

where source data is also available.

2. Handling the absence of labeled source data

2.1. A toy problem

To motivate our method, we consider the ideal case de-

picted on Figure 1. Let us consider a simple case of binary

classification of Y = {0, 1} for a scalar input feature x ∈ R.

The probability of classification is defined using a sigmoid

function of the input x and a threshold t

p(Y = 1|X = x; t) =
1

1 + e−(x−t)
(1)

For illustration in Figure 1, we show the class conditional

distributions, though we do not use class information. With

only the information of the feature distribution µX(x), our

goal is to reason about scenarios that are likely to generalize

better. If the labels are available, traditional wisdom tells us

that Figure 1c is likely the ideal scenario to attain in terms

of generalization [62]. We make it a little more concrete

here, in the case where the labels are not available.

In Figure 1a, the feature x is given by a source trained

feature extractor, and tS is the threshold learned. It is ap-

parent that such a threshold is quite likely ill-suited for the

target domain, as it places the decision boundary in a high

density region of the feature space, contradicting the tradi-

tional cluster & continuity assumptions [7, 41, 6]. However,

if we change the threshold to t∗, we expect better general-

ization performance. Note that this is also the classifier for

which the entropy of output probability predictions over the

distribution µX(x) is the lowest. We mathematically define

this idea and show numerical simulations for these cases in

Appendix B.

We would like to modify the feature extractor itself such

that the class conditional distributions overlap lesser than

in Figure 1a. This can be achieved by imposing an en-

tropy penalty on output posterior predictions, and using that

penalty to train the feature extractor too. We show this in

Figure 1b. As the overlap of the class-conditional data dis-

tributions decreases, we expect the generalization perfor-

mance to improve.

The ideal scenario is shown in Figure 1c, where a large

number of thresholds can separate the two classes, and we

choose one that results in the least uncertain predictions of

target data. One can draw parallels to max-margin methods

like the SVM, where one is interested in finding a separator

that is optimally distant from all classes. In a nutshell, we

see that a classifier that has stable predictions for a range

of parameter choices is likely to generalize better. This is,

of course, in our context where we do not have access to

labeled training data. In order to accomplish this, we need

to go beyond entropy quantification of the predicted labels;

we enforce stability of predictions over noisy features x±ǫ.

2.2. Proposed method

We, first, formally define the problem. Let X ∈ R
D

be the input, and Y ∈ {1 . . .K} the labels. Let S with

density µS(x) be the source domain and T with density

µT (x) be the target one, where we do not have access to

the labels of T while training. Let XS = {(xi, yi) i =
1 . . . Ns,xi ∼ µS(x), yi ∼ pS(y)} be the source data, and

XT = {(xi, ) i = 1 . . . Nt,xi ∼ µT (x)} be the target data.

Let pT (y) be the target domain label prior that is unknown

to us. Here µS 6= µT . We do not have direct access to

XS , but have access to a network trained on XS . Let us

denote that network by f(x,θS) ≡ fS(x) where θS de-

notes the parameters of the network trained on the source

data. Let g and h denote the feature extractor and classifier

respectively, whose composition is f i.e., f = h ◦ g. Let

also θg and θh be their corresponding parameters. In our

case, the network g refers to the ResNet-101 backbone, and

h refers to the ASPP [10] decoder, which we describe in

Section 3.3. For convenience, h also subsumes the softmax

layer, and thus f(x;θ) = p(y|x;θ), where y is a vector

of probabilities from which the predicted label is sampled.

Summarizing, we have fS and XT , and our goal is to mod-

ify fS such that its performance is improved on T data.

2.2.1 Optimizing the feature extractor to generate ro-

bust features

The likelihood of predictions y for an input of x ∈ T is

computed by f(x;θ), on which an entropy penalty can be

imposed [29]. However with a trivial application of this,

for the illustration in Figure 1b, the network can learn to

separate the distribution by placing the threshold t∗ at any

arbitrary point and shearing the feature distributions around
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tSt∗ x −→

(a)

t∗ x −→

(b)

t∗ x −→

µ(X|Y = 0)

µ(X|Y = 1)

(c)

Figure 1: Given only the feature distributions in 1a to 1c in a two-class scenario, which one generalizes the best? In 1a, we

show the distribution of features extracted by source trained network and the corresponding source threshold on the target

data. Tuning the threshold to t∗ from tS is expected to result in better generalization. If we can modify the feature extractor

itself, reducing the uncertainty of classification over the domain gives us 1b. This can be achieved by penalizing the entropy of

predictions of each of the data points. We argue that while entropy is seemingly sufficient, we need to reduce the uncertainty

in the predictions of the network over a wide range of parameter choices obtain better separation of the data like in 1c, and

thereby better generalization. Details in Section 2.1.

it, thereby being stable to the choice of the threshold instead

of attaining separation of features as in Figure 1c. For sim-

ple problems like the one in Figure 1, it can be achieved

by enforcing stability to input perturbations. However in

deep networks, the network can learn to denoise the inputs

in the initial few layers of processing. Using stronger aug-

mentations like the ones in Chen et al. [13] are ill-suited for

segmentation, as classification networks are expected to be

invariant to such noise, whereas segmentation networks are

expected to be equivariant. This can be remedied by adding

structured noise to inputs such that the layout of the input

objects is preserved (for example, modifying the colors of

objects). We achieve this by adding noise to the feature rep-

resentation using dropout, similar to Ouali et al. [54], that

acts as a structured noise in the input space.

Let ŷi = f(x; θ̂i) be the output of the network using the

ith instantiation of dropout, and y = f(x;θ) the output for
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Figure 2: An illustration of the proposed method. The main

decoder is trained with Equations (3) and (5), whereas the

backbone feature extractor is trained with a combination of

Equations (2), (3) and (5). At test time, we discard the aux-

iliary branches, and thus there is no additional computation

at inference.

the network without dropout. In such a case, we propose to

compute the uncertainty loss as

Lun =
1

N

N
∑

i=1

(

ŷi − y
)2

(2)

To implement Equation (2), we introduce dropout only

between g and h. In the context of Bayesian neural net-

works, such a method has been termed LastLayer-Dropout

elsewhere [55]. Instead of using a single branch that pre-

dicts the output with dropout-weights, we use multiple de-

coders ĥ that takes in dropped out features predicted by g.

Thus y = f(x;θ) = h(g(x;θg);θh) and ŷ = f(x; θ̂) =

ĥ(g(x;θg); θ̂h). Thus, each auxiliary decoder ĥ sees only

partial feature tensor, and is required to come as close to

reconstructing the original label tensor. We, experimen-

tally, find that freezing the main decoders’ weights θh while

training the auxiliary decoders’ parameters θ̂h results in bet-

ter performance. Our full method is shown in Figure 2.

The use of multiple auxiliary decoders has been pro-

posed before in Meyerson and Miikkulainen [49] for defin-

ing pseudo-tasks for deep multi-task learning, and in Ouali

et al. [54] for semi-supervised learning. Meyerson and Mi-

ikkulainen [49], however, use ground-truth labels to train

each of the auxiliary classifiers. We note the similari-

ties to several previous works that focus on generating ro-

bust representations using various kinds of feature corrup-

tions [11, 28] that are class agnostic, and ones that are class

specific like guided cutout [20]. However, we experimen-

tally find that advanced forms of feature noising (like class

dependent noising or targeted cutout) do not work as well,

and we hypothesize that it is due to the unreliable predic-

tions of the source trained network on target images.

The proposed uncertainty loss in Equation (2) improves

the noise resilience of the network. In addition to that we

use an entropy regularizer that minimizes the entropy of the
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network’s predictions, that results in better empirical per-

formance.

Lent = H{f(x;θ)} (3)

where, H{} is the entropy of the probability distribution

over all K classes for an input x. We hypothesize that this

is because the dropout noise modifies the decision bound-

ary given by the optimizer itself, and thus is beneficial to

explicitly regularize the predictions given that estimate of

weights. We find that we do not need a diversity enforcing

loss, as specified in [37, 44], to prevent degeneracies.

2.2.2 Regularizing using the source trained model

We note that the losses in Equations (2) and (3) do not use

the information in the source trained classifier, but enforce

certain properties to be satisfied by the network on the target

domain. In Figure 1c, an interchanged labeling i.e., where

class-0 is predicted class-1 and vice-versa, results in the

same loss value for Equations (2) and (3). To avoid such

issues, and to infuse plausible class structure to the data, we

use pseudo-labeling.

Pseudo-labeling or self-training has been a mainstay

method in the semi-supervised problems, prior to the deep

learning era. However, owing to the availability of large-

scale datasets, it has been used to great success [1, 41, 71]

for several classification problems. Traditional methods

use the class with the highest predicted probability as the

ground-truth for each unlabeled sample. However, in the

case of a domain change, the accuracy of such predicted

pseudo-labels is low. So we use the following modification

to the standard definition

yPL =

{

argmax f(x,θ) if max(f(x,θ)) ≥ τ

IGNORE otherwise
(4)

i.e., we only consider as pseudo-labels the samples that are

at least τ confident. The samples with the IGNORE label

do not contribute to the loss. However choosing τ is a non-

trivial task, as too low a threshold will result in wrong la-

bels, and too high a threshold will result in no target data

being bootstrapped for training. In this work we adopt the

strategy of class balanced thresholding [81], where τ is var-

ied per class, such that a certain proportion of points per

class are always selected. We define the pseudo labeling

loss to be the cross-entropy loss with the pseudo labels as

defined in Equation (4)

LPL = −1
T
yPL

log(y) (5)

where 1yPL
is one-hot encoded vector of yPL, and log is

applied element-wise.

Thus, the overall loss function being optimized is the

combination of Equations (2), (3) and (5):

L = LPL + λentLent + λunLun (6)

where λent, λun are the weights of the individual loss terms.

Our work is connected to recent work in interesting

ways: if Equation (2) is construed to be a form of self-

supervision, our method can be interpreted as a form of

test-time training [65]. Test-time training proposes to use

an auxiliary task at test-time that helps combat domain shift

from the training set. We differ from them in that we do

not update the network at test time, but do so when given

target domain data. Similarly, our work, conceptually, uses

self-supervision for domain adaptation, similar to [64], but

doesn’t need access to source labeled data. Additionally,

our method can be interpreted as a form of making the net-

work a bit Bayesian [38], where instead of placing Gaussian

posterior on the weights of the penultimate layer’s weights,

we use dropout distribution. As previously mentioned, our

method has similarities to pseudo-tasks, in multi-task learn-

ing [49], which uses labeled data for training.

3. Experiments

3.1. A toy problem

To elucidate the utility of each of the terms in Equa-

tion (6), we use a toy problem as shown in Figure 3. In

Figure 3 a & b we show the source and target datasets; we

use a rotated version of the source data as the target data.

As it is in our case, we do not use the labels of the tar-

get data. We train a small two layer neural network with

batchnorm and ReLU activations. We provide the exact ar-

chitecture in Table 5 in the appendix. We take the outputs

before the last classifier layer as the features of the network,

and use the techniques that we described in Section 2.2 to

train the network, except we do not use pseudo labeling for

this problem. We use a feature dimensionality of 2 and plot

the target features in Figure 3c with the source classifier. It

is very apparent that the source network extracts features

that do not transfer well. In Figure 3d, with a simple en-

tropy regularization on the target data, we see that the per-

formance improves tremendously. However, some of the

blue points are very close to the separating line. To remedy

this, our proposed feature noise decoder (detailed in Sec-

tion 2.2) pushes the points away from the separating line.

This can be interpreted as a form of increasing the stabil-

ity of the classification, and thereby reducing uncertainty,

which we hypothesize to be the key to better generalization.

3.2. Datasets and Evaluation

We demonstrate the efficacy of our method on

the standard domain adaptation tasks of GTA [58]→
Cityscapes [17] (GTA-CS) and Synthia [60]→ Cityscapes

(SYN-CS) and Cityscapes→NTHU Crosscity[15] (CS-CC),

a standard test setting used in several previous works (Sec-

tion 4). Cityscapes consists 2975 annotated images, each

of size 2048 × 1024, that act as our training set. It has
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Figure 3: A toy example in R
2 to illustrate our algorithm. The target data is unlabeled, however we shade it for illustration.

The thick line in all the figures is the separator. In (a) we show the source data and the classifier trained on that, and in (b) the

classifier unmodified on the target data. In (c) we visualize the features extracted by the source trained classifier on target data.

With a simple entropy penalty on the target data, we get substantially better performance (d). With the additional uncertainty

loss, we see that the features extracted are pulled further away from the separating line in (e). Details in Section 3.1.

500 images as the validation set, which we use to bench-

mark our method. It consists of 19 semantic classes for seg-

mentation. The GTA dataset consists of 24966 frames, of

size 1914 × 1052 grabbed from the famous game Grand

Theft Auto. The ground truth is generated by the game

renderer itself. It shares the same 19 semantic classes as

Cityscapes. Synthia has 9400 images of size 1280 × 760
synthetic images, and shares 16 classes with Cityscapes.

For our method, we use a network trained on Synthia or

GTA, and adapt it to Cityscapes using the 2975 training im-

ages without their ground-truth labels. Crosscity dataset has

been recorded in four cities: Rome, Rio, Taipei, and Tokyo

with each image of resolution 2048×1024. Following [12],

we use their experimental setup of 3200 unlabeled images

as target training data, and 100 labeled images as target test

data. This adaptation task has 13 shared classes. We use

the pretrained models provided by Chen et al. [12] for the

source trained model.

To evaluate our method, we use Intersection-over-Union

(IoU) for each class, and its average mean-Intersection-

over-Union (mIoU) over all classes. We report the metrics

for all the 19 classes of GTA-CS adaptation, for the 16 com-

mon classes for the SYN-CS experiments, and for the 13

common classes in the CS-CC experiments. In accordance

with some recent papers, we also report a mIoU* compar-

ing only 13 classes for the Synthia to Cityscapes adaptation

task.

3.3. Implementation details

To facilitate a fair comparison with relevant works, we

use a DeepLab V2 network [10] with a ResNet-101 back-

bone [31]. Using the notation defined in Section 2, g is

the ResNet-101 based feature extractor, and h is the Atrous

Spatial Pyramidal Pooling (ASPP) decoder. The ResNet

101 backbone is pre-trained on ImageNet. ASPP [10] is a

multi-scale decoder, that is used to aggregate multi-scale in-

formation for segmentation. It has 4 parallel atrous convolu-

tions of various rates, which capture long-range contextual

information from extracted features. We train the model on

the source domain with stochastic gradient descent with a

learning rate of 2.5× 10−4 with a weight decay of 0.0005,

momentum of 0.9. We use a poly learning rate decay sched-

uler with power of 0.9. For the adaptation experiments, we

use a lower learning rate of 5 × 10−5, with other parame-

ters staying the same, with no learning rate decay. We also

use a 10× the learning rate for ASPP decoders [10] in our

experiments. For all our experiments, we use λent = 1.0,

λun = 0.1. We use the defaults prescribed by Zou et al.

[80] to extract class-balanced pseudo labels. For the CS-CC

experiments, we run the adaptation for only 2 epochs, and

for GTA-CS, SYN-CS for 6 epochs. Code will be available

at https://git.io/JthPp.

3.4. Results

We show the performance of our proposed method on the

tasks of GTA-CS adaptation in Table 1a, SYN-CS adaptation

in Table 1b and CS-CC adaptation in Table 1c. We obtain re-

sults that are at-par or better than some of the classic works

on unsupervised domain adaptation (with source data). This

work is, however, not a claim that source data is not neces-

sary for domain adaptation. The utility of source data has

been exploited effectively by recent methods through style

transfer techniques [72, 35], thus they obtain higher perfor-

mance than us. Our proposed method improves substan-

tially on the larger background classes, and we hypothe-

size this is because the source classifier can make reliable

predictions for these classes. The perceptual domain gap

seems to influence the transfer performance too, as we get

very comparable performance for GTA-CS and CS-CC ex-

periments, compared to the results we obtain for SYN-CS

experiments.
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AdaptSegNet [66] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

AdvEnt [69] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

FCAN [76] - - - - - - - - - - - - - - - - - - - 46.6

CBST [81] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRKLD [80] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

LRENT [80] 91.8 53.5 80.5 32.7 21.0 34.0 29.0 20.3 83.9 34.2 80.9 53.1 23.9 82.7 30.2 35.6 16.3 25.9 42.8 45.9

Source 71.3 19.2 69.1 18.4 10.0 35.7 27.3 6.8 79.6 24.8 72.1 57.6 19.5 55.5 15.5 15.1 11.7 21.1 12.0 33.8

No Our method 92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1

(a) Results of GTA5 → Cityscapes (GTA-CS) domain adaptation.
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AdaptSegNet [66] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 − 46.7

AdvEnt [69] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

CBST [81] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9

MRKLD [80] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

LRENT [80] 65.6 30.3 74.6 13.8 1.5 35.8 23.1 29.1 77.0 77.5 60.1 28.5 82.2 22.6 20.1 41.9 42.7 48.7

Source 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3

No Our method 59.3 24.6 77.0 14.0 1.8 31.5 18.3 32.0 83.1 80.4 46.3 17.8 76.7 17.0 18.5 34.6 39.6 45.0

(b) Results of Synthia → Cityscapes (SYN-CS) domain adaptation.
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mIoU

Rome

Yes
Cross city [15] 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

MaxSquare [12] 82.9 32.6 86.7 20.7 41.6 85.0 93.0 47.2 22.5 82.2 53.8 50.5 9.9 54.5

No
Source 85.0 34.7 86.4 17.5 39.0 84.9 85.4 43.8 15.5 81.8 46.3 38.4 4.8 51.0

Our Method 86.2 39.1 87.6 14.3 37.8 85.5 88.5 49.9 21.9 81.6 56.3 40.4 10.4 53.8

Rio

Yes
Cross city [15] 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

MaxSquare [12] 76.9 48.8 85.2 13.8 18.9 81.7 88.1 54.9 34.0 76.8 39.8 44.1 29.7 53.3

No
Source 74.2 42.2 84.0 12.1 20.4 78.3 87.9 50.1 25.6 76.6 40.0 27.6 17.0 48.9

Our Method 82.8 57.0 84.8 17.4 24.0 80.5 86.0 54.2 27.7 78.2 43.8 38.3 21.5 53.5

Tokyo

Yes
Cross city [15] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

MaxSquare [12] 81.2 30.1 77.0 12.3 27.3 82.8 89.5 58.2 32.7 71.5 5.5 37.4 48.9 50.5

No
Source 81.4 28.4 78.1 14.5 19.6 81.4 86.5 51.9 22.0 70.4 18.2 22.3 46.4 47.8

Our Method 87.1 38.3 77.2 13.7 24.4 82.6 86.9 54.1 28.0 69.6 18.5 19.2 48.0 49.8

Taipei

Yes
Cross city [15] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

MaxSquare [12] 80.7 32.5 85.5 32.7 15.1 78.1 91.3 32.9 7.6 69.5 44.8 52.4 34.9 50.6

No
Source 82.6 33.0 86.3 16.0 16.5 78.3 83.3 26.5 8.4 70.7 36.1 47.9 15.7 46.3

Our Method 86.4 34.6 84.6 22.4 9.9 76.2 88.3 32.8 15.1 74.8 45.8 53.3 26.7 50.1

(c) Results of Cityscapes → Cross-City (CS-CC) experiments.

Table 1: For all the experiments in Tables 1a to 1c we compare our proposed method with methods that use source data for

adaptation. We find that our method is comparable, and in some cases better than the methods that use the source data for

adaptation. In underline, we compare our results to the source trained classifier, and with an bold the best performance over

all methods. We omit the underline if our proposed method, or the source classifier out performs the methods that use the

source data for adaptation.

3.4.1 Importance of loss terms

In order to correctly attribute performance to each of the

terms in Equation (6), we ablate over the loss terms in Ta-

ble 2. Broadly summarizing, we find that the first choice of

using pseudo-labeling results in a substantial improvement

of performance over the source classifier. With each term

we see that the performance increases, however as described

in Section 3.4.2, our method also suffers higher variance.
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Loss function LPL Lent Lent + LPL Lun + LPL LDT L
Eq 5 Eq 3 Eq 3 + Eq 5 Eq 2 + Eq 5 Eq 6 Eq 6

% mIoU 42.24 19.85 42.39 42.72 44.52 45.07

Table 2: Importance of each of the loss terms proposed.

LDT refers to training with loss in Equation (6) without

freezing the decoders, and the last column L shows the per-

formance on freezing the main decoder. We see that each

of the loss terms gives a consistent improvement over the

previous loss values.

Thus, for a new use case one might expect a small but con-

sistent improvement with pseudo-labeling, and other loss

terms are useful if the method can be tuned carefully. We

show various additional ablations in Appendix D, and some

qualitative results in Appendix E.

3.4.2 Variance analysis

In order to obtain a better estimate of performance, we run

some of the baseline methods that we use in Table 1a with

five random seeds and show the performance. We use the

publicly available codes from the authors. The codes were

executed for a maximum of 72 hours, a limitation imposed

by our computation resources. For each method, we change

only the random seed for each run, and leave the rest of

the hyperparameters to the default values set by the authors

in their codes. In Table 3, we show various statistics com-

puted over the obtained runs. We see that the common trend

in publications on UDA is to report the best obtained per-

formance. While it is a pragmatic choice to use the best

obtained model as benchmarked on a validation set, for

deployments, it induces a systemic bias in the assessment

of the true performance of the system. Thus, we believe

that better characterization of the system’s performance is

through computing the average performance and the stan-

dard deviation, in addition to the best performance obtained.

In Table 3, we find that merely changing the random seed

can have a noticeable effect on the performance of some of

the standard systems, an observation made before [48, 3].

The discrepancy between the maximum results in Table 3

and the reported numbers can be attributed to hardware and

software discrepancies, or budget used. Vu et al. [69] also

remark that one needs to run the experiments a few times to

reach comparable performance 1. Keeping in line with the

standards of the domain, we report the best obtained per-

formance in Tables 1a to 1c, and show results of variance

analysis in Tables 3 and 4. Examining the mean and stan-

dard deviation obtained for our GTA-CS and CS-CC experi-

ments, we find that while our method achieves higher maxi-

mum performance, it has a higher variance compared to the

1https://github.com/valeoai/ADVENT#training

Method Performance Min Reproduced Previously

estimate Results Reported

AdaptSegnet [66] 39.68 ± 1.49 37.70 42.20 42.40

ADVENT [69] (90K) 41.57 ± 0.73 40.73 42.73
43.80

ADVENT [69] (Best) 42.56 ± 0.64 41.60 42.39

CBST [81] 44.04 ± 0.88 42.80 45.03 45.90

Proposed Method 42.44 ± 2.18 39.71 45.06 –

Table 3: Variance of the methods examined for the GTA→
Cityscapes. We show the mean, standard deviation, min-

imum and reproduced (maximum) performance obtained

over five runs with different random seeds, and the official

reported metrics from the paper. For ADVENT we show

two rows to indicate the two testing strategies in their code:

The first one is after 90K iterations, and the second is the

best attained performance. We see that the common strat-

egy is to report the best obtained result.

Rome Rio Tokyo Taipei

Performance
53.2± 0.8 52.37± 1.08 49.2± 0.71 49.48±0.76

estimate

Table 4: Variance of proposed method for the

Cityscapes→NTHU Crosscity adaptation.

methods that use source data for adaptation process. We hy-

pothesize this is due to the unavailability of source data for

adaptation; the proxy tasks used cannot act as suitable re-

placements for labeled data, in controlling and guiding the

optimization process. We leave this analysis to future work.

4. Related Work

Semantic Segmentation Deep learning had its success

in semantic segmentation with fully convolutional net-

works [45], which converted the full-connected layers to

convolutional layers. Following this, various networks

that made several architectural changes to improve ac-

curacy metrics [74, 79, 10], and computational require-

ments [78, 56, 59, 53] have been proposed. To remedy

the data hungriness of these networks, domain adaptation,

specifically unsupervised domain adaptation, has been an

oft studied problem recently

Unsupervised Domain Adaptation Based on the semi-

nal work of adversarial domain adaptation [26] that uses

a discriminator network to align features from both do-

mains, several methods have been proposed for segmen-

tation on similar lines. Methods have been proposed that

align intermediate feature spaces [33, 61, 22, 70], output

space [66, 67].

Another family of methods use pseudo-labeling to enrich

the target domain training using either hard labels [81, 18,
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75], or soft labels [80]. Chang et al. [5] use a per-domain au-

toencoder to separate domain idiosyncrasies from features

relevant for cross-domain segmentation. Vu et al. [69], Chen

et al. [12] propose an entropy based objective, and an adver-

sarial alignment of the entropy maps of the two domains.

A host of techniques include style translation as a part

of their network that is trained along with the segmentation

network [32, 43, 14, 50], or separately [72, 35].

Model Adaptation Most of the previously mentioned

methods need the explicit availability of source domain data

during adaptation too, and have made tremendous strides in

improving the segmentation performance in that case. A

few recent papers tackle model adaptation for classification

problems [44, 42, 16]. [39] proposes source-free domain

adaptation in the case where label knowledge of the target

domain is not available, and show their efficiency on a set of

classification problems with varying levels of label overlap.

As we argued in Section 1, to the best of our knowledge,

this problem has not been tackled in the context of semantic

segmentation. Though the task of segmentation can be con-

strued to be one that of pixel-wise prediction, we emphasize

that the techniques cannot be interchangeably used. As the

resource requirements of segmentation networks are sub-

stantially higher than that of classification networks, meth-

ods proposed classification that use label conditioned gen-

eration [42] of target domain data, or use memory intensive

methods for reliable estimation of pseudo-labels [36, 44]

are impractical.

Self-supervision for segmentation Self-supervised

learning exploits the structure in data by defining a pretext

task, so that the network learns a good semantic repre-

sentation of the input image. Examples include rotation

prediction [27], context prediction [21], jig-saw puzzle

solving [52],contrastive learning[13, 30]. Self-supervised

learning for unsupervised domain adaptation has been

proposed to train the feature extractor [64]. However, the

applications of self-supervised learning to segmentation

have been limited, as the invariances enforced differ widely

between classification and segmentation problems. Some

attempts to learn segmentation networks include using very

strong perturbation techniques like CutMix [24], using

consistency regularization through feature noising [54],

by using clustering for pseudo-labels [40]. As described

in Section 2.2, we note similarities of our method to tasks

proposed in [54].

Multi-task learning and robust classification The use of

multiple tasks to enrich the representations learned by a net-

work has been used quite often in computer vision [77, 4].

These ideas have been adapted to single task learning by

devising pseudo-tasks [49]. These pseudo-tasks train the

shared network structure to learn the task in multiple ways,

and can be interpreted as using self-supervision. Simi-

larly, increasing the robustness of classification through fea-

ture noising has been studied extensively [28, 8, 68, 16,

47]. Work on learning robust networks through pseudo-

ensembling by reducing the variance when dropout is used,

has been proposed [2]. Ideas of large margin learning have

been extended to deep learning [23].

Uncertainty modeling for neural networks Our pro-

posed method in Section 2.2 is very similar to the un-

certainty modeling for neural networks using Monte-Carlo

(MC) dropout. MC-dropout [34, 25] uses dropout at test-

time to sample various outputs and average them for pre-

dicted posterior. Bayesian treatments of neural networks

have been important owing to their ability to predict un-

certainty better, and dealing with mis-calibration prob-

lems [38]. Such modeling has been used for medical imag-

ing to estimate the confidence of lesion segmentation [51],

for autonomous driving to estimate the uncertainty of steer-

ing wheel angle prediction [46].

5. Conclusion

In this paper, we focus on the problem of domain adap-

tation for semantic segmentation in the absence of source

data. In the absence of any labels to guide the optimiza-

tion, we propose a method that reduces the uncertainty of

predictions on the target domain data, that can also be in-

terpreted as increasing the stability of the feature extractor.

On the standard benchmark of tasks for semantic segmenta-

tion transfer, we obtain performance comparable with that

of methods that use source data. We hope that our work

gives the required fillip to the community to focus on this

newer, practically significant, and challenging form of do-

main adaptation.
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[54] Yassine Ouali, Céline Hudelot, and Myriam Tami. Semi-

supervised semantic segmentation with cross-consistency

training. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 12674–

12684, 2020. 2, 3, 8
[55] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David

Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshmi-

narayanan, and Jasper Snoek. Can you trust your model’s

uncertainty? evaluating predictive uncertainty under dataset

shift. In Advances in Neural Information Processing Sys-

tems, pages 13991–14002, 2019. 3
[56] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eu-

genio Culurciello. Enet: A deep neural network architec-

ture for real-time semantic segmentation. arXiv preprint

arXiv:1606.02147, 2016. 7
[57] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and

Vaishaal Shankar. Do ImageNet classifiers generalize to Im-

ageNet? volume 97 of Proceedings of Machine Learning

Research, pages 5389–5400, Long Beach, California, USA,

9622



09–15 Jun 2019. PMLR. 1
[58] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max

Welling, editors, Proc. of European Conference on Computer

Vision (ECCV), volume 9906, pages 102–118. Springer In-

ternational Publishing, 2016. 1, 4
[59] Eduardo Romera, José M Alvarez, Luis M Bergasa, and

Roberto Arroyo. Erfnet: Efficient residual factorized convnet

for real-time semantic segmentation. IEEE Transactions on

Intelligent Transportation Systems, 19(1):263–272, 2017. 7
[60] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A large

collection of synthetic images for semantic segmentation of

urban scenes. In Proc. of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3234–3243,

2016. 1, 4
[61] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser

Nam Lim, and Rama Chellappa. Learning from synthetic

data: Addressing domain shift for semantic segmentation. In

Proc. of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3752–3761, 2018. 7
[62] Robert E Schapire, Yoav Freund, Peter Bartlett, Wee Sun

Lee, et al. Boosting the margin: A new explanation for

the effectiveness of voting methods. The annals of statistics,

26(5):1651–1686, 1998. 2
[63] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong

machine learning systems: Beyond learning algorithms. In

2013 AAAI spring symposium series, 2013. 1
[64] Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros.

Unsupervised domain adaptation through self-supervision.

arXiv preprint arXiv:1909.11825, 2019. 4, 8
[65] Yu Sun, Xiaolong Wang, Liu Zhuang, John Miller, Moritz

Hardt, and Alexei A. Efros. Test-time training with self-

supervision for generalization under distribution shifts. In

ICML, 2020. 4
[66] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-

hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.

Learning to adapt structured output space for semantic seg-

mentation. In Proc. of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 7472–7481, 2018.

6, 7
[67] Yi-Hsuan Tsai, Kihyuk Sohn, Samuel Schulter, and Manmo-

han Chandraker. Domain adaptation for structured output

via discriminative patch representations. In Proc. of Interna-

tional Conference on Computer Vision (ICCV), pages 1456–

1465, 2019. 7
[68] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua

Bengio, Pierre-Antoine Manzagol, and Léon Bottou.
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