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Verb: deflect (block, avoid)

Arg0 (deflector) woman with shield

Arg1 (thing deflected) boulder

Scene city park

Verb: talk (speak)

Arg0 (talker) woman with shield

Arg2 (hearer) man with trident

ArgM (manner) urgently

Scene city park

Verb: leap (physically leap)

Arg0 (jumper) man with trident

Arg1 (obstacle) over stairs

ArgM (direction) towards shirtless man

ArgM (goal) to attack shirtless man

Scene city park

Verb: punch (to hit)

Arg0 (agent) shirtless man

Arg1 (entity punched) man with trident

ArgM (direction) far into distance

Scene city park

Verb: punch (to hit)

Arg0 (agent) shirtless man

Arg1 (entity punched) woman with shield

ArgM (direction) down the stairs

Scene city park

2 Seconds

Event 1

0s-2s

Event 2

2s-4s

Event 3

4s-6s

Event 4

6s-8s

Event 5

8s-10s

Ev3 is a 

reaction to Ev2

Ev4 is a 

reaction to Ev3

Ev5 is unrelated 

to Ev3

Ev3 is enabled by 

Ev1

Figure 1: A sample video and annotation from VidSitu. The figure shows a 10-second video annotated with 5 events,

one for each 2-second interval. Each event consists of a verb (like “deflect”) and its arguments (like Arg0 (deflector) and

Arg1 (thing deflected)). Entities that participate in multiple events within a clip are co-referenced across all such events

(marked using the same color). Finally, we relate all events to the central event (Event 3). The video can be viewed at:

https://youtu.be/3sP7UMxhGYw?t=20 (from 20s-30s).

Abstract

We propose a new framework for understanding and rep-

resenting related salient events in a video using visual se-

mantic role labeling. We represent videos as a set of re-

lated events, wherein each event consists of a verb and mul-

tiple entities that fulfill various roles relevant to that event.

To study the challenging task of semantic role labeling in

videos or VidSRL, we introduce the VidSitu benchmark,

a large scale video understanding data source with 29K
10-second movie clips richly annotated with a verb and

†Part of the work was done during Arka’s internship at PRIOR@AI2

semantic-roles every 2 seconds. Entities are co-referenced

across events within a movie clip and events are connected

to each other via event-event relations. Clips in VidSitu are

drawn from a large collection of movies (∼3K) and have

been chosen to be both complex (∼4.2 unique verbs within

a video) as well as diverse (∼200 verbs have more than 100
annotations each). We provide a comprehensive analysis of

the dataset in comparison to other publicly available video

understanding benchmarks, several illustrative baselines

and evaluate a range of standard video recognition models.

Our code and dataset is available at vidsitu.org.
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1. Introduction

Videos record events in our lives with both short and long

temporal horizons. These recordings frequently relate mul-

tiple events separated geographically and temporally and

capture a wide variety of situations involving human be-

ings interacting with other humans, objects and their en-

vironment. Extracting such rich and complex information

from videos can drive numerous downstream applications

such as describing videos [35, 82, 77], answering queries

about them [85, 81], retrieving visual content [50], building

knowledge graphs [48] and even teaching embodied agents

to act and interact with the real world [84].

Parsing video content is an active area of research with

much of the focus centered around tasks such as action clas-

sification [31], localization [24] and spatio-temporal detec-

tion [21]. Although parsing human actions is a critical com-

ponent of understanding videos, actions by themselves paint

an incomplete picture, missing critical pieces such as the

agent performing the action, the object being acted upon,

the tool or instrument used to perform the action, location

where the action is performed and more. Expository tasks

such as video captioning and story-telling provide a more

holistic understanding of the visual content; but akin to their

counterparts in the image domain, they lack a clear defini-

tion of the type of information being extracted making them

notoriously hard to evaluate [32, 74].

Recent work in the image domain [83, 58, 22] has at-

tempted to move beyond action classification via the task of

visual semantic role labeling - producing not just the pri-

mary activity in an image or region, but also the entities

participating in that activity via different roles. Building

upon this line of research, we propose VidSRL – the task

of recognizing spatio-temporal situations in video content.

As illustrated in Figure. 1, VidSRL involves recognizing

and temporally localizing salient events across the video,

identifying participating actors, objects, and locations in-

volved within these events, co-referencing these entities

across events over the duration of the video, and relating

how events affect each other over time. We posit that Vid-

SRL, a considerably more detailed and involved task than

action classification with more precise definitions of the ex-

tracted information than video captioning, is a step towards

obtaining a holistic understanding of complex videos.

To study VidSRL, we present VidSitu, a large video un-

derstanding dataset of over 29K videos drawn from a di-

verse set of 3K movies. Videos in VidSitu are exactly 10
seconds long and are annotated with 5 verbs, corresponding

to the most salient event taking place within the five 2 sec-

ond intervals in the video. Each verb annotation is accom-

panied with a set of roles whose values 1 are annotated using

1Following nomenclature introduced in ImSitu[83], every verb (deflect)

has a set of roles (Arg0 deflector, Arg1 thing deflected) which are realized

free form text. In contrast to verb annotations which are de-

rived from a fixed vocabulary, the free form role annotations

allow the use of referring expressions (e.g. boy wearing a

blue jacket) to disambiguate entities in the video. An entity

that occurs in any of the five clips within a video is consis-

tently referred to using the same expression, allowing us to

develop and evaluate models with co-referencing capabil-

ity. Finally, the dataset also contains event relation annota-

tions capturing causation (Event Y is Caused By/Reaction

To Event X) and contingency (Event X is a pre-condition

for Event Y). The key highlights of VidSitu include: (i)

Diverse Situations: VidSitu enjoys a large vocabulary of

verbs (1500 unique verbs curated from PropBank [54] with

200 verbs having at least 100 event annotations) and entities

(5600 unique nouns with 350 nouns occurring in at least 100
videos); (ii) Complex Situations: Each video is annotated

with 5 inter-related events and has an average of 4.2 unique

verbs, 6.5 unique entities and; (iii) Rich Annotations: Vid-

Situ provides structured event representations (3.8 roles per

event) with entity co-referencing and event-relation labels.

To facilitate further research on VidSRL, we provide a

comprehensive benchmark that supports partwise evalua-

tion of various capabilities required for solving VidSRL and

create baselines for each capability using state-of-art archi-

tectural components to serve as a point of reference for fu-

ture work. We also carefully choose metrics that provide

a meaningful signal of progress towards achieving compe-

tency on each capability. Finally, we perform a human-

agreement analysis that reveals a significant room for im-

provement on the VidSitu benchmark.

Our main contributions are: (i) the VidSRL task formal-

ism for understanding complex situations in videos; (ii) cu-

rating the richly annotated VidSitu dataset that consists of

diverse and complex situations for studying VidSRL; (iii)

establishing an evaluation methodology for assessing cru-

cial capabilities needed for VidSRL and establishing base-

lines for each using state-of-art components. The dataset

and code are publicly available at vidsitu.org.

2. Related Work

Video Understanding, a fundamental goal of computer

vision, is an incredibly active area of research involving a

wide variety of tasks such as action classification [8, 16, 75],

localization [44, 43] and spatio-temporal detection [19],

video description [77, 35], question answering [85], and ob-

ject grounding [61]. Tasks like detecting atomic actions at 1
second intervals [19, 79, 67] are short horizon tasks whereas

ones like summarizing 180 second long videos [91] are ex-

tremely long horizon tasks. In contrast, our proposed task of

VidSRL operates on 10 second video at 2 second intervals.

by noun values. Here, we use “value” to refer to free-form text used de-

scribing the roles (woman with shield, boulder).
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Task Required Annotations Dataset

Action Classification Action Labels Kinetics[31], ActivityNet [24], Moments in Time [51], Something-Something[20], HVU [14]

Action Localization Action Labels, Temp. Segments ActivityNet, Thumos[29], HACS [89], Tacos[59], Charades[63], COIN[69]

Spatio-Temporal Detection Action Labels, Temp. Segments, BBoxes AVA[21], AVA-Kinetics[39], EPIC-Kitchens [12], JHMDB[30]

Video Description Captions, Temp. Segments ActivityNet[24], Vatex[77], YouCook[13], MSR-VTT [82] , LSMDC [60]

Video QA Q/A, Subtitle or Script (optional) MSRVTT-QA[81], VideoQA[86], ActivityNetQA[85], TVQA[37], MovieQA[70]

Text to Video Retrieval Text Query, ASR output (optional) HowTo100M[50], TVR[38], DiDeMo[25], Charades-STA[17]

Video Object Grounding Text Query, Temp. Segments, BBoxes ActivityNet-SRL[61], YouCookII[90], VidSTG [88],VID-sentence[11]

VidSRL Verbs, SRLs, Corefs, Event Relations, Temp. Segments VidSitu

Table 1: A non-exhaustive summary of video understanding tasks, required annotations and benchmarks.

It entails producing a verb for the salient activity within

each 2 second interval as well as predicting multiple enti-

ties that fulfill various roles related to that event, and finally

relating these events across time.

In support of these tasks, the community has also pro-

posed datasets [31, 24, 21], over the past few years. While

early datasets were small datasets with several hundred or

thousand examples[65, 36], recent datasets are massive[50]

enabling researchers to train large neural models and also

employ pre-training strategies[49, 92, 40]. Section 4, Ta-

ble 3 and Figure 2 provide a comparison of our proposed

dataset to several relevant datasets in the field. Due to space

constraints, we are unable to provide a thorough description

of all the relevant work. Instead we point the reader to rel-

evant surveys on video understanding [1, 34, 87] and also

present a holistic overview of tasks and datasets in Table 1.

Visual Semantic Role Labeling has been primarily

explored in the image domain under situation recogni-

tion [83, 58], visual semantic role labeling [22, 41, 64] and

human-object interaction [10, 9]. Compared to images, vi-

sual semantic role labeling in videos requires not just recog-

nizing actions and arguments at a single time step but aggre-

gating information about interacting entities across frames,

co-referencing the entities participating across events.

Movies for Video Understanding: The movie domain

serves as a rich data source for spatio-temporal detection

[21], movie description [60], movie question answering

[70] , story-based retrieval [3], generating social graphs [72]

tasks, and classifying shot style [28]. In contrast to a lot

of this prior work, we focus only on the visual activity of

the various actors and objects in the scene, i.e. no addi-

tional modalities like movie-scripts, subtitles or audio are

presented in our dataset.

3. VidSRL: The Task

State-of-the-art video analysis capabilities like video ac-

tivity recognition and object detection yield a fairly im-

poverished understanding of videos by reducing complex

events involving interactions of multiple actors, objects,

and locations to a bag of activity and object labels. While

video captioning promises rich descriptions of videos, the

open-ended task definition of captioning lends itself poorly

to a systematic representation of such events and evalua-

tion thereof. The motivation behind VidSRL is to expand

the video analysis toolbox with vision models that produce

richer yet structured representations of complex events in

videos than currently possible through video activity recog-

nition, object detection, or captioning.

Formal task definition. Given a video V , VidSRL re-

quires a model to predict a set of related salient events

{Ei}
k
i=1

constituting a situation. Each event Ei consists

of a verb vi chosen from a set of of verbs V and values

(entities, location, or other details pertaining to the event

described in text) assigned to various roles relevant to the

verb. We denote the roles or arguments of a verb v as

{Av
j}

m
j=1

and Av
j←a implies that the jth role of verb v is as-

signed the value a. In Fig. 1 for instance, event E1 consists

of verb v=“deflect (block, avoid)” with Arg0 (deflector) ←

“woman with shield”. The roles for the verbs are obtained

from PropBank [54]. Finally, we denote the relationship be-

tween any two events E and E0 by l(E,E0) ∈ L where L
is an event-relations label set. We now discuss simplifying

assumptions and trade-offs in designing the task.

Timescale of Salient Events. What constitutes a salient

event in a video is often ambiguous and subjective. For

instance given the 10 sec clip in Fig. 1, one could define

fine-grained events around atomic actions such as “turn-

ing” (Event 2 third frame) or take a more holistic view of

the sequence as involving a “fight”. This ambiguity due to

lack of constraints on timescales of events makes annota-

tion and evaluation challenging. We resolve this ambiguity

by restricting the choice of salient events to one event per

fixed time-interval. Previous work on recognizing atomic

actions [21] relied upon 1 sec intervals. An appropriate

choice of time interval for annotating events is one that en-

ables rich descriptions of complex videos while avoiding

incidental atomic actions. We observed qualitatively that a

2 sec interval strikes a good balance between obtaining de-

scriptive events and the objectiveness needed for a system-

atic evaluation. Therefore, for each 10 sec clip, we annotate

5 events {Ei}
5

i=1
. Appendix B.1 elaborates on this choice.

Describing an Event. We describe an event through a

verb and its arguments. For verbs, we follow recent work

in action recognition like ActivityNet [24] and Moments in

Time [51] that choose a verb label for each video segment

from a curated list of verbs. To allow for description of a

wide variety of events, we select a large vocabulary of 2.2K
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visual verb from PropBank [54]. Verbs in PropBank are

diverse, distinguish between homonyms using verb-senses

(e.g. “strike (hit)” vs “strike (a pose)”), and provide a set of

roles for each verb. We allow values of arguments for the

verb to be free-form text. This allows disambiguation be-

tween different entities in the scene using referring expres-

sion such as “man with trident” or “shirtless man” (Fig. 1).

Understanding of a video may require consolidating par-

tial information across multiple views or shots. In VidSRL,

while the 2 sec clip is sufficient to assign the verb, roles

may require information from the whole video since some

entities involved in the event may be occluded or lie outside

the camera-view for those 2 secs but are visible before or

after. For e.g., in Fig 1 Event 2, information about “Arg2

(hearer)” is available only in Event 3.

Co-Referencing Entities Across Events. Within a

video, an entity may be involved in more than one event,

for instance, “woman with shield” is involved in Events 1, 2,

and 5 and “man with trident” is involved in Events 2, 3, and

4. In such cases, we expect VidSRL models to understand

co-referencing i.e. a model must be able to recognize that

the entity participating across those events is the same even

though the entity may be playing different roles in those

events. Ideally, evaluating coreferencing capability requires

grounding entities in the video (e.g. using bounding boxes).

Since grounding entities in videos is an expensive process,

we currently require the phrases referring to the same entity

across multiple events within each 10 sec clip to match ex-

actly for coreference assessment. See supp. for details on

how coreference is enforced in our annotation pipeline.

Event Relations. Understanding a video requires not

only recognizing individual events but also how events af-

fect one another. Since event relations in videos is not yet

well explored, we propose a taxonomy of event relations as

a first step – inspired by prior work on a schema for event

relations in natural language [26] that includes “Causation”

and “Contingency”. In particular, if Event B follows (occurs

after) Event A, we have the following relations: (i) Event B

is caused by Event A (Event B is a direct result of Event

B); (ii) Event B is enabled by Event A (Event A does not

cause Event B, but Event B would not occur in the absence

of Event A); (iii) Event B is a reaction to Event A (Event B

is a response to Event A); and (iv) Event B is unrelated to

Event A (examples are provided in supplementary).

4. VidSitu Dataset

To study VidSRL, we introduce the VidSitu dataset that

offers videos with diverse and complex situations (a collec-

tion of related events) and rich annotations with verbs, se-

mantic roles, entity co-references, and event relations. We

describe our dataset curation decisions (Section 4.1) fol-

lowed by analysis of the dataset (Section 4.2).

Train Valid Test-Vb Test-SRL Test -ER Total

# Movies 23626 1326 1353 1598 1317 29220

# Videos 2431 151 151 153 151 3037

# Clips 118130 6630 6765 7990 6585 146100

# Verbs Ann / Clip 1 10 10 10 10

# Verb Ann 118130 66300 67650 79900 65850 397830

# Unique Verb Tuples 23196 1317 1341 1571 1299 28724

# Values Ann / Role 1 3 3 3 3

# Role Ann 118130 19890 20295 23970 19755 202040

Table 2: Statistics on splits of VidSitu. Note that VidSitu

contains multiple verb and role annotations for val and test

sets for accurate evaluation.

4.1. Dataset Curation

We briefly describe the main steps in the data curation

process and provide more information in Appendix B.

Video Source Selection. Videos from movies are well

suited for VidSRL since they are naturally diverse (wide-

range of movie genres) and often involve multiple in-

teracting entities. Also, scenarios in movies typically

play out over multiple shots which makes movies a chal-

lenging testbed for video understanding. We use videos

from Condensed-Movies [3] which collates videos from

MovieClips- a licensed YouTube channel containing engag-

ing movie scenes.

Video Selection. Within the roughly 1000 hours of

MovieClips videos, we select 30K diverse and interesting

10sec videos to annotate while avoiding visually uneventful

segments common in movies such as actors merely engaged

in dialogue. This selection is performed using a combina-

tion of human detection, object detection and atomic action

prediction followed by a sampling of no more than 3 videos

per movieclip after discarding inappropriate content.

Curating Verb Senses. We begin with the entire Prop-

Bank [54] vocabulary of ∼6k verb-senses. We manually

remove fine-grained and non-visual verb-senses and further

discard verbs that do not appear in the MPII-Movie Descrip-

tion (MP2D) dataset [60] (verbs extracted using a semantic-

role parser [62]). This gives us a set of 2154 verb-senses.

Curating Argument Roles. We wish to establish a set

of argument roles for each verb-sense. We initialize the ar-

gument list for each verb-sense using Arg0, Arg1, Arg2 ar-

guments provided by PropBank and then expand this using

frequently used (automatically extracted) arguments present

in descriptions provided by the MP2D dataset.

Annotations. Annotations for the verbs, roles and re-

lations are obtained via Amazon Mechanical Turk (AMT).

The annotation interface enables efficient annotations while

encouraging rich descriptions of entities and enabling

a reuse of entities through the video (to preserve co-

referencing). See Appendix B.2 for details.

Dataset splits. VidSitu is split into train, validation and

test sets via a 80:5:15 split, ensuring that videos from the

same movie end up in exactly one of those sets. Table 2

summarizes these statistics of these splits. We emphasize
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Dataset Domain SRLs, Coref EvRel Videos Clips Descr. Descr./Clip (Train) Avg. Clip Len. (s) Uniq Vbs/Vid Uniq Ents/Vid Avg. Roles/Event

MSR-VTT open Implicit 7 7k 10k 200k 20 14.83 1.88 2.80 1.56

MPII-MD movie Implicit 7 94 68k 68.3 1 3.90 1.87 2.99 2.24

ActyNet-Cap open Implicit 7 20k 100k 100k 1 36.20 2.30 3.75 2.37

Vatex-en open Implicit 7 41.3k 41.3k 413k 10 10.00 2.69 4.04 1.96

VidSitu movie Explicit 3 29.2k 146k 146k 1 10.00 4.21 6.58 3.83

Table 3: Dataset statistics across video description datasets. We highlight key differences from previous datasets such as

explicit SRL, co-reference, and event-relation annotations, and greater diversity and density of verbs, entities, and semantic

roles. For a fair comparison, for all datasets we use a single description per video segment when more than one are available.

(a) Diversity of actions

(b) Diversity of entities

224 verbs appear in 

at least 100 events

336 nouns appear in 

at least 100 videos

(c) Density of actions per video

(d) Density of entities per video

(e) Density of semantic roles per event

(f) Histogram of coreference chain lengths

Diverse Complex Rich

Figure 2: Data analysis. An analysis of VidSitu in comparison to other large scale relevant video datasets. We focus on the

diversity of actions and entities in the dataset (a and b), the complexity of the situations measured in terms of the number of

unique verbs and entities per video (c and d) and the richness of annotations (e and f).

that each of the three tasks namely Verb Prediction, Se-

mantic Role Prediction and Co-Referencing and Event

Relation Prediction have separate test sets.

Multiple Annotations for Evaluation Sets. Via con-

trolled trials (see Sec 6.1) we measured the annotation dis-

agreement rate for the train set. Based on this data, we ob-

tain multiple annotations for validation and test sets using

a 2-stage annotation process. In the first stage, we collect

10 verbs for each 2 second clip (1 verb per worker). In the

second stage, we get role labels for the verb with the highest

agreement from 3 different workers.

4.2. Dataset Analysis and Statistics

We present an extensive analysis of VidSitu focusing

on three key elements: (i) diversity of events represented

in the dataset; (ii) complexity of the situations; and (iii)

richness of annotations. We provide comparisons to four

prominent video datasets containing text descriptions –

MSR-VTT [82], MPII-Movie Description [60], ActivityNet

Captions [35], and Vatex-en [77] (the subset of descrip-

tions in English). Table 3 summarizes basic statistics from

all datasets. For consistency, we use one description per

video segment whenever multiple annotations are available,

as is the case for Vatex-en, MSR-VTT, validation set of

ActivityNet-Captions and both validation and test sets of

VidSitu. For datasets without explicit verb or semantic role

labels, we extract these using a semantic role parser [62].

Diversity of Events. To assess the diversity of events

represented in the dataset, we consider cumulative distribu-

tions of verbs2 and nouns (see Fig. 2-a,b). For any point

n on the horizontal axis, the curves show the number of

verbs or nouns with at least n annotations. VidSitu not only

offers greater diversity in verbs and nouns as compared to

other datasets but also a large number of verbs and nouns

2As a fair comparison to datasets which do not have senses associated

with verbs, we collapse verb senses into a single unit for this analysis.
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occur sufficiently frequently to enable learning useful rep-

resentations. For instance, 224 verbs and 336 nouns have at

least 100 annotations. In general, since movies inherently

intend to engage viewers, movie datasets such as MPII and

VidSitu are more diverse than open-domain datasets like

ActivityNet-Captions and VATEX-en.

Complexity of Situations. We refer to a situation as

complex if it consists of inter-related events with multiple

entities fulfilling different roles across those events. To

evaluate complexity, Figs. 2-c,d compare the number of

unique verbs and entities per video across datasets. Approx-

imately, 80% of videos in VidSitu have at least 4 unique

verbs and 70% have 6 or more unique entities, in compari-

son to 20% and 30% respectively for VATEX-en. Further,

Fig. 2-e shows that 90% of events in VidSitu have at least

4 semantic roles in comparison to only 55% in VATEX-en.

Thus, situations in VidSitu are considerably more complex

that existing datasets.

Richness of Annotations. While existing video de-

scription datasets only have unstructured text descriptions,

VidSitu is annotated with rich structured representations

of events that includes verbs, semantic role labels, entity

coreferences, and event relations. Such rich annotations not

only allow for more thorough evaluation of video analysis

techniques but also enable researchers to study relatively

unexplored problems in video understanding such as en-

tity coreference and relational understanding of events in

videos. Fig. 2-f shows the fraction of entity coreference

chains of various lengths.

5. Baselines

For a given video, VidSRL requires predicting verbs and

semantic roles for each event as well as event relations. We

provide powerful baselines to serve as a point of comparison

these crucial capabilities. These models leverage architec-

tures from state-of-the-art video recognition models.

Verb Prediction. Given a 2 sec clip, we require a model

to predict the verb corresponding to the most salient event in

the clip. As baselines, we provide state-of-art action recog-

nition models such as I3D [8] and SlowFast [16] networks

(Step 1 in Fig. 3). We consider variants of I3D both with and

without Non-Local blocks [76] and for SlowFast networks,

we consider variants with and without the Fast channel. For

each architecture, we train a model from scratch as well as

a model finetuned after pretraining on Kinetics [31]. All

models are trained with a cross-entropy loss over the set of

action labels. For subsequent stages, these verb classifica-

tion models are frozen and used as feature extractors.

Argument Prediction Given Verbs: Given a 10 sec

video and a verb for each of the 5 events, a model is re-

quired to infer entities and their roles involved in each event.

To this end, we adapt seq-to-seq models [68] that consist of

an encoder and a decoder (Step 2(a,b) in Fig. 3). Specif-

Video Feature 

Extractor
Video Feature 

Extractor

Video Feature 

Extractor

Video Feature 

Extractor

Video Feature 

Extractor

[Arg0] woman with shield [Arg1] boulder

deflect [Arg0] woman with shield [Arg1]

Transformer Decoder

[Arg0] man with trident [Arg1] over

leap [Arg0] man with trident [Arg1]

Transformer Decoder

Video Feature 

Extractor
Video Feature 

Extractor

Video Feature 

Extractor

Video Feature 

Extractor

Video Feature 

Extractor

deflect talk

Classifier

leap punch punch

!" !# !$ !% !&

!$ '( )*+,-). ,/ !"

!" !# !$ !% !&

Step 1: Verb Prediction and Video Representation Learning

Step 2(a): Contextualized Event Representations

(reuses feature extractor from Step 1)

Step 2(b): Decoding Semantic Roles for Predicted Verbs

(jointly trained with Encoder in Step 2(a))

Step 3: Event Relation Prediction

(trains a separate Encoder similar to Step 2(a))

[CLS] deflect [Arg0] woman with shield [Arg1] boulder …

[CLS] leap [Arg0] man with trident [Arg1] over …

Decoded !" arguments given the verb deflect: 

Decoded !$ arguments given the verb leap: 

Transformer Encoder

Classifier Classifier Classifier Classifier

RoBERTa

RoBERTa

Classifier

Figure 3: Models. The figure illustrates our baselines for

verb, semantic role, and event prediction using state-of-

the-art network components such as SlowFast [16] network

for video feature extraction, transformers [71] for encoding

events in a video and verb-conditional decoding of roles,

and RoBERTa [46] language encoder for event-relation pre-

diction.
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ically, independent event features are fed through a trans-

former [71] encoder (TxEnc) to get contextualized event

representations. Then for each event, the corresponding

encoded representation and the verb are passed to a trans-

former decoder (TxDec) to generate the sequence of argu-

ments and roles for that event. As an example, for Event

1 in Fig 1, we expect to generate the following sequence:

[Arg0] woman with shield [Arg1] boulder [Scene] city park

The generated sequence is post-processed to obtain the

argument role structure similar to those of the annotations

Figure 1. We also provide language only baselines using

our TxDec architecture as well as a GPT2 decoder.

Event Relation Prediction: A model must infer how the

various events within a video are related given the verb and

arguments. For a pair of ordered events (Ei, Ej) with i < j,

with corresponding verbs and semantic roles, we construct

a multimodal representation of each event denoted by mi

and mj (Step 3 in Fig. 3). Each of these representations

is a concatenation of visual representation from TxEnc and

a language representation of the sequence of verbs, argu-

ments, and roles obtained from a pretrained RoBERTa [46]-

base language model. mi and mj are concatenated and fed

through a classifier to predict the event relation.

6. Experiments

VidSitu allows us to evaluate performance in 3 stages: (i)

verb prediction; (ii) prediction of semantic roles with coref-

erencing given the video and verbs for each event; and (iii)

event relations prediction given the video and verbs and se-

mantic roles for a pair of events.

6.1. Evaluation Metrics

In VidSRL, multiple outputs are plausible for the same

input video. This is because of inherent ambiguity in the

choice of verb used to describe the event (e.g. the same

event may be described by “fight”, “punch” or “hit”), and

the referring expression used to refer to entities in the video

(e.g. “boy with black hair” or “boy in the red shirt”). We

confirm this ambiguity through a human-agreement anal-

ysis on a subset of 100 videos (500 events) with 25 verb

annotations and 5 role annotations per event. Importantly,

through careful manual inspection we confirm that a major-

ity of differences in annotation for the same video across

AMT workers are due to this inherent ambiguity and not

due to a lack of annotation quality.

Verb Prediction. The ambiguity in verbs associated

with events suggests that commonly used metrics such as

Accuracy, Precision, and F1 are ill suited for the verb pre-

diction task as they would penalize correct predictions that

may not be represented in the ground truth annotations.

However, recall based metrics such as Recall@k are suit-

able for this task. Since the large verb vocabulary in Vid-

Situ presents a class-imbalance challenge, we use a macro-

averaged Recall@k that better reflects performance across

all verb-senses instead of focusing on dominant classes.

We now describe our macro-averaged Verb Recall@k

metric. For any event, we only consider the set of verbs

which appears at least twice within the ground-truth anno-

tations (each event in val and test sets has 10 verb annota-

tions). For event Ej (where j indexes events in our evalua-

tion set), let this set of agreed-upon ground-truth be denoted

by Gj . We compute recall@k for each verb-sense vi ∈ V
(where i indexes verb-senses in the vocabulary V) as

Rk
i =

P
j (vi ∈ Gj)× (vi ∈ P k

j )
P

j (vi ∈ Gj)
(1)

where is an indicator function and P k
j denotes the set

of top-k verb predictions for Ej . Macro-averaged verb re-

call@k is given by 1

|V|

P
i R

k
i . We report macro-average

verb recall@5 (R@5) but also report top-1 and top-5 accu-

racy (Acc@1/5) for completeness.

Semantic Role Prediction and Co-referencing. Given

a video and verb for each event, we wish to measure the

semantic role prediction performance. Through a human-

agreement analysis we discard arguments such as direction

(ADir) and manner (AMnr) which do not have a high inter-

annotator agreement and retain Arg0, Arg1, Arg2, ALoc,

and AScn for evaluation. This agreement computation is

computed using the CIDEr metric by treating one of the

chosen annotations as a hypothesis and remaining annota-

tions as references for each argument. In addition to re-

porting a micro-averaged CIDEr score (C), we also com-

pute macro-averaged CIDEr where the macro-averaging is

performed across verb-senses (C-Vb) or argument-types (C-

Arg). ROUGE-L (R-L) [42] is shown for completeness.

Since VidSitu provides entity coreference links across

events and roles, we use LEA [52] a link-based co-reference

metric to measure coreferencing capability. Other metrics

(MUC [73], BCUBE [2], CEAFE [47]) can be found in the

supp. Co-referencing in our case is done via exact string

matching over the predicted set of arguments. Thus, even if

the predictions are incorrect, but just the coreference is cor-

rect, LEA would give it a higher score. To address this, we

propose a soft version of LEA termed LEA-soft (denoted

with Lea-S) which assigns weights to cluster matches using

their CIDEr score (defined in the supp.).

Event-Relation Prediction Accuracy. Event-relation

prediction is a 4-way classification problem. For the subset

of 100 videos, We found event relations conditioned on the

verbs to have 60% agreement. For evaluation, we use the

subset of event pairs for which 2 out of 3 workers agreed

on the relation. We use top-1 accuracy (Acc@1) averaged

across the classes as the metric for relation prediction.
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Model Vis Enc
Val Test

C R-L C-Vb C-Arg Lea Lea-S C R-L C-Vb C-Arg Lea Lea-S

GPT2 7 7 34.67 40.08 42.97 34.45 48.08 28.1 36.48 41.33 44.27 36.51 49.38 30.24

TxDec 7 7 35.68 41.19 47.5 32.15 51.76 28.6 35.34 41.45 44.44 32.06 52.46 29.18

Vid TxDec SlowFast 7 44.78 40.61 49.97 41.24 37.88 28.69 44.95 41.12 49.46 41.98 38.91 30.21

Vid TxEncDec SlowFast 3 45.52 42.66 55.47 42.82 50.48 31.99 47.25 43.46 52.92 45.48 50.88 33.5

Vid TxDec I3D 7 47.14 40.67 51.61 41.29 37.89 30.38 47.9 41.5 51.29 43.62 38.77 31.73

Vid TxEncDec I3D 3 47.06 42.41 51.67 42.76 48.92 33.58 48.51 42.96 53.88 44.53 49.61 35.46

Human* 84.85 39.77 91.7 80.15 72.1 70.33 83.68 40.04 87.78 79.29 71.77 70.6

Table 4: Semantic role prediction and co-referencing metrics. Vis. denotes the visual features used (7 if not used), and

Enc. denotes if video features are contextualized. C: CIDEr, R-L: ROUGE-L, C-Vb: CIDEr scores averaged across verbs,

C-Arg: CIDEr scores averaged over arguments. Lea-S: Lea-soft. See Section 6.1 for details.

Model Kin.
Val Test

Acc@1 Acc@5 Rec@5 Acc@1 Acc@5 Rec@5

I3D 7 31.18 67.00 5.24 31.91 67.36 5.33

I3D+NL 7 30.17 66.83 4.88 31.43 67.70 5.02

Slow+NL 7 33.05 68.83 5.82 34.29 69.56 6.24

SlowFast+NL 7 32.64 69.22 6.11 33.94 70.54 6.56

I3D 3 29.65 60.77 18.21 29.87 59.10 19.54

I3D+NL 3 39.40 70.82 17.12 38.42 69.27 18.46

Slow+NL 3 29.05 58.69 19.19 29.03 58.77 21.06

SlowFast+NL 3 46.79 75.90 23.38 46.37 75.28 25.78

Table 5: Verb classification metrics. Acc@K: Event Accu-

racy considering 10 ground-truths and K model predictions.

Rec@K: Macro-Averaged Verb Recall with K predictions.

Kin. denotes whether Kinetics is used.

Verb Args Val Macro-Acc Test Macro-Acc

Roberta 3 3 25.00 25.00

TxEnc 3 3 25.00 25.00

Vid TxEnc 7 7 31.98 31.71

Vid TxEnc 7 3 32.22 32.03

Vid TxEnc 3 3 33.46 32.10

Table 6: Event relation classification metrics. Macro-

Averaged Accuracy on Validation and Test Sets. We evalu-

ate only on the subset of data where two annotators agree.

6.2. Results

Verb Classification: We report macro-averaged Rec@5

(preferred metric; Sec. 6.1) and Acc@1/5 on both valida-

tion and test sets in Tab. 5. We observe verb prediction in

VidSitu follows similar trends as other action recognition

tasks. Specifically, SlowFast architectures outperform I3D

and Kinetics pretraining significantly and consistently im-

proves recall across all models by ≈ 10 to 16 points.

Argument Prediction: We report micro and macro-

averaged version of CIDEr and ROUGE-L in Tab. 4 (see

supp. for other metrics). First, video conditioned mod-

els significantly outperform video-blind baselines. Next,

we observe that using an encoder to contextualize events

in a video improves performance across almost all met-

rics. Interestingly, while SlowFast outperformed I3D in

verb prediction, the reverse is true for semantic role predic-

tion. Even so, a large gap exists between current methods

and human performance.

We also evaluate coreferencing ability demonstrated by

models without explicitly enforcing it during training. In

Tab. 4, we report both Lea and Lea-S (preferred; Sec. 6.1)

metrics and find that current techniques are unable to

learn coreferencing directly from data. Among all models,

only Vid TxEncDec outperformed a language only baseline

(GPT2) on both val and test sets, leaving lots of room for

improvement in future models.

Event Relation Prediction results are provided in Ta-

ble 6. Crucially, we find video-blind baselines don’t train

at all and end up predicting the most frequent class “En-

abled By” (hence it gets 0.25 for always predicting major-

ity class). This suggests there exists no exploitable biases

within the dataset and underscores the importance and chal-

lenge posed by event relations. In contrast, video encoder

models even when given just the video without any verb de-

scription outperform video-blind baselines. Adding context

in the form of verb senses and arguments yields small gains.

In summary, powerful baselines show promise on the

three sub-tasks. However, it is clear that VidSitu poses sig-

nificant new challenges with a huge room for improvement.

7. Conclusion

We introduce visual semantic role labeling in videos in

which models are required to identify salient actions, partic-

ipating entities and their roles within an event, co-reference

entities across time, and recognize how actions affect each

other. We also present the VidSitu dataset with diverse

videos, complex situations, and rich annotations.
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