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Abstract

We present an approach for encoding visual task rela-

tionships to improve model performance in an Unsuper-

vised Domain Adaptation (UDA) setting. Semantic seg-

mentation and monocular depth estimation are shown to

be complementary tasks; in a multi-task learning setting,

a proper encoding of their relationships can further im-

prove performance on both tasks. Motivated by this ob-

servation, we propose a novel Cross-Task Relation Layer

(CTRL), which encodes task dependencies between the se-

mantic and depth predictions. To capture the cross-task re-

lationships, we propose a neural network architecture that

contains task-specific and cross-task refinement heads. Fur-

thermore, we propose an Iterative Self-Learning (ISL) train-

ing scheme, which exploits semantic pseudo-labels to pro-

vide extra supervision on the target domain. We experi-

mentally observe improvements in both tasks’ performance

because the complementary information present in these

tasks is better captured. Specifically, we show that: (1)

our approach improves performance on all tasks when they

are complementary and mutually dependent; (2) the CTRL

helps to improve both semantic segmentation and depth es-

timation tasks performance in the challenging UDA setting;

(3) the proposed ISL training scheme further improves the

semantic segmentation performance. The implementation is

available at https://github.com/susaha/ctrl-uda.

1. Introduction

Semantic segmentation and monocular depth estimation

are two important computer vision tasks that allow us to

perceive the world around us and enable agents’ reasoning,

e.g., in an autonomous driving scenario. Moreover, these

tasks have been shown to be complementary to each other,

i.e., information from one task can improve the other task’s

performance [27, 40, 57]. Domain Adaptation (DA) [11]
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Figure 1: Semantic segmentation improvement with our ap-

proach to unsupervised domain adaptation over the state-

of-the-art DADA [59] method. Left to right: Cityscapes

test images, DADA, and the proposed method (CTRL). Our

model correctly segments the “bus”, “rider”, and “wall”

classes underrepresented in the target domain (highlighted).

refers to maximizing model performance in an environment

with a smaller degree of supervision (the target domain) rel-

ative to what the model was trained on (the source domain).

Unsupervised Domain Adaptation (UDA) assumes only ac-

cess to the unannotated samples from the target domain at

train time – the setting of interest in this paper.

Recent domain adaptation techniques [32, 59] proposed

to leverage depth information available in the source do-

main to improve semantic segmentation on the target do-

main. However, they lack an explicit multi-task formula-

tion to relate depth and semantics, that is to say, how each

semantic category relates to different depth levels. The

term depth levels refers to different discrete ranges of depth

values, i.e., “near” (1-5m); “medium-range” (5-20m), or

“far” (>20m). This paper aims to design a model that

learns explicit relationships between different visual seman-

tic classes and depth levels within the UDA context.

To this end, we design a network architecture and a

new multitask-aware feature space alignment mechanism

for UDA. First, we propose a Cross-Task Relation Layer
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(CTRL) – a novel parameter-free differentiable module tai-

lored to capture the task relationships given the network’s

semantic and depth predictions. Second, we utilize a Se-

mantics Refinement Head (SRH) that explicitly captures

cross-task relationships by learning to predict semantic seg-

mentation given predicted depth features. Both CTRL and

SRH boost the model’s ability to effectively encode corre-

lations between semantics and depth, thus improving pre-

dictions on the target domain. Third, we employ an Itera-

tive Self Learning (ISL) scheme. Coupled with the model

design, it further pushes the performance of semantic seg-

mentation. As a result, our method achieves state-of-the-

art semantic segmentation performance on three challeng-

ing UDA benchmarks (Sec. 4). Fig. 1 demonstrates our

method’s effectiveness by comparing semantic predictions

of classes underrepresented in the target domain to predic-

tions made by the previous state-of-the-art method. The

paper is organized as follows: Sec. 2 discusses the related

work; Sec. 3 describes the proposed approach to UDA,

the network architecture, and the learning scheme; Sec. 4

presents the experimental analysis with ablation studies;

Sec. 5 concludes the paper.

2. Related Work

Semantic Segmentation. refers to the task of assigning

a semantic label to each pixel of an image. Convention-

ally, the task has been addressed using hand-crafted features

combined with classifiers, such as Random Forests [51],

SVMs [16], or Conditional Random Fields [29]. Pow-

ered by the effectiveness of Convolutional Neural Networks

(CNNs) [31], we have seen an increasing number of deep

learning-based models. Long et al. [36] were among the

first to use fully convolutional networks (FCNs) for seman-

tic segmentation. Since then, this design has quickly be-

come a state-of-the-art method for the task. The encoder-

decoder design is still widely used [64, 5, 1, 69, 4].

Cross-domain Semantic Segmentation. Training deep

networks for semantic segmentation requires large amounts

of labeled data, which presents a significant bottleneck in

practice, as acquiring pixel-wise labels is a labor-intensive

process. A common approach to address the issue is to train

the model on a source domain and apply it to a target do-

main in a UDA context. However, this often causes a per-

formance drop due to the domain shift. Domain Adaptation

aims to solve the issue by aligning the features from dif-

ferent domains. DA is a highly active research field, and

techniques have been developed for various applications,

including image classification [17, 34, 37, 38], object de-

tection [8], fine-grained recognition [18], etc.

More related to our method are several works on unsu-

pervised domain adaptation for semantic segmentation [66,

50, 71, 9, 58, 23, 62, 70, 46, 63]. This problem has been

tackled with curriculum learning [66], GANs [50], adver-

sarial training on the feature space [9], output space [53],

or entropy maps [58], self-learning using pseudo- or weak

labels [71, 46, 23]. However, prior works typically only

consider adapting semantic segmentation while neglecting

any multi-task correlations. A few methods [7, 59] model

correlations between semantic segmentation and depth esti-

mation, similarly to our work, yet – as explained in Sec. 1 –

these works come with crucial limitations.

Monocular Depth Estimation. Similar to semantic seg-

mentation, monocular depth estimation is dominated by

CNN-based methods [13, 15, 30, 33]. [13] introduced a

CNN-based architecture for depth estimation, which re-

gresses a dense depth map. Their approach was then im-

proved by incorporating techniques such as a CRF [35, 33]

and multi-scale CRF techniques [61]. Besides, improve-

ments in the loss design itself also lead to better depth

estimation. Examples include the reverse Huber (berHu)

loss [44, 72], and the ordinal regression loss [15].

Multi-task Learning for Semantic Segmentation and

Depth Estimation. Within the context of multi-task learn-

ing, semantic segmentation is shown to be highly correlated

with depth estimation, and vice versa [65, 60, 27, 67, 68, 40,

52, 57, 56, 26]. To leverage this correlation, some authors

have proposed to learn them jointly [48, 25, 6]. In partic-

ular, [43, 25, 55, 3] proposed to share the encoder and use

multiple decoders, whereas a shared conditional decoder is

used in [6]. Semantic segmentation was also demonstrated

to help guide the depth training process [19, 24].

In this paper, we build upon these observations. We ar-

gue that task relationships, like the ones between depth and

semantics, are not entirely domain-specific. As a result, if

we correctly model these relationships in one domain, they

can be transferred to another domain to help guide the DA

process. The proposed method and its components are ex-

plicitly designed around this hypothesis.

3. Method

In this section, we describe our approach to UDA in the

autonomous driving setting. Sec. 3.1 presents an overview

of the proposed approach; Sec. 3.2 explains the notation and

problem formulation; Sec. 3.3 describes supervision on the

source domain; Sec. 3.4 presents the CTRL module design;

Sec. 3.5 describes the ISL technique; Sec. 3.6 prescribes the

rest of the network architecture details.

3.1. Overview

The primary hypothesis behind our approach is that task

dependencies persist across domains, i.e., most semantic

classes fall under a finite depth range. We can exploit this

information from source samples and transfer it to target

using adversarial training. As our goal is to train the net-

work in a UDA setting, we follow an adversarial training

scheme [22, 53] to learn domain invariant representations.
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Figure 2: Overview of the proposed neural architecture (Sec. 3.2) and the CTRL module (Sec. 3.4). Supervised losses (in

the middle) are applied only on the source domain; the rest of the data flow is domain-agnostic. Legend: learned modules,

predictions, loss functions; rounded corners denote operators, rectangles denote activations.

Unlike [59] that directly aligns a combination of seman-

tics and depth features, we wish to design a joint feature

space for domain alignment by fusing the task-specific and

the cross-task features and then learn to minimize the do-

main gap through adversarial training. To this end, we pro-

pose CTRL – a novel module that constructs the joint fea-

ture space by computing entropy maps of both the seman-

tic label and discretized depth distributions (Fig. 2). Thus,

CTRL entropy maps, generated on the source and target do-

mains, are expected to carry similar information.

Further enhancement of semantic segmentation perfor-

mance appears possible by utilizing the Iterative Self-

Learning (ISL) training scheme, which does not require ex-

pensive patch-based pseudo-label generation like [23]. As

our CTRL helps the network to predict high-quality predic-

tions (Fig. 1), ISL training exploits high-confidence predic-

tions as supervision (pseudo-labels) on the target domain.

3.2. Problem Formulation

Let D
(s) and D

(t) denote the source and target do-

mains, with samples from them represented by tuples

(x(s), y(s), z(s)) and (x(t)) respectively, where x ∈
R

H×W×3 are color images, y ∈ {1, ..., C}H×W are seman-

tic annotations with C classes, and z ∈ [Zmin, Zmax]
H×W

are depth maps from a finite frustum. Furthermore, Fe is the

shared feature extractor, which includes a pretrained back-

bone, and a decoder; Fs and Fd are the task-specific seman-

tics and depth heads, respectively; Fr is the SRH (Fig. 2).

First, Fe extracts a shared feature map to be used by

SRH and task-specific semantics and depth heads. The

semantics head Fs predicts a semantic segmentation map

ŷs = Fs(Fe(x)) with C channels per pixel, denoting pre-

dicted class probabilities. The depth head Fd predicts a

real-valued depth map ẑ = Fd(Fe(x)), where each pixel

is mapped into the finite frustum specified in the source do-

main. We further employ SRH to learn the cross-task rela-

tionship between semantics and depth by making it predict

semantics from the shared feature map, attenuated by the

predicted depth map. Formally, the shared feature map is

point-wise multiplied by the predicted depth map, and then

SRH predicts a second (auxiliary) semantic segmentation

map: ŷr = Fr(ẑ ⊙Fe(x)).

We refer to the part of the model enclosing the

Fe,Fs,Fr,Fd modules as a prediction network. The pre-

dictions made by the network on the source and target do-

mains are denoted as (ŷ
(s)
s , ŷ

(s)
r , ẑ(s)) and (ŷ

(t)
s , ŷ

(t)
r , ẑ(t)),

respectively. We upscale these predictions along the spa-

tial dimension to match the original input image dimension

H ×W before any further processing. Given these seman-

tics and depth predictions on the source and target domains,

we optimize the network cost using supervised loss on the

source domain, and unsupervised domain alignment loss on

the target domain within the same training process.

3.3. Supervised Learning

Since the semantic segmentation predictions ŷ
(s)
s , ŷ

(s)
r

and ground truth y(s) are represented as pixel-wise class

probabilities over C classes, we employ the standard cross-

entropy loss with the semantic heads:

LCE(ŷ, y) = −

C∑

i=1

yi log ŷi. (1)

We use the berHu loss (the reversed Huber criterion [30])

for penalizing depth predictions:

LberHu(ẑ, z) =

{
|z − ẑ| |z − ẑ| ≤ L,
(z−ẑ)2+L2

2L |z − ẑ| > L,

L = 0.2max(|z − ẑ|).

(2)

Following [27], we regress inverse depth values (normal-

ized disparity), which is shown to improve the precision

of predictions on the full range of the view frustum. The

parameters of the network θe, θs, θr, θd (parameterizing

Fe, Fs, Fr, Fd modules), collectively denoted as θnet, are

learned to minimize the following supervised objective on
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the source domain:

min
θnet

E
D(s)

[
LCE(ŷ

(s)
s , y(s)) + λrLCE(ŷ

(s)
r , y(s)) +

λdLberHu(ẑ
(s), z(s))

] (3)

where λr and λd are the hyperparameters weighting relative

importance of the SRH and depth supervision.

3.4. CrossTask Relation Layer

In the absence of ground truth annotations for the target

samples, we train the network on the target images using

unsupervised domain alignment loss. Existing works either

align source and target domain in a semantic space [58] or

a depth-aware semantic space [59] by fusing the continu-

ous depth predictions with predicted semantic maps. Here,

we argue that simple fusion of the continuous depth predic-

tion into the semantics does not enable the network to learn

useful semantic features at different depth levels. Instead,

explicit modeling is required to achieve this goal.

Humans learn to relate semantic categories at each dis-

crete depth level differently. For example, “sky” is “far

away” (large depth), “vehicles” are “nearby”, “road” ap-

pears to be both “far” and “nearby”. Taking inspiration

from the way humans relate semantic and depth, we design

a CTRL (Fig. 2) that captures the semantic class-specific

dependencies at different discrete depth levels. Moreover,

CTRL also preserves task-specific information by fusing

task-specific and task-dependent features learned by the se-

mantics, depth, and refinement (SRH) heads. CTRL con-

sists of a depth discretization, an entropy map generation,

and a fusion layer described in the following subsections.

3.4.1 Depth Discretization Module

The prediction made by the depth head ẑ contains continu-

ous depth values. We want to map it to a discrete probabil-

ity space to learn visual semantic features at different depth

levels. We quantize the view frustum depth range into a

set of representative discrete values following the spacing-

increasing discretization (SID) [15]. Such discretization

assigns progressively large depth sub-ranges further away

from the point of view into separate bins, which allows us

to simulate the human perception of depth relations in the

scene, with a finite number of categories.

Given the depth range [Zmin, Zmax] and the number of

depth bins K, SID outputs a K-dimensional vector of dis-

cretization bin centers b as follows:

bi = Z
1−(2i+1)/2K
min · Z(2i+1)/2K

max , i = 0, . . . ,K−1 (4)

We can now assign probabilities of the predicted depth val-

ues falling into the defined bins:

ẑ′ = softmax(−(ẑ − b)2). (5)

3.4.2 Joint Space for Domain Alignment

The task-dependency ŷr (output by SRH), alongside the

task-specific semantics ŷs and depth ẑ′ probability maps,

can be considered as discrete distributions over semantic

classes and depth levels. As we do not have access to

the ground truth labels for the target domain, one way to

train the network to predict high-confidence predictions is

by minimizing the uncertainty (or entropy) in the predicted

distributions over the target domain [58]. The source and

target domains share similar spatial features, and it is rec-

ommended to align them in the structured output space [21].

To this end, we propose a novel UDA training scheme,

where task-specific and task-dependent knowledge is trans-

ferred from the source to the target domain by constraining

the target distributions to be similar to the source by align-

ing the entropy maps of ŷr, ŷs, and ẑ′. Note that unlike

[59, 58], which constrain only on the task-specific space (ŷs
in our case) for domain alignment, we train the network to

output highly certain predictions by aligning features in the

task-specific and task-dependent spaces.

We argue that aligning source and target distributions

jointly in task-specific and task-dependent spaces helps to

bridge the domain gap for underrepresented classes, which

are learned poorly without the presence of a joint represen-

tation. To encode such a joint representation, we generate

entropy maps as follows:

E(p) = −p⊙ log p

Er = E(ŷr), Es = E(ŷs), Ed = E(ẑ′).
(6)

We then concatenate these maps along the channel dimen-

sion to get the fused entropy map E = concat(Er, Es, Ed)
and employ adversarial training on it.

For aligning the source and target domain distributions,

we train the proposed segmentation and depth prediction

network (parameterized by θnet) and the discriminator net-

work D (parameterized by θD) following an adversarial

learning scheme. More specifically, the discriminator is

trained to correctly classify the sample domain being either

source or target given only the fused entropy map:

min
θD

{
E

D(s)

[
logD(E(s))

]
+

E
D(t)

[
log

(
1−D(E(t))

)]} (7)

At the same time, the prediction network parameters are

learned to maximize the domain classification loss (i.e.,

fooling the discriminator) on the target samples using the

following optimization objective:

min
θnet

E
D(t)

[
logD(E(t))

]
(8)

We use the hyperparameter λadv weighing the relative

importance of the adversarial loss (8). Our training scheme
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jointly optimizes the model parameters of the prediction

network (θnet) and the discriminator (θD). Updates to the

prediction network and the discriminator happen upon ev-

ery training iteration; however, when updating the predic-

tion network, the discriminator parameters are kept fixed.

Parameters of the discriminator are updated separately us-

ing the domain classification objective (Eq. 7).

3.5. Iterative Self Learning

Following prior work [71], we train our network end-

to-end using an ISL scheme using Algorithm 1. We first

train the prediction (θnet) and discriminator (θD) networks

for Q1 iterations. We then generate semantic pseudo-labels

(ỹ(t)) on the target training samples x(t) using the trained

prediction network.

We further train the prediction network on the target

training samples using pseudo-labels supervision and a

masked cross-entropy loss (Eq. 1), masking target predic-

tion pixels with confidence less than 0.9, for Q3 iterations.

Instead of training the prediction network using SL only

once, we iterate over generating high-confidence pseudo-

labels and self-training Q2 times to refine the pseudo-labels,

further resulting in better quality semantics output on the

target domain.

We show in the ablation studies (Sec. 4.4) that our ISL

scheme outperforms the simple SL. The discriminator net-

work parameters (θD) are kept fixed during self-training.

Algorithm 1 ISL(D(s),D(t), θnet, θD)

1: Train prediction (θnet) and discriminator (θD) networks

on source and target domains for Q1 iterations;

2: for Q2 times do

3: Generate ỹ
(t)
s = Fs(Fe(x

(t))) using trained θnet;

4: Train θnet on (x(t), ỹ
(t)
s ) for Q3 iterations;

5: end for

3.6. Network Architecture

The shared part of the prediction network Fe consists of

a ResNet-101 backbone and a decoder (Fig. 2). The de-

coder consists of four convolutional layers; its outputs are

fused with the backbone output features, which are denoted

as the “shared feature map”. This shared feature map is then

fed forward to the respective semantics and semantics re-

finement heads. Following the residual auxiliary block [41]

(as in [59]), we place the depth prediction head between the

last two convolutional layers of the decoder. In the sup-

plementary materials, we show that our proposed approach

is not sensitive to the residual auxiliary block and performs

equally well with a standard multi-task learning network ar-

chitecture (i.e., a shared encoder followed by multiple task-

specific decoders). We adopt the Deeplab-V2 [4] architec-

tural design with Atrous Spatial Pyramid Pooling (ASPP)

for the prediction heads. We use DC-GAN [47] as our do-

main discriminator for adversarial learning.

4. Experiments

4.1. UDA Benchmarks

We use three standard UDA evaluation protocols (EPs)

to validate our model: EP1: SYNTHIA → Cityscapes

(16 classes), EP2: SYNTHIA → Cityscapes (7 classes),

and EP3: SYNTHIA → Mapillary (7 classes). A de-

tailed explanation of these settings can be found in [59].

In all settings, the SYNTHIA dataset [49] is used as

the synthetic source domain. In particular, we use the

SYNTHIA-RAND-CITYSCAPES split consisting of 9,400

synthetic images and their corresponding pixel-wise seman-

tic and depth annotations. For target domains, we use

Cityscapes [10] and Mapillary Vistas [42] datasets. Follow-

ing EP1, we train models on 16 classes common to SYN-

THIA and Cityscapes; in EP2 and EP3, models are trained

on 7 classes common to SYNTHIA, Cityscapes, and Map-

illary. We use intersection-over-union to evaluate segmen-

tation: IoU (class-IoU) and mIoU (mean-IoU). To promote

reproducibility and emphasize significance of our results,

we report two outcomes: the best mIoU, and the confidence

interval. The latter is denoted as mean±std collected over

five runs, thus describing a 68% confidence interval cen-

tered at mean1. For depth, we use Absolute Relative Dif-

ference (|Rel|), Squared Relative Difference (Rel2), Root

Mean Squared Error (RMS), its log-variant LRMS; and the

accuracy metrics [14] as denoted by δ1, δ2, and δ3. For each

metric, we use ↑ and ↓ to denote the improvement direction.

4.2. Experimental Setup

All our experiments are implemented in PyTorch [45].

Backbone network is a ResNet-101 [20] initialized with

ImageNet [12] weights. The prediction and discriminator

networks are optimized with SGD [2] and Adam [28] with

learning rates 2.5 × 10−4 and 10−4 respectively. Through-

out our experiments, we use λr = 1.0, λd = λadv = 10−3.

For generating depth bins, we use Zmin = 1m, Zmax =
655.36m, and K = 15. In all ISL experiments, parame-

ters of the algorithm are: Q1 = 65K, Q2 = 5, Q3 = 5K.

Link to the project page with source code is in the Abstract.

4.3. Comparison to Prior Art

4.3.1 EP1

Table 1 reports semantic segmentation performance of our

proposed model trained and evaluated following EP1. For

a fair comparison with [53, 54, 39], we also report results

1Class-IoU values of the ”best mIoU” setting can be less than the mean

of the class confidence interval at the expense of other classes performance.
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Table 1: Semantic segmentation performance (IoU and mIoU, %) comparison to the prior art. All models are trained and

evaluated using the EP1 protocol. mIoU* is computed on a subset of 13 classes, excluding those marked with *. For our

method, we report the results of the run giving the best mIoU, as well as 68% confidence interval over five runs as mean±std.

SYNTHIA → Cityscapes (16 classes)

Models Depth ro
ad

si
de

w
al

k
bu

il
di

ng
w

al
l*

fe
nc

e*

po
le

*

li
gh

t

si
gn

ve
g

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
bi

ke

bi
ke

mIoU ↑ mIoU* ↑

SPIGAN-no-PI [32] 69.5 29.4 68.7 4.4 0.3 32.4 5.8 15.0 81.0 78.7 52.2 13.1 72.8 23.6 7.9 18.7 35.8 41.2

SPIGAN [32] X 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8 42.4

AdaptSegnet [53] 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 - 45.9

AdaptPatch [54] 82.2 39.4 79.4 - - - 6.5 10.8 77.8 82.0 54.9 21.1 67.7 30.7 17.8 32.2 - 46.3

CLAN [39] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

Advent [58] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6

DADA [59] X 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 49.8

Ours (best mIoU) X 86.9 43.0 80.7 19.2 0.9 27.2 11.6 12.6 81.3 83.2 60.7 24.0 84.2 46.2 22.0 44.2 45.5 52.4

Ours (confidence) X
86.4
±0.6

42.5
±0.8

80.4
±0.2

20.0
±2.0

1.0±
0.06

27.7
±0.3

10.5
±0.9

13.3
±0.7

80.6
±0.4

82.6
±0.5

61.0
±0.4

23.7
±1.2

81.8
±2.2

42.9
±3.8

21.0
±3.2

44.7
±2.4

45.0
±0.3

51.5
±0.4

Table 2: Semantic segmentation performance (IoU and mIoU, %) comparison to the prior art. All models are trained and

evaluated using the EP2 and EP3 protocols at different resolutions, as indicated in the resolution (“Res.”) column. For our

method, we report the results of the run giving the best mIoU, as well as 68% confidence interval over five runs as mean±std.

(a) SYNTHIA → Cityscapes (7 classes) (b) SYNTHIA → Mapillary (7 classes)

Res. Model Depth fl
at

co
ns

t

ob
je

ct
na

tu
re

sk
y

hu
m

an

ve
hi

cl
e

mIoU ↑ fl
at

co
ns

t

ob
je

ct
na

tu
re

sk
y

hu
m

an

ve
hi

cl
e

mIoU ↑

32
0
×

64
0

SPIGAN-no-PI [32] 90.3 58.2 6.8 35.8 69.0 9.5 52.1 46.0 53.0 30.8 3.6 14.6 53.0 5.8 26.9 26.8

SPIGAN [32] X 91.2 66.4 9.6 56.8 71.5 17.7 60.3 53.4 74.1 47.1 6.8 43.3 83.7 11.2 42.2 44.1

Advent [58] 86.3 72.7 12.0 70.4 81.2 29.8 62.9 59.4 82.7 51.8 18.4 67.8 79.5 22.7 54.9 54.0

DADA [59] X 89.6 76.0 16.3 74.4 78.3 43.8 65.7 63.4 83.8 53.7 20.5 62.1 84.5 26.6 59.2 55.8

Ours (best mIoU) X 90.8 77.5 15.7 77.1 82.9 45.3 68.6 65.4 86.6 57.4 19.7 73.0 87.5 45.1 68.1 62.5

Ours (confidence) X
90.1
±0.5

76.7
±0.4

15.7
±0.9

76.3
±0.7

82.2
±1.1

44.1
±2.3

68.2
±1.0

64.7
±0.5

86.8
±0.3

58.6
±0.7

17.0
±2.3

70.8
±1.4

88.9
±0.8

44.8
±2.7

67.9
±0.9

62.1
±0.4

F
u
ll

Advent [58] 89.6 77.8 22.1 76.3 81.4 54.7 68.7 67.2 86.9 58.8 30.5 74.1 85.1 48.3 72.5 65.2

DADA [59] X 92.3 78.3 25.0 75.5 82.2 58.7 72.4 69.2∗ 86.7 62.1 34.9 75.9 88.6 51.1 73.8 67.6

Oracle (only-target) 97.6 87.9 46.0 87.9 88.8 69.1 88.6 80.8 95.0 84.2 54.8 87.7 97.2 70.2 87.5 82.4

Ours (best mIoU) X 92.4 80.7 27.7 78.1 83.6 59.0 78.6 71.4 88.5 59.2 27.8 79.4 85.7 64.4 79.6 69.2

Ours (confidence) X
92.2
±0.3

80.8
±0.1

27.0
±0.9

78.6
±0.8

84.9
±1.2

54.5
±3.2

78.2
±1.3

70.8
±0.4

88.4
±0.1

58.6
±0.7

29.0
±0.8

79.8
±0.4

85.0
±0.9

63.2
±1.3

79.0
±0.4

69.0
±0.1

∗ The correct mean of class IoU values in Table 2 of [59].

on 13 classes and the standard 16 classes settings. Our

method achieves SOTA performance in EP1 on both 16 and

13 classes, outperforming [59, 32] by large margins. Now

we can identify the major class-specific improvements of

our method over the SOTA [59] DADA. The major gains

come from the following classes – “wall” (+12.4%), “mo-

torbike” (+8%), “person” (+6%), “bicycle” (+5.4%) and

“rider” (+4.7%). Moreover, our method shows consistent

improvements on classes underrepresented in the target do-

main: “light” (+3%), “sign” (+1.5%), “bicycle” (+5.4%),

and “motorbike” (+8%). Fig. 3 shows the results of the

qualitative comparison of our method with DADA [59].
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Figure 3: Qualitative semantic segmentation results with

EP1: SYNTHIA → Cityscapes (16 classes). (a) Images

from Cityscapes validation set; (b) ground truth annota-

tions; (c) DADA [59] predictions; (d) our model predic-

tions. Our method demonstrates notable improvements over

[59] on “bus”, “person”, “motorbike”, and “bicycle” classes

as highlighted using the yellow boxes.

Figure 4: Qualitative semantic segmentation results with

EP3: SYNTHIA → Mapillary-Vista (7 classes). Top: im-

ages from Mapillary validation set; Middle: ground truth

annotations; Bottom: our model predictions.

Note that our model delineates small objects like “human”,

“bicycle”, and “motorbike” more accurately than DADA.

4.3.2 EP2 and EP3

Table 2 presents the semantic segmentation results in EP2

and EP3 benchmarks. The models are evaluated on the

Cityscapes and Mapillary validation sets on their common

7 classes. We also train and evaluate our model on the

320 × 640 resolution to obtain a fair comparison with the

reference low-resolution models. In a similar vein, the pro-

posed method outperforms the prior works in EP2 and EP3

benchmarks for both full- and low-resolution (640 × 320)

settings. We further show in Sec. 4.5 that our approach

achieves state-of-the-art performance without ISL in EP2

and EP3 in both full- and low-resolution settings. The pro-

posed CTRL coupled with SRH demonstrates consistent

improvements over three challenging benchmarks by cap-

italizing on the inherent semantic and depth correlations. In

Table 3: Ablation study of our method from Sec. 4.4.

Conf S
em

S
up

D
ep

S
up

S
R

H
S
up

S
em

A
dv

D
ep

A
vd

S
R

H
A

dv
S
L

IS
L

mIoU (%) ↑

C1 X 30.7

C2 X X 35.2

C3 X X 33.7

C4 X X X 33.1

C5 X X 40.8

C6 X X X X 40.2

C7 X X X X 39.5

C8 X X X X X X 42.1

C9 X X X X X X X 44.1

C10 X X X X X 42.8

C11 X X X X X X X 45.5

EP2 and EP3, our models show noticeable improvements

over the state-of-the-art [59] with mIoU gains of +2.2%
(EP2-full-res), 2% (EP2-low-res), +1.6% (EP3-full-res),

+6.7% (EP3-low-res). Despite the challenging domain gap

between SYNTHIA and Mapillary, our model shows sig-

nificant improvement (+6.7%) in a low-resolution setting,

which suggests robustness to scale changes.

4.4. Ablation Studies

A comprehensive ablation study is reported in Table 3.

We trained 11 different models, each having a different con-

figuration; these are denoted as C1, ..., C11. We use the fol-

lowing shortcuts in Table 3 to represent different combina-

tions of settings: “Sem” – semantic, “Dep” – depth, “Sup”

– supervision, “Adv” – adversarial, and “Conf” – configu-

ration. Configurations C1 to C4 denote supervised learn-

ing settings without any adversarial training. These mod-

els are trained on the SYNTHIA dataset and evaluated on

Cityscapes validation set. Configurations from C5 to C7
denote different combinations of supervised and adversar-

ial losses on the semantics, depth, and semantics refinement

heads. C8 is the proposed model with CTRL, but without

ISL. C9 to C11 are models trained with SL or ISL with or

without SRH. C5 to C11 follow EP1 protocol: SYNTHIA

→ Cityscapes UDA training and evaluation setting.

C1 is trained using semantics label supervision without

any depth information or adversarial learning. By enabling

parts of the model and training procedure, we observed the

following tendencies: C2 & C3 : depth supervision (either

direct or through SRH) improves performance; C4: how-

ever, adding SRH on top of the depth head in the supervised

learning setting does not bring improvements; C5: effec-

tiveness of entropy map domain alignment in semantics fea-
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Table 4: Effectiveness of the joint feature space learned by

our method (w/o ISL) for robust domain alignment. Perfor-

mance in mIoU; legend for “Ours” as in Table 2.

Model
S→C

(FR)

S→M

(FR)

S→C

(LR)

S→M

(LR)

DADA [59] 69.2 67.6 63.4 55.8

Ours (best mIoU) 70.6 67.6 64.9 58.8

Ours (confidence) 69.5
±0.6

66.5
±0.6

64.3
±0.4

58.5
±0.4

Table 5: Improvement over the state-of-the-art [59] in

monocular depth estimation. The models are trained fol-

lowing SYNTHIA → Cityscapes (16 classes) UDA setting

w/o ISL and evaluated on the Cityscapes validation set.

Model |R
el
|↓

R
el

2 ↓

R
M

S
↓

L
R

M
S
↓

δ1↑ δ2↑ δ3↑

DADA [59] 0.6 10.8 17.0 4.4 0.14 0.28 0.41

Ours 0.3 6.3 14.8 0.6 0.30 0.58 0.77

ture space [58]; C6 and C7: domain alignment in the depth

or refined semantics feature spaces do not bring any further

improvements; C8: a combination of depth and SRH with

task-specific semantics improves the performance (i.e., our

CTRL model); C9: SL brings further improvement but not

as good as with our ISL training scheme; C10: emphasizes

the improvement over C6 with ISL enabled; C11: posi-

tive contribution of the SRH towards improving the over-

all model performance. Finally, we achieve state-of-the-art

segmentation results (mIoU 45.5%) by combining the pro-

posed CTRL, SRH, and ISL (configuration C11).

4.5. Additional Experimental Analysis

4.5.1 Effectiveness of the Joint UDA Feature Space

This section analyzes the effectiveness of joint feature space

learned by the CTRL for unsupervised domain alignment.

We train and evaluate our CTRL model without ISL on two

UDA benchmarks: (a) EP2: SYNTHIA to Cityscapes 7
classes (S → C) and (b) EP3: SYNTHIA to Mapillary 7
classes (S → M) in both full- and low-resolution (FR and

LR) settings. In Table 4, we show the segmentation per-

formance of our model on these four different benchmark

settings and compare it against the state-of-the-art DADA

model [59]. Out of four settings, the proposed CTRL model

(w/o ISL) outperforms the DADA model with mIoU gains

of +1.4%, +1.5%, and +3% in three benchmark settings

attesting the effectiveness of the joint feature space learned

by the proposed CTRL.

Besides, we train both DADA and our model with ISL

and notice improvements in both the models with mIoU

43.5% (DADA) and 45.5% (ours). The superior quality of

the predictions of our model, when used as pseudo labels,

provides better supervision to the target semantics; the same

can be observed in both our quantitative (Tables 1 and 2)

and qualitative results (Figs. 3 and 4).

4.5.2 Monocular Depth Estimation Results

In this section, we show that our model not only improves

semantic segmentation but also learns a better representa-

tion for monocular depth estimation. This intriguing prop-

erty is of great importance for multi-task learning. Accord-

ing to [41], paying too much attention to depth is detri-

mental to the segmentation performance. Following [41],

DADA [59] uses depth as purely auxiliary supervision. We

observed that depth predictions of [59] are noisy (also ad-

mitted by the authors), resulting in failure cases. We con-

jecture that a proper architectural design choice coupled

with a robust multi-tasking feature representation (encod-

ing task-specific and cross-task relationship) improves both

semantics and depth. In Table 5, we report the depth esti-

mation evaluation results on the Cityscapes validation set of

our method and compare it against the DADA model [59].

Training and evaluation are done following the EP1 pro-

tocol: SYNTHIA → Cityscapes (16 classes). We use

Cityscapes disparity maps as ground truth depth pseudo-

labels for evaluation. Table 5 demonstrates a consistent im-

provement of depth predictions with our method over [59].

5. Conclusion

We proposed a novel approach to semantic segmentation

and monocular depth estimation within a UDA context.

The main highlights of this work are: (1) a Cross-Task

Relation Layer (CTRL), which learns a joint feature

space for domain alignment; the joint space encodes both

task-specific features and cross-task dependencies shown to

be useful for UDA; (2) a semantic refinement head (SRH)

aids in learning task correlations; (3) a depth discretizing

technique facilitates learning distinctive relationship be-

tween different semantic classes and depth levels; (4) a

simple yet effective iterative self-learning (ISL) scheme

further improves the model’s performance by capitalizing

on the high confident predictions in the target domain. Our

comprehensive experimental analysis demonstrates that the

proposed method consistently outperforms prior works on

three challenging UDA benchmarks by a large margin.
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