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Abstract

We introduce a meta-regularization framework for

learning-based image registration. Current learning-based

image registration methods use high-resolution architec-

tures such as U-Nets to produce spatial transformations,

and impose simple and explicit regularization on the output

of the network to ensure that the estimated displacements

are smooth. While this approach works well on small de-

formations, it has been known to struggle when the defor-

mations are large. Our method uses a more advanced form

of meta-regularization to increase the generalization ability

of learned registration models. We motivate our approach

based on Reproducing Kernel Hilbert Space (RKHS) theory,

and approximate that framework via a meta-regularization

convolutional layer with radially symmetric, positive semi-

definite filters that inherent its regularization properties. We

then provide a method to learn such regularization filters

while also learning to register. Our experiments on syn-

thetic and real datasets as well as ablation analysis show

that our method can improve anatomical correspondence

compared to competing methods, and reduce the percentage

of folding and tear in the large deformation setting, reflect-

ing better regularization and model generalization.

1. Introduction

Deformable image registration is the process of trans-

forming images to be in anatomical correspondence with

one another. It is a critical step in many applications in

medical imaging including segmentation, diagnosis, and

computational anatomy. In the traditional approach to im-

age registration, the transformation is obtained by solving

an optimization problem over a space of transformations

based on image similarity [1]. This optimization problem

is solved for a specific pair, and no generalization is ob-

tained throughout this process. This demands repeating the

optimization process for any new pair of images which is

inefficient and time-consuming.

Recent advances in deep learning have enabled a

paradigm shift in the field. With the introduction of differ-

entiable Spatial Transformer layers [2] and the development

of advanced architectures such as U-Nets [3] and Fully Con-

volutional Networks (FCNs) [4], a new level of abstraction

has become achievable. Instead of optimizing for every in-

put image pair, a deep model can be trained to learn how to

register in an end-to-end fashion [5]. Once a model is ob-

tained, it can be used to infer dense spatial transformations

between new pairs in a single forward pass which is much

faster than running an optimizer.

As variations in anatomical structures are usually local

and non-rigid, the registration we seek is deformable, and

the transformation model must have many degrees of free-

dom to capture the local changes with high resolution [6].

Therefore, one of the most challenging parts of the regis-

tration process is ensuring that the estimated spatial trans-

formation between images is smooth and realistic, and that

the high degrees of freedom don’t result in overfitting. Fur-

thermore, the choice of the regularization function has fun-

damental consequences on the class of transformations that

the model can produce, and is therefore key to building a

successful model. Most learning-based registration meth-

ods impose an explicit and generic regularization loss on

the output of the registration function, which is usually a

penalty on the first order derivative of the displacement field

[7, 8, 9, 10, 11, 12]. We find this approach to be too lim-

ited, as it presumes the same simple smoothness properties

regardless of image content and permissible deformations,

which is not realistic. For example, some transformation

models must preserve discontinuities in the case of sliding

organs, but would not accurately apply elsewhere [13].

Furthermore, many state of the art learning-based image

registration networks leverage the high-resolution proper-

ties of U-Nets for good performance [7, 14, 11, 12]. How-

ever, this type of architecture, while good in retaining spa-

tial resolution, struggles with datasets that have large de-

formations [12][15][16]. We have also observed this in

practice through controlled experiments, as we will show

in 5.4.1. Motivated to solve these two important problems,

we propose a meta-regularization framework for learning-

based image registration models. Specifically, we first build

on the rich framework of Reproducing Kernel Hilbert Space
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(RKHS) theory. As this framework is computationally ex-

pensive, we then show how in some special cases it can be

simplified to a convolution operation that can approximately

retain its regularization properties. Once we establish this,

we propose a simple method to train a meta-regularization

convolutional layer in registration networks to learn how to

regularize, thereby increasing the model’s generalizability.

Our main contributions are:

1. We introduce a meta-regularization framework to in-

crease the generalization ability of learning-based de-

formable image registration methods.

2. We draw connections between regularizing displace-

ment fields through (a) applying differential operators

and (b) convolving with radially symmetric, rank-1,

positive semi-definite (PSD) filters.

3. We propose a method to train convolution filters in

a registration network to have spatial regularization

properties.

4. We demonstrate that this method can both improve

anatomical correspondence and reduce the folding and

tear in the predicted displacement fields, especially in

the large deformation setting.

2. Background

In traditional image registration, a moving image M is

spatially transformed to be in anatomical correspondence

with a fixed image F according to an image-similarity met-

ric [1]. The problem is ill-posed in that many transfor-

mations exist which can achieve the correspondence, even

though most are not physically realizable. A regularization

term is therefore essential in such problems. If the spatial

transformation is defined as a dense displacement field φ,

then the registration can be formulated as the solution to the

optimization problem

φ∗ = argmin
φ

S
(

F,M ◦ φ
)

+ λR(φ), (1)

where S(·, ·) is an image similarity loss function such as the

squared Euclidean distance or normalized cross correlation,

R(·) is a regularization function, and λ is a regularization

hyperparameter. The composition operation ◦ denotes spa-

tially transforming and resampling the moving image ac-

cording to φ.

This traditional framework requires solving the opti-

mization problem in Eq. (1) for any new pair of images F
and M, which is a slow process. The recent development of

learning-based image registration uses a set of image pairs

to train a deep model to register [5]. Subsequently, the reg-

istration of a new pair is done by a single forward pass of

the network which offers dramatic computational savings

in the long run [7]. This approach defines a displacement-

producing function g :(F,M) → φ, which takes the image

pair and produces a spatial transformation φ that maps the

moving image M to the fixed one F. This function can be

represented by a regression neural network with parameters

θ, which can be trained in an unsupervised fashion on an en-

semble of image pairs. In this work, we not only train this

network to produce spatial transformations, but also to learn

convolution filters that are capable of spatial regularization.

3. Related Work

3.1. LearningBased Image registration

Although neural networks have been used within the tra-

ditional image registration setting, for example, to learn fea-

ture representations [17], the emergence of learning-based

image registration based on deep models is more recent.

The introduction of differentiable spatial transformer layers

[2] and fully convolutional networks [4] facilitated building

end-to-end models that can not only register, but also learn

how to register. DIRNet modified the affine spatial trans-

formation model in [2] to become deformable [5], and in-

troduced one of the first learning-based methods. However,

the model only had trainable parameters at the encoding part

of the network. The method then used interpolation to de-

code the transformation on the control points to the dense

pixel level, which reduced the resolution of the model.

Fully convolutional networks were used in [18] to im-

prove upon this shortcoming, since it used trainable layers

at the decoder side. Nonetheless, the hourglass shape of this

network still limits the resolution of the network to what is

distilled in the bottleneck layer. Furthermore, fully train-

able deconvolution layers at the decoder side make it more

challenging for the network to produce smooth fields, and

could introduce checkerboard artifacts [19]. With the in-

troduction of more advanced architectures such as U-Nets

[3], higher resolution registration models became possible

[7, 14, 20, 9, 10, 11, 12].

As training these models requires big data sets, and ob-

taining anatomical labels is expensive, a lot of focus has

been on unsupervised training. However, producing smooth

and topologically preserving transformations becomes par-

ticularly challenging, especially in the case of large defor-

mations [10, 21, 12]. To alleviate this, architectures that

promote cycle-consistency were proposed in [12]. Cascad-

ing a sequence of incremental transformations for gradual

registration was also proposed in [8] and [21]. Learning-

based diffeomorphic transform methods were also recently

introduced as a more advanced model than displacement

fields. For example, stationary velocity fields were used

in [20, 6, 9]. Nonetheless, velocity-methods remain sig-

nificantly more computationally demanding than simpler

displacement-based models.

In contrast to previous unsupervised learning-based ap-

proaches, our method addresses registration generaliza-
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tion and regularization by introducing a meta-regularization

strategy. Unlike most of these methods which only impose

an explicit regularization function at the output of the net-

work to ensure regularity, the meta-regularization layer in

our network inherently learns how to regularize.

3.2. Regularization in RKHS

The theory of RKHS provides a powerful regulariza-

tion model from functional analysis, with functions being

confined to live in a Hilbert Space defined by a PSD re-

producing kernel. It has been predominately used in the

Large Deformation Diffeomorphic Metric Mapping (LD-

DMM) framework to regularize velocity fields [22, 23], and

more recently in a diffeomorphic model that learns a spa-

tially varying regularization function [6].

Representer Theorem lets us express a regularized func-

tion in RKHS as a linear product of a Gram matrix and a

vector [24]. This property has been used in [25, 13, 26], but

in the traditional (non-learning based) registration setting

and without the presence of a deep model that parameter-

izes this vector. Furthermore, as the Gram matrix grows

quadratically with the data size, it is impractical to com-

pute or tune during training. Therefore, in our work we use

Representer Theorem as a starting point, and then focus on

approximating it with a trainable convolutional layer that

learns spatial regularization properties.

3.3. Weight symmetry in neural networks

Weight symmetry has been explored in the context of

deep learning for the purpose of model compression in

[27, 28]. Such methods attempted to increase generaliza-

tion of a network by forcing it to learn with fewer shared

parameters. Horizontal and vertical symmetries were con-

sidered in convolutional kernels to increase flip and rota-

tional invariance of networks in [29]. In our method, weight

symmetry arises from requiring that the convolution filters

of the meta-regularization layer approximate the operation

of multiplying by an RKHS Gram matrix. We show that in

a specific setting, this requirement imposes radial symme-

try on the filter weights, and this turns out to increase model

generalization as well.

4. Method

Given a set of image pairs {(Fi,Mi)}
n
i=1 drawn from

a distribution D, we take a deep unsupervised approach to

learn a displacement-producing function gθ, represented by

a neural network with parameters θ. Once trained, this func-

tion maps new image pairs (Fj ,Mj) to a displacement field

φj , such that when the moving image Mj is transformed by

φj , it aligns with the fixed image Fj . The objective, there-

fore, is to minimize an expected loss

θ∗ = argmin
θ

IED

[

S
(

F, M ◦ gθ(F,M)) + λR(gθ)
]

(2)

over the entire set of image pairs. Since the composition op-

eration ◦ is now part of the network, a differentiable spatial

transformer layer Ψ(M, gθ) is used to carry out this opera-

tion. Typically, R(·) takes the form

R(φ) =
d

∑

i

‖∇φi(x)‖
p, (3)

which imposes different smoothness properties on the dis-

placement field φ depending on the power p. When p = 2,

(3) becomes a diffusion regularization, which penalizes the

squared ℓ2-norm of the derivatives of the components of φ,

and is used in [9, 14]. When p = 1, it becomes regular-

ization by total variation, which is popular because of its

edge-preserving properties and is used in [18, 21].

This approach of explicitly imposing a specific regular-

ization function on the output of the registration network is

limiting. It requires hand-crafting suitable forms for differ-

ent datasets and does not enable the registration network to

adapt its regularization properties [9]. We opt for a mecha-

nism to learn a more general regularization form.

4.1. Spatial Transformations in RKHS

Generalizing on (1), we can define image registration as

a search for a spatial transformation

T ∗ = argmin
T

S
(

F,M ◦ T
)

+ λR(LT ), (4)

while imposing a smoothness penalty according to a dif-

ferential operator, L. This is equivalent to searching for a

function in RKHS, i.e.,

T ∗ = argmin
T ∈H

S
(

F,M ◦ T
)

+ λR(T ), (5)

where the function space H is induced by a reproducing

kernel k(·, x) which is the Green’s function of LL† [30].

Therefore, defining any permissible kernel function auto-

matically applies a penalty on the smoothness of the trans-

formation T , per the differential operator it corresponds to.

Invoking an RKHS framework permits us to use Repre-

senter Theorem, which lets us represent the transformation

in the Hilbert space induced by k(·, x) as a linear transfor-

mation in a finite space, T = Kα, for some vector α to be

found [24, 31]. The matrix K is the Gram matrix, such that

Ki,j = k(pi, pj) for two pixels pi and pj . Consequently we

can reduce (5) to the search over α, i.e.,

α∗ = argmin
α

S
(

F,M ◦Kα
)

+ λR(Kα). (6)

Finally, returning to our deep learning framework, we can

regard α as the output of the displacement-producing func-

tion, gθ, so that α = gθ(F, M) and the problem becomes

θ∗ = argmin
θ

IE
[

S
(

F,M ◦Kgθ(F,M))+λR(Kgθ)
]

. (7)
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Comparing this to (2) we see that this setting creates a reg-

ularization layer between the output of the network gθ and

the transformed image, M ◦Kgθ(F,M). This adds a pow-

erful regularization model into the image registration net-

work, but is not viable in practice. The matrix K grows

quadratically with the number of pixels and becomes pro-

hibitively complex to compute, and even more difficult to

consider updating or learning within the network. Instead,

we attempt to exploit the structure of K for a special case

of kernels to reduce its operation to a convolution, while

inheriting its regularization effects.

4.2. From RKHS to Convolutions that Regularize

If we restrict our reproducing kernel function to be trans-

lationally invariant, i.e., k(pi, pj) = k(pi − pj), and inter-

pret the input to the spatial transformer layer as displace-

ments off of a uniform rectilinear grid, then we can de-

compose the Gram matrix along its spatial dimensions via

a Kronecker product, K = Kx ⊗ Ky , or K = Kx ⊗ Kx

for square grids [32] which is what we assume for simplic-

ity. This matrix will have the structure of a doubly-block

symmetric Toeplitz matrix,

K=











toep(Kx
:,0) toep(Kx

:,1) · · · toep(Kx
:,n−1)

toep(Kx
:,1) toep(Kx

:,0) · · · toep(Kx
:,n−2)

...
...

...
...

toep(Kx
:,n−1) toep(Kx

:,n−2) · · · toep(Kx
:,0)











.

(8)

where toep(v) is a Toeplitz matrix constructed from a vec-

tor v. Let Bi,j denote the (i, j)th Toeplitz block in K.

We define a reduced matrix K̃ by concatenating the mid-

columns of the blocks Bn

2
,0,Bn

2
,1, . . ., i.e.,

K̃ =
(

B
m
n

2
,0 B

m
n

2
,1 · · · B

m
n

2
,n

)

, (9)

where B
m denotes the mid-column of a block matrix B.

We can now approximate the large doubly-block symmetric

Toepltiz matrix K in terms of the smaller matrix K̃ as

mat(Kgθ) ≈ K̃ ∗mat(gθ), (10)

where the mat operation returns vectorized outputs to their

matrix form and ∗ denotes convolution [33]. Notice that

by the structure produced by the Kronecker product, we

have that Kx
:,1 =Kx

1,0K
x
:,0, and more generally that Kx

:,i =

Kx
i,0K

x
:,0, where Kx

:,i denotes the ith column of Kx. This

implies that K̃ can be directly written as an outer product,

i.e., K̃ = Kx
:,n

2

(Kx
:,n

2

)T , and is therefore PSD with rank-1

[34]. As such, Tr(K̃) ≥ 0, because Tr(K̃) =
∑

i λi(K̃) =
(Kx

:,n
2

)TKx
:,n

2

. This is a useful property for the next section

when we train the registration network to learn convolution

filters that have the regularization properties of K̃. Lastly,

Figure 1. Overall architecture of the learning-based image registra-

tion network with meta-regularization. The loss function L com-

bines the similarity, regularization, and meta-regularization losses.

as Kx
:,n

2

is symmetric, the matrix K̃ would be radially sym-

metric.

In summary, we have shown that starting with a spatially

invariant PSD kernel k(·, x) evaluated on a rectilinear grid,

we can approximate the operation of its corresponding large

matrix K by convolving with a smaller PSD matrix K̃ that

is radially-symmetric, rank-1, and of non-negative trace.

4.3. Learning to regularize (and register)

So far, we have demonstrated how to regularize the reg-

istration network by convolving its output with the matrix K̃
as a proxy for multiplying by the regularizing Gram matrix

K, with the premise that it will save us computational effort.

However, a crucial point here is that we do not pre-define

a reproducing kernel k(·, x), and therefore have no control

over what corresponding differential operator L the network

will use to penalize the displacement field φ. Instead, we let

the network learn this kernel in its most general form (i.e.,

we don’t simply learn parameters of a predefined reproduc-

ing kernel). To achieve this, we apply a meta-regularization

term which penalizes the trainable regularization filters to

inherent the properties we derived earlier.

More specifically, we denote by K̃θ a trainable convolu-

tion filter applied to gθ, and regularize it to converge to a

radially-symmetric, PSD matrix. Radial symmetry is easy

to promote using a penalty on the deviation of K̃θ from sym-

metry about its diagonal and anti-diagonal. Promoting pos-

itiveness semi-definiteness, on the other hand, is more dif-

ficult. We can do this by learning the nonzero entries of an

upper triangular matrix Uθ with a non-negativity constraint

on its diagonal, and then produce K̃θ = UθU
T
θ .

A simpler necessary but insufficient condition is to en-

sure that Tr(K̃θ) ≥ 0. The ℓ1-norm of the diagonal can also

be penalized for the eigenvalues to be sparse and for Tr(K̃θ)
to be low-rank. However, we have noticed that the first pro-

cess of promoting radial symmetry in addition to imposing

a non-negativity trace penalty can approximately produce

this result in practice. Wrapping this all together, we finally

arrive at the learning-based registration model with meta-
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regularization. We define this by the objective function

θ∗ = argmin
θ

IE(F,M)∼D

[

S
(

F,M ◦ (K̃θ ∗ gθ)
)

+ λR(K̃θ ∗ gθ) +M(K̃θ),
(11)

where the meta-regularization function M(·) takes the form

M(K̃θ) = ρ1(‖K̃θ−K̃T
θ ‖

2+ ‖ K̃θ J−J K̃θ‖
2)

− ρ2 (Tr(K̃θ) + Tr(J K̃θ)),
(12)

where J is an exchange matrix (i.e., an anti-diagonal iden-

tity matrix) and ρ1 and ρ2 are hyperparameters. We high-

light that M can take many other forms, but we found this

form to be stable and computationally efficient. Also note

that a trivial regularization that could be learned via this

mechanism occurs when the kernel filter collapses to a 2D

delta function, as this satisfies the radial symmetry, positive-

trace, and PSD conditions. However, such a kernel results

in severe pixelation in the registered image, and we found

that a reasonable image similarity loss function will safe-

guard against this degenerate case in practise.

4.4. EndtoEnd Architecture

The overall architecture includes three main parts. The

first part is a fully convolutional network, gθ, that takes an

input pair of images, (Fi,Mi), and produces a dense dis-

placement field φi. The architecture is flexible, and we

adopt a U-Net architecture because of its ability to preserve

the resolution of the spatial transformation. The second part

is a meta-regularization layer. This is a trainable convolu-

tional layer equipped with its own penalty function M that

promotes the regularization properties we derived earlier.

The third part is a differentiable spatial transformer layer

Ψ(·, ·) which produces the new moving image given the

original moving image and the predicted regularized dis-

placement field.

The final loss function, L, is the accumulation of three

losses: an image similarity loss S(F,M), a displacement

field regularization loss R which operates on the estimated

displacement, and a meta-regularization loss, M which op-

erates on the kernel filters of the meta-regularization layer.

Fig. 1 illustrates this architecture.

5. Experiments

5.1. Datasets

We demonstrate our method on three datasets corre-

sponding to different anatomical structures, namely liver

MRI, echocardiography, and chest X-ray. To test the per-

formance of our method against competing methods under a

controlled severity of deformation, we first carry out exper-

iments on a liver MRI dataset [35] with synthetic displace-

ment fields. These fields were generated by a spatial Gaus-

sian mixture model, and the deformation energy σ was set

to two modes: σ = 10, corresponding to moderate defor-

mations, and σ = 16, corresponding to large deformations.

This enables us to investigate the performance and gener-

alization properties of learning-based registration methods

under four scenarios: Training on a dataset of pairs which

have undergone moderate(large) deformations, while test-

ing on another set of pairs which have undergone moder-

ate(large) deformations. We refer to these four experiments

as 1) Train Moderate, Test Moderate, 2) Train Moderate,

Test Large, 3) Train Large, Test Moderate, and 4) Train

Large, Test Large. We train on 1,000 image pairs of size

256× 256 and evaluate on 80 pairs that have been anatomi-

cally annotated by a human expert and include the liver and

spleen segments.

The second set of experiments falls in the large defor-

mation category and uses cardiac motion images from the

EchoNet-Dynamic database [36]. This database is com-

posed of echocardiogram videos and human expert annota-

tions for subjects that underwent imaging at Stanford Uni-

versity Hospital. For each video, the left ventricle is marked

at the endocardial border at two separate time points rep-

resenting end-systole and end-diastole. We use these two

images corresponding to the end-systole and end-diastole

phases as the fixed and moving images, respectively. Each

endocardial boarder is annotated with 40 landmarks pro-

vided in [36], and we use the concave hull of this region

to define the anatomical boundary of interest in each im-

age. Overall, we use 2,090 pairs for training and 200 pairs

for evaluation. The third dataset also falls in the large

deformation category and corresponds to chest X-ray im-

ages of healthy patients and ones infected with Tuberculosis

[37][38]. The dataset contains 662 noisy and highly vari-

able images and we used the lung masks in [38] to validate

our results on 60 holdout pairs.

5.2. Evaluation metrics

Our learning-based image registration method is unsu-

pervised, and does not use anatomical labels for training.

However, we use anatomical labels to test registration accu-

racy. In each test set, the segmentation mask of the moving

image is transformed according to the inferred displacement

field φ and compared to the mask of the fixed image. We use

the Dice coefficient to measure anatomical correspondence

before and after registration. The success of the registra-

tion model also depends on the smoothness and topology-

preserving properties of the spatial transformation. We eval-

uate the Jacobian determinant |Jφ| at each displaced pixel,

compute the percentage of the Jacobian determinants that

are positive, and report the mean and standard deviation of

this statistic in each experiment. We also report the statis-

tics of the minimum determinant |Jφ|min to keep track of

folding severity. Lastly, we report the runtime statistics (in

seconds) to register a pair of images.
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Figure 2. Sample result of registering liver images. (a) Fixed im-

age, (b) Moving image, (c) Registered moving image, (d) Dis-

placement field, (e) Intensity difference before registration, (f) In-

tensity difference after registration.

5.3. Baseline Methods and Implementation

We compare our method to VoxelMorph [7, 14], DIRNet

[5] and FCN-SS [18]. VoxelMorph is currently a state-of-

the-art method for unsupervised learning-based image reg-

istration and has an architecture based on U-Nets. We com-

pare with both VoxelMorph-1, which outputs a displace-

ment at half the image size and then upsamples to full size,

and VoxelMorph-2, which uses a full U-Net and therefore

operates at a higher spatial resolution. DIRNet uses a sim-

pler convolutional model by only encoding with a sequence

of convolutional layers. It then uses interpolation for the de-

coder to arrive at the full image resolution of the displace-

ment field. Lastly, FCN-SS uses a fully convolutional net-

work with deep self-similarity so that all the encoding and

decoding layers of the network are trainable.

For consistency, we used the same implementation of the

spatial transformer layer on all methods, which is the one

provided in [39] and that we found to be the best. We also

tuned the parameters of each method beyond their default

values for better performance. The registration networks

were trained using an Adam optimizer with a batch size

of two pairs, and with mean squared error as the similar-

ity measure. We fixed our regularizing filters to size 13×13

and tuned the hyperparameters ρ1 and ρ2 in (12) over the

values {10i}i, where i ∈ (−1, 0, 1, 2, 3) for the former and

i ∈ (−5,−4,−3,−2,−1) for the latter. We implemented

our method in Keras and TensorFlow on a 2.8 GHz Intel

Core i7 CPU.

5.4. Results

5.4.1 Controlled Deformations on a Synthetic Dataset

The results of the four experiments applied to the first (liver)

dataset are shown in Tables 1 and 2. Table 1 demonstrates

the two cases where the train and test sets are at the same

Figure 3. Comparison of Dice % across regularization parameter λ

for the large deformation liver dataset (σtrain = 16, σtest = 16).

Figure 4. Comparison of percentage of positive Jacobian determi-

nants across regularization parameter λ for the large deformation

liver dataset (σtrain = 16, σtest = 16).

level of deformation (moderate-moderate and large-large),

while Table 2 shows the result of training on moderate de-

formations while testing on large deformations and vice

versa. FCN-SS underperforms in all four scenarios, espe-

cially in the two cases where it trains on large deformations.

We attribute this to two reasons: (1) The method uses a sim-

pler architecture than U-Nets, and (2) It includes trainable

convolutional layers at the decoder side without a suitable

regularization mechanism. DIRNet performs better, given

its fixed interpolation function at the decoder, but this limits

its registration resolution and it is consistently surpassed by

VoxelMorph.

Our method outperforms VoxelMorph in the four scenar-

ios. Moreover, it is particularly effective in the large defor-

mation settings, (σtrain = 16, σtest = 16) and (σtrain =
16, σtest = 10). This demonstrates that meta-regularization

can adapt and generalize better than other methods in sce-

narios were the deformation is large. The 4.3% increase in

anatomical correspondence is also associated with a slight

increase in positive Jacobian determinants, which implies

that the improvement in anatomical correspondence does

not come at the cost of increased folding and can actually
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Method Train Moderate, Test Moderate Train Large, Test Large

(σtrain = 10, σtest = 10) (σtrain = 16, σtest = 16)

Dice (%) |Jφ| ≥ 0 |Jφ|min CPU Dice (%) |Jφ| ≥ 0 |Jφ|min CPU

DIRNet 90.53±3.27 99.78±0.37 −0.07±0.18 0.0459 76.37±6.91 99.46±0.56 −0.30±0.29 0.0440

FCN-SS 73.85±6.41 99.47±0.11 −4.84±1.15 0.0430 56.65±9.05 99.40±0.09 −6.22±1.60 0.0463

VoxelMorph-1 93.81±1.87 99.92±0.10 −0.39±0.39 0.0619 76.27±7.61 97.86±0.95 −1.87±0.52 0.0771

VoxelMorph-2 93.80±1.95 99.78±0.28 −0.76±0.66 0.1016 80.50±6.64 99.87±0.21 −0.12±0.23 0.1144

Meta-Reg. (Ours) 94.12±1.41 99.96±0.10 −0.09±0.23 0.1020 84.80±6.09 99.97±0.06 −0.05±0.14 0.1145

Table 1. Comparison of Liver results for the two cases where train and test pairs have the same level of deformation.

Method Train Moderate, Test Large Train Large, Test Moderate

(σtrain = 10, σtest = 16) (σtrain = 16, σtest = 10)

Dice (%) |Jφ| ≥ 0 |Jφ|min CPU Dice (%) |Jφ| ≥ 0 |Jφ|min CPU

DIRNet 77.60±8.39 99.12±0.51 −0.41±0.24 0.0408 87.74±3.11 99.34±0.55 −0.39±0.25 0.0397

FCN-SS 56.30±8.97 99.38±0.08 −5.88±1.27 0.0368 73.87± 6.33 99.48±0.11 −5.21±1.31 0.0357

VoxelMorph-1 84.91±6.54 99.29±0.45 −1.13 ±0.62 0.0560 88.66±3.79 98.45±0.87 −2.09±0.88 0.0610

VoxelMorph-2 84.61±6.27 98.46±0.73 −2.47±1.63 0.0912 86.59±4.99 97.61±1.03 −3.09±1.72 0.0985

Meta-Reg. (Ours) 85.56±6.14 99.15±0.59 −0.88±0.50 0.1004 92.60±1.79 99.84±0.21 −0.42±0.44 0.1064

Table 2. Comparison of Liver results for the two cases where train and test pairs have different levels of deformation.

Method Dice (%) |Jφ| ≥ 0 |Jφ|min CPU

DIRNet 84.06±6.39 96.42±2.00 −2.08±1.22 0.0212

FCN-SS 76.01±7.21 97.06±1.17 −4.85±1.64 0.0246

VM-1 84.12±5.70 97.18±1.61 −3.54±2.04 0.0416

VM-2 83.96±5.66 97.16±1.53 −3.95±2.42 0.0780

Meta-Reg. 86.52±5.26 98.73±1.15 −1.64±1.22 0.0813

Table 3. Comparison of methods on Cardio data.

improve both metrics. Fig. 2 shows an example of a regis-

tered pair along with the estimated displacement field.

Fig. 3 shows a comparison of the Dice performance

of VoxelMorph-2 and our method in the (σtrain = 16,

σtest = 16) scenario as we vary the regularization param-

eter λ. Fig. 4 shows the increase in the percentage of posi-

tive Jacobian determinants with λ for the same setting. Our

method consistently outperforms VoxelMorph-2 across the

entire range of regularization strength, and attains its best

performance at λ = 0.04. It is also more robust with re-

spect to this parameter as it maintains good performance

across a wider range of its values. Overall, the runtime of

our method is roughly 5-10% longer than VomelMorph-2

and 60-80% longer than VoxelMorph-1.

5.4.2 Real Deformations on Echocardiography and

Chest X-Ray Images

Tables 3 and 4 show the registration results on the 200 car-

diac ultrasound and 60 chest X-ray holdout pairs, respec-

tively. In the cardiac experiment, our method outperforms

the others on the average Dice metric and leads the second

Method Dice (%) |Jφ| ≥ 0 |Jφ|min CPU

DIRNet 81.40±6.92 96.01±2.66 −1.10±0.80 0.0248

FCN-SS 76.41±7.07 94.90±1.23 −6.52±2.04 0.0257

VM-1 83.86±5.85 96.42±2.39 −2.08±1.24 0.0523

VM-2 82.31±5.24 97.74±1.89 −1.50±0.96 0.0865

Meta-Reg. 85.20±4.85 97.46±2.06 −1.47±0.86 0.0902

Table 4. Comparison of methods on Chest X-ray data.

Figure 5. Sample result of registering cardiac ultrasound images.

(a) Fixed image, (b) Moving image, (c) Registered moving image,

(d) Displacement field, (e) Intensity difference before registration,

(f) Intensity difference after registration.

best method, VoxelMorph-1, by 2.4 points, while also re-

ducing the standard deviation. It also increased the percent-

age of positive Jacobian determinants by an average of 1.55

points. Fig. 5 shows the registration result and estimated

displacement field of a sample pair.
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Figure 6. Sample result of registering chest X-ray images. (a)

Fixed image, (b) Moving image, (c) Registered moving image, (d)

Displacement field, (e) Intensity difference before registration, (f)

Intensity difference after registration.

In the X-ray dataset, our method also outperformed the

other methods leading the second best, VoxelMorph-1, on

the Dice metric by 1.34 points, and VoxelMorph-2 by 2.89

points. However, it under-performed on the folding metric

by approximately 0.28 points compared to VoxelMorph-2.

Fig. 6 shows the registration result and estimated displace-

ment field of a sample pair.

5.4.3 Ablation Study

To demonstrate the efficacy of our proposed meta-

regularization strategy, we also tested out the registration

model using the same end-to-end architecture, but with the

meta-regularization component M in (12) removed. This

is a network that uses a U-Net architecture with trainable

transpose convolution layers in the decoder, a spatial trans-

former layer, and the same explicit regularization form in

(3) (with p=2) applied to the output displacement field.

We applied this architecture to all three datasets. For

the liver dataset which had different deformation modes, we

tested the two modes (σtrain=10, σtest=10) and (σtrain=
16, σtest=16). Table 5 compares the results of this ablated

architecture with those of the meta-regularization frame-

work. Meta-regularization consistently outperformed the

ablated architecture on all settings that have large deforma-

tions. The average gain in the Dice metric is 4.71 points for

liver MRI with large deformations, 2.52 points for echocar-

diography, and 3.64 for chest X-ray. It did not improve the

performance in the moderate Liver10 setting.

5.4.4 Statistical Analysis

We conducted a series of unpaired t-tests of statistical sig-

nificance on all experiments. At a 95% confidence level,

let H0 in each experiment be the null hypothesis that our

Dataset Ablated Network Meta-Reg.

Dice (%) |Jφ| ≥ 0 Dice (%) |Jφ| ≥ 0
Liver10 94.36±1.40 99.94±0.09 94.12±1.41 99.96±0.10
Liver16 80.08±7.08 98.29±0.71 84.80±6.09 99.97±0.06

Cardiac 84.00±5.90 97.04±1.68 86.52±5.26 98.73±1.15

Chest 81.56±5.55 98.49±1.61 85.20±4.85 97.46±2.06

Table 5. Ablation comparison: lift in Dice and positive Jacobian

determinants we gain over an ablated network by imposing meta-

regularization.

method has the same mean Dice score with the next best

method. Then H0 is rejected, with p-value < 0.05 for

liver(16,16), liver(16,10), and cardiac experiments. It is also

rejected for ablation experiments for liver(16,16), cardiac,

and chest experiments with p-values 0.0296, 8.59e-06, and

0.0002, respectively. Only for the chest experiment do we

not achieve significance over VoxelMorph-1, but still do

so over the second best results of VoxelMorph-2 with p-

value=0.002. These results demonstrate that incorporating a

meta-regularization strategy can indeed increase the gener-

alization ability of registration networks to within statistical

significance.

6. Conclusion

In this work we introduced a new meta-regularization

framework to learning-based image registration. We built

on RKHS theory and established that, for spatially invariant

reproducing kernels evaluated on a grid, RKHS regulariza-

tion effects can be approximately attained in convolution

filters. We showed that these filters would be radially sym-

metric, PSD, rank-1, and with non-negative trace. We then

proposed a method to learn such regularizing filters while

also training the network to register. Through experimen-

tation with controlled synthetic data and two real datasets,

we demonstrated the efficacy of our proposed method in in-

creasing the generalization ability of the registration net-

work, especially in the large deformation regime. Com-

pared with three other methods, our method was able to both

enhance the anatomical correspondence as well as reduce

the folding frequency in the predicted displacement fields.

An ablation study was also conducted by maintaining the

same architecture while removing the meta-regularization

component, and this showed that our method improved

anatomical correspondence in the large deformation sets

by an average of 3.6 Dice points, reflecting better model

generalization and topology preservation. Overall, this is a

promising framework that can be used with many learning-

based image registration architectures, and we are currently

exploring its potential value in other applications such as

optical flow and motion correction.
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