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Abstract

Sketch-based image retrieval (SBIR) is a cross-modal

matching problem which is typically solved by learning a

joint embedding space where the semantic content shared

between photo and sketch modalities are preserved. How-

ever, a fundamental challenge in SBIR has been largely ig-

nored so far, that is, sketches are drawn by humans and

considerable style variations exist amongst different users.

An effective SBIR model needs to explicitly account for

this style diversity, crucially, to generalise to unseen user

styles. To this end, a novel style-agnostic SBIR model is

proposed. Different from existing models, a cross-modal

variational autoencoder (VAE) is employed to explicitly dis-

entangle each sketch into a semantic content part shared

with the corresponding photo, and a style part unique to

the sketcher. Importantly, to make our model dynamically

adaptable to any unseen user styles, we propose to meta-

train our cross-modal VAE by adding two style-adaptive

components: a set of feature transformation layers to its en-

coder and a regulariser to the disentangled semantic con-

tent latent code. With this meta-learning framework, our

model can not only disentangle the cross-modal shared se-

mantic content for SBIR, but can adapt the disentanglement

to any unseen user style as well, making the SBIR model

truly style-agnostic. Extensive experiments show that our

style-agnostic model yields state-of-the-art performance for

both category-level and instance-level SBIR.

1. Introduction

Sketch as an input modality has been proven to be a wor-

thy complement to text for photo image retrieval [8, 10, 4].

Its precision in visual description is particularly useful for

fine-grained retrieval, where the goal is to find a specific ob-

ject instance rather than category [44, 49, 3]. Research has

flourished in recent years, where the main focus has been on

addressing the sketch-photo domain gap [33, 16, 44] and

data scarcity [5, 3, 10, 35, 12]. Thanks to these combined

efforts, reported performances have already shown promise

for practical adaptation.
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Figure 1. Owing to subjective interpretation, different users sketch

the same object instance (a shoe here) very differently. Without

considering this style diversity, an existing SBIR model yields

completely different results for different sketches. With our style-

agnostic model, the same intended object is retrieved.

However, there is an important issue that has largely been

ignored so far and has impeded the effectiveness of existing

SBIR models – sketches are drawn by humans and there

exists considerable style variations amongst users (Fig. 1).

This is a result of subjective interpretation and different

drawing skills of different users. Consequently, even with

the same object instance as reference, sketches of different

users can look drastically different as shown in the example

in Fig. 1. Existing SBIR models [30, 8, 47, 35, 44] focus

primarily on bridging the gap between the photo and sketch

modalities. This is typically achieved by learning a joint

embedding space where only the common semantic con-

tent part of a matching photo-sketch pair are preserved for

matching. However, the large style variations of different

users mean that the shared common semantic content can

also vary (e.g., Fig. 1 shows that different users may choose

to depict different characteristics of the same shoe). Cru-

cially, it can vary in an unpredictable way – a commercial

SBIR model will be used mostly by users whose sketches

have never been used for model training. These models are

thus poorly equipped to cope with this style diversity and

unable to generalise to new user styles.

In this paper, a novel style-agnostic SBIR framework is
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proposed which explicitly accounts for the style diversity

and importantly can adapt dynamically to any unseen user

styles without any model retraining. Different from exist-

ing SBIR models which focus solely on the shared seman-

tic content between the photo and sketch modality and dis-

card the modal-specific parts, we argue that in order to ef-

fectively deal with the style variations unique to the sketch

modality, a disentanglement model is needed. With such

a model, the user style can be modelled explicitly, making

way for better generalisation.

The core of our style-agnostic SBIR framework is thus

a disentanglement model, that takes a sketch or photo im-

age as input and decomposes its content into a cross-modal

shared semantic part to be used for retrieval, and a modal-

specific part – in case of sketch, it corresponds to the user’s

drawing style. Disentangling sketching styles is however a

challenging task. Existing style disentanglement methods

usually cater to problems where the style information carry

less variance (e.g., schools of art, building styles, etc) and

hence is comparatively easier to separate [24]. For sketches

however, we are faced with much larger variability where

each user has a unique style that can manifest itself in dif-

ferent ways for different object instances. The disentangle-

ment should thus be able to dynamically adapt to new user

styles and new object categories for better generalisation.

To this end, we propose a novel disentanglement model with

meta-learning, that generalises to unseen user styles.

Concretely, we employ a cross-modal translation vari-

ational autoencoder (VAE) framework [23] to project a

sketch/photo into its modal-invariant semantic part, and

modal-specific part. The VAE is used for both sketch recon-

struction and translation as well as sketch-to-photo trans-

lation to exploit the shared semantic content across both

modalities and styles. To make the disentanglement dy-

namically adaptable and generalisable, a popular gradient-

based meta-learning model namely model-agnostic meta-

learning (MAML) [14] is adopted. Designed for few-

shot learning, the original MAML cannot be directly ap-

plied. We thus introduce two new components as shown

in Fig. 2: (i) A set of feature transformation layers sit-

ting between the VAE encoder layers for the encoder adap-

tation, and (ii) a regulariser designed to adapt the disen-

tangled modal-invariant semantic content part of the latent

code produced by the encoder. Both component’s parame-

ters are meta-learned using MAML for fast adaptation to

new style/categories sampled during episodic training of

MAML. Once trained, these two components are responsi-

ble for adaptation to new/unseen user styles and object cat-

egories/instances, therefore achieving style-agnostic SBIR.

Our contributions are as follows: (a) For the first time,

we propose the concept of style-agnostic SBIR to deal

with a largely neglected user style diversity issue in SBIR.

(b) We introduce a novel style-agnostic SBIR framework

based on disentangling a photo/sketch image into a modal-

invariant semantic content part suitable for SBIR and a

model-specific part that needs to be explicitly modelled in

order to minimise its detrimental effects on retrieval. (c)

To make the disentanglement generalisable to unseen user

styles and object categories/instances, feature transforma-

tion layers and latent modal-invariant code regulariser are

introduced to a VAE, both of which are meta-learned us-

ing a MAML framework for style/category/instance adap-

tation. (d) Extensive experiments show that state-of-the-art

performances can be achieved as a direct result of the style-

agnostic design.

2. Related Works

Category-level SBIR: Category-level SBIR tasks accept a

sketch-query with an aim to retrieve photos of the same

category [45, 9]. Early approaches deploy handcrafted

descriptors [52] such as SIFT [31], Gradient Field HOG

[19], Histogram of Edge Local Orientations [42] or Learned

Key Shapes [43], for constructing local [19] or global [40]

joint photo-sketch representations. Most recent approaches

are based on deep learning [30, 8]. They typically em-

ploy Siamese-like neural networks with ranking losses, like

triplet loss [60] to learn a joint embedding space for both

the sketch and photo modalities. Contemporary research

directions also include zero-shot SBIR [59, 10] where a

model aims to generalise across disjoint training and test-

ing classes [12], alleviating annotation costs. Sketch-photo

hashing [30, 63] on the other hand embeds to binary hash-

codes instead of continuous vectors for computational ease.

Fine-grained SBIR: As opposed to category-level SBIR,

fine-grained SBIR (FG-SBIR) [47, 35, 44] is directed to-

wards instance-level sketch-photo matching. Starting with

deformable-part models [27], various deep approaches have

surfaced with the advent of new FG-SBIR datasets [49, 60,

20]. Yu et al. [60] introduced a deep triplet-ranking model

that learnt a joint sketch-photo embedding space. This was

further enhanced via attention based techniques with ad-

vanced higher order retrieval loss [49], hybrid generative-

discriminative cross-domain image generation [36], tex-

tual tags [48] and employing mixed modal jigsaw solv-

ing for a better pre-training strategy [37]. While Sain

et al. [44] explored cross-modal hierarchical co-attention

amongst sketch-photo regions, Bhunia et al. [5] employed

reinforcement learning in an early retrieval scenario. These

models focus on learning a joint embedding space where

only the modal-invariant shared semantic content of a

matching photo-sketch pair is preserved for both modalities.

However, without explicitly modelling the modal-specific

parts, particularly for sketches the user styles, these models

cannot generalise well to unseen objects and user styles.

Disentangled representation learning: Learning a

disentangled representation would require modelling dis-
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tinct informative factors in the variations of data [11].

Starting from generic frameworks like combining auto-

encoders with adversarial training [32], this disentangle-

ment paradigm has been successfully applied to recogni-

tion [55, 38], image-to-image translation [58] and image-

editing [22, 56] tasks. While, InfoGAN [7] optimises mu-

tual knowledge between latent variables, β-VAE [17] bal-

ances a hyperparameter β to learn independent data gen-

erative factors for disentanglement in an unsupervised set-

ting. These methods however lack interpretability, with the

relevance of each learned factor being uncontrollable. A

few recent works include joint disentanglement and adap-

tation module trained in a cross-domain cycle-consistency

paradigm [64] or multi-scale spatial-temporal maps with a

cross-verified disentangling strategy [34] or adversarial pa-

rameter estimation [39]. None of such methods however has

worked towards disentangling features for sketches to assist

in SBIR. Furthermore, none has the ability to adapt the dis-

entanglement dynamically for new user styles and object

instances, which our meta-learning based cross-modal dis-

entanglement VAE is designed for.

Meta-Learning: Meta-learning aims to acquire trans-

ferable knowledge from different sample training-tasks to

help adapt to unseen tasks with only a few training sam-

ples [18]. Most existing meta-learning methods [54, 46, 6]

are designed for few-shot image classification and thus are

suitable for our problem of meta-learning of a generalisable

cross-modal disentanglement model. The popular gradi-

ent/optimisation based meta-learning method MAML [14],

however is general enough to be adapted to our prob-

lem. MAML trains a base model on a set of source

tasks to learn good initialisation parameters that adapts

quickly to new tasks during training, over just a few gra-

dient descent updates. Since its first introduction, var-

ious modifications have been proposed including Meta-

SGD [28], MAML++ [1], latent embedding optimization

(LEO) [41] and uncertainty-induced MAML for contin-

ual learning [15]. Among them, those designed for do-

main adaptation [53] or domain generalization [26, 2] are

the most relevant to our work. Different from them, our

model uniquely addresses the cross-modal SBIR problem

via meta-learning a disentanglement VAE for generalising

better onto unseen user styles and object instances.

3. Methodology

Overview: We aim to devise a SBIR framework that

learns to model the diversity in sketching-styles corre-

sponding to the same object category (for category-level

SBIR [9]) or instance (for FG-SBIR [44]). To this end, we

design a style agnostic disentanglement model which de-

composes the content of a photo/sketch image into a modal-

invariant semantic part suitable for cross-modal matching,

and a modal-specific part which is a distractor to SBIR but

Modal
invariant

Modal
specific

Image Decoder Image'

sketch/photo

Regulariser
 

parameters
 

Feature Transformation Layers         

Encoder

Inner loop

Model

Image Model      Image'

Outer loop

Figure 2. Our core model is a VAE framework that disentangles

the modal variant and invariant semantics in a sketch in a cross-

modal translation setting. While a regulariser network regularises

parameters of the invariant component (Ωinv), feature transforma-

tion (FT) layers aid in style-agnostic encoding following a meta-

learning paradigm.

needs to be modelled explicitly to assist in the disentangle-

ment. The disentanglement model is a cross-modal VAE

that learns to embed a photo/sketch image to reconstruct

them either in its original modality or to the other modality.

Formally, we are given a set of C = {C1, C2, · · · , CM}
categories (M ≥ 1) where every category Ci has di =
{di1, d

i
2, · · · , d

i
Ni
} (Ni ≥ 1) data-points. Every data-

point dij |
Ni

j=1 corresponds to a sketch(s)-photo(p) pair i.e.

{sij , p
i
j}. For FG-SBIR, every photo instance is treated as

a category with multiple sketch-styles paired with the same

photo (pi), i.e ∀dij , j ∈ [1, N i] pj = pi. Feeding each

data point to the encoder of the VAE, a latent code is ob-

tained for both the photo and sketch. Our model (Fig. 2)

aims to disentangle the latent code into modal-invariant and

modal-specific components. The former corresponds to the

semantic content of the object and thus should be used for

cross-modal matching. It is subjected to a triplet loss so

as to minimise the distance of from a sketch sample (s)

to its matching photo sample (p+), while increasing that

to an unmatched one (p−). Such a model is trained in a

meta-learning framework for better generalisation. Once

trained, during inference it uses the learnt encoder and the

modal-invariant component to produce a style-agnostic em-

bedding function F(·) : RH×W×3 → R
dh to map a ras-

terised sketch/photo having heightH and widthW to a Rdh

feature for matching.

3.1. Disentanglement by Crossmodal Translation

Our disentanglement model is built upon a VAE frame-

work [23] for both intra-modal reconstruction and cross-

modal translation. The original VAE model produces a

latent representation by optimising the variational lower

bound on log-likelihood of the data
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logp(x) ≥ Ez∼q(z|x)[logp(x|z)]−DKL(q(z|x)||p(z)),
(1)

where DKL(·, ·) is the Kullback-Leibler (KL) divergence,

and the conditional probability distributions q(z|x),p(x|z)
refer to the encoder and decoder respectively, both param-

eterised by neural networks. The distribution p(z) is the

prior on the latent space, modeled as N (z|0, I). The en-

coder returns mean µ and variance σ2 of a normal distri-

bution, such that z ∼ N (µ, σ2). Unlike this formulation

which takes a single distribution into account, cross-modal

training requires considering at least two modalities. Fol-

lowing [50] we extend Eq. 1 to the multi-modality case as:

logp(xo) ≥ Ez∼q(z|xi)[logp(xo|z)]−DKL(q(z|xi)||p(z)),
(2)

where xi, xo represents samples from input and output

modalities respectively. It shows that the input and out-

put samples can be decoupled via a joint embedding space

shared by both sketch and photo modalities. This shared

space thus allows for both same as well as cross-modality

translations. Cross-modal training importantly creates a

manifold which places objects to a high-dimensional space

enriched with sketch-photo semantic relevance.

So far, we have described a VAE for cross-modal as well

as intra-modal image translation. Our objective is however

to disentangle the image content into modal-invariant and

model-specific parts. Such a disentanglement takes place

in the latent space produced by the encoder. More specifi-

cally, our CNN encoder Encφ projects an input I into two

parts: a modal-invariant component (zinv), and parameters

mean (µ) and variance (σ) for a variable (modal-specific)

component (zvar). Essentially the variable component is

modelled via an independent unit Gaussian distribution as

zvar = µ + σ ⊙ N (0, 1) where z ∈ R
dh . Combining

both components we thus obtain our final latent variable

zf = zvar ⊕ zinv , where ⊕ represents element-wise sum-

mation. zf is then fed to the decoder for reconstruction as

Î = Decθ(zf ). Such a VAE model is trained by optimising

the sum of reconstruction ( Lrec) and KL divergence (LKL)

losses via gradient descent, with:

Lrec(φ, θ) = −Eq(zf |I)[log p(I|zf )],

LKL = DKL[qφ(zf |I) || p(zf )],
(3)

where the prior over latent variables is a centered isotropic

multivariate Gaussian, pθ(zf ) = N (zf ; 0, I). In practice

however, we simplify Lrec = ‖Î − I‖2.

Besides sketch-photo translation we perform cross-style

translation between two sketches of the same object, which

ensures modelling the style diversity. Concretely, given

two sketches sj and sk we model the latent feature of sj
as z

sj∗
f = z

sj
inv ⊕ zskvar, and then we reconstruct it by

ŝj
∗ = Decθ(z

sj∗
f ), where sk is another randomly chosen

style of the same object (j, k ∈ [1, Ni] ; j 6= k). Accord-

ingly we obtain the sum of all reconstruction losses as Lrec

and sum their corresponding KL-divergence losses as LKL.

To instil discriminative knowledge, we train the invariant

component with a triplet-loss (Lzinv

Tri ) objective [60] where

the distance of zinv extracted from a sketch (denoted as s),

is reduced from that of its matching photo (p+), and in-

creased from that of a non-matching one (p−). Further-

more, we resort towards discriminative sample generation

by imposing a similar triplet objective on the synthesised

embedding features zf . We thus have:

Lzinv

Tri = max{0,mzinv + δ(zsinv, z
p+
inv)− δ(z

s
inv, z

p−
inv)},

L
zf
Tri = max{0,mzf + δ(zsf , z

p+
f )− δ(zsf , z

p−
f )}

(4)

where mzinv ,mzf are margin hyperparameters and

δ(a, b) = ||a − b||2. For simplicity, we have LTri =
Lzinv

Tri +L
zf
Tri. Now the overall learning objective of our dis-

entanglement VAE model is:

LΩ = Lrec + λ1 · LKL + λ2 · LTri, (5)

where Ω = {φ, θ} ; λ1, λ2 are weighting hyperparameters.

3.2. MetaLearning for Adaptive Disentanglement

Overview: Disentangling styles in sketches is more chal-

lenging compared to other images like paintings [24]. Be-

sides having sparse visual cues, untrained amateur sketches

hold much more variation in style unlike paintings which

hold a distinct style-signature being trained under various

definite schools of arts. More importantly, the exhibited

style even for the same user can vary depending on which

object instance depicted. It is thus critical to learn a disen-

tanglement model that is capable of dynamically adapting

to any unseen user style as well as object instances. This is

achieved through meta-learning.

Task Sampling: In a meta-learning framework [18], a

model is trained from various related labelled tasks. To

sample a task Ti ∼ p(T ) here, we first select a random

category Ci out of M categories. Out of all ni sketch-photo

pairs inCi, ‘ri’ randomly chosen pairs are set aside for vali-

dation (query) set (Dvali ), while the remainingNi pairs con-

stitute the training (query) set (Dtrni ). Inner loop update is

performed overDtrn with an aim to minimise the loss in the

outer loop over Dval. Within every set, hard negatives are

chosen from rest M-1 categories ensuring completely dis-

similar instances. Next, to prepare the VAE described ear-

lier for meta-learning, we introduce two new components.

Meta-enhancing feature encoder: Inspired from [53],

the first new component is a set of feature-transformation

(FT) layers plugged into the Encoder (Encφ), with an aim

to dynamically minimise the style-variance in sketches.

These FT layers are added after the batch-normalisation

layers in Encφ. For an intermediate feature map F ∈

R
h′×w′×c where h′,w′ and c are height, width and number

of channels respectively, we sample the bias (ω) and scal-

ing (η) terms as : ω ∼ N (0, SmoothReLU(φω)) ; η ∼

8507



N (1, SmoothReLU(φη)) where φγ = {φω, φη} ∈
R

1×1×c are hyper-parameters that signify the standard de-

viation of Gaussian distributions for sampling affine trans-

formation parameters. The activation thus changes to: F̂ =
η × F + ω. As determining hyper-parameters φγ empiri-

cally for every layer across different sketch-styles would be

costly, we optimise them via episodic training – commonly

adopted in meta-learning. Each training episode consist an

inner loop and an outer one. In the inner loop, the model is

updated with a training loss:

Ω′ ← Ω− α∇ΩLtrn(

Enc︷ ︸︸ ︷
{φ, φγ}, θ; D

trn),
(6)

where α is the inner-loop learning rate. Then in the outer

loop, the layers are pulled out and a loss (Ltst) is calculated

on the validation set using the modified parameters Ω′. As

Ltst denotes the efficiency of feature-transformation layer,

we update φγ in the outer-loop (with a learning rate β):

φγ ← φγ − β∇Ω′

∑

Ti

Ltst(Ω
′; Dval). (7)

Meta-regularising Disentanglement: To adapt the neces-

sary extent of disentanglement, as the second new com-

ponent, we introduce an episodic regularisation of the dis-

entangled modal-invariant latent representation zinv across

tasks [2]. Here the regulariser is denoted as Reg(·) that ap-

plies ℓ1 norm regularization to each of the parameters Ωinv
of zinv . In each training episode, a regularisation loss is

imposed over the parameters Ωinv of zinv , as

Lreg = Regψ(Ωinv) =
∑

h

ψ(h)|Ω
(h)
inv|. (8)

Lreg is added to the task loss that contributes to the inner

loop update of the model i.e Ω′ ← Ω. In the outer loop, the

loss is calculated with updated parameters of Ω′
inv which

therefore reflects the usefulness of the current regulariser.

Consequently, its parameter ψ is updated by Ltst as

ψ ← ψ − β∇Ω′

∑

Ti

Ltst(Ω
′; Dval). (9)

This weighted ℓ1 loss denotes a learnable weight control

mechanism, which adaptively modulates the proportion of

semantic knowledge to be retained in Ωinv for efficient dis-

entanglement of the invariant semantic. As the same reg-

ulariser is trained across varying tasks in a meta-training

paradigm, it is learnt to generalise onto any unseen task

characterised by a new style for object category/instance.

Meta-Optimisation: We summarise the overall meta-

optimisation objective here from all the learning objectives

discussed so far. Following Eq. 5 the model parameters

Ω are updated to Ω′ in the inner loop with overall meta-

training loss as:

Ltrn = Lrec + λ1 · LKL + λ2 · LTri + λ3 · LReg ,

Ω′ ← Ω− α∇ΩLtrn({φ, φγ}︸ ︷︷ ︸
Enc

, θ, ψ; Dtrn). (10)

With updated model parameters, a validation loss is com-

puted over validation set (Dval). Here the meta-learning

pipeline is trained alongside regularisation and feature

transformation losses to optimise a combined loss. The op-

timisation objective for the outer loop is thus formulated as:

Ltst = Lrec + λ1 · LKL + λ2 · LTri

argmin
Ω,ψ,φγ

Ltst(Ω
′, ψ, φγ ; D

val). (11)

As Ω′ depends on Ω, ψ and φγ via inner-loop update

(Eq. 10), a higher order gradient needs to be calculated for

outer loop optimisation. Notably, the model updates by av-

eraging gradient over meta-batch size of B sampled tasks.

4. Experiments

Datasets: For category-level SBIR, two datasets are

used. Following [30, 63], the first dataset used is Sketchy

[45] (extended) which contains 75k sketches across 125
categories with about 73k images [30] in total. For the

second dataset, sketches are taken from the TU-Berlin Ex-

tension [13] which contains 250 object categories with 80

free-hand sketches per category. We further use 204,489

extended natural photo images of the same 250 TU-Berlin

categories provided by [62] to construct the photo part of the

dataset. For both datasets we split photos from each cate-

gory as 70 : 10 : 20 for meta-training (Ni), meta-validation

(ri) and retrieval evaluation respectively, with the sketches

split into the three sets in the same proportion. Note that

there is no overlapping between the three sets, meaning that

sketch-styles used in evaluation are not seen during train-

ing. For FG-SBIR, two publicly available datasets, QMUL-

Chair-V2 and QMUL-Shoe-V2 [60, 44] are used. They con-

tain 2000 (400) and 6730 (2000) sketches (photos) respec-

tively. Out of the photos, we keep 275 (100) for retrieval

evaluation and use the rest for training, with 1150 (200) as

meta-train and 575 (100) for meta-validation from QMUL

ShoeV2 (ChairV2) datasets respectively. As both contain

multiple sketches per photo-instance (we choose those pho-

tos having at least 3 sketches while training), they suit well

to our motivation of modelling the diversity in sketch-styles.

The input images (sketch/photo) were resized to 256× 256
and 299× 299 for SBIR and FG-SBIR respectively.

Implementation Details: We implement our model in

PyTorch on a 12GB TitanX GPU. We use InceptionV3 [51]

as our encoder network. The decoder architecture con-

sists of a series of stride-2 convolutions with BatchNorm-

Relu activation applied to every convolutional layer except

in the output which has tanh for activation. The feature

extracted from the encoder is projected into three 64 di-

mensional vectors signifying µ, log σ2 and zinv . In prac-

tice, while training we first warm up our basic cross-modal

framework (§3.1) for 20 epochs, before inserting Regψ(·)
and FT-layers for meta-optimisation (Eq. 10, 11). We use

Adam optimiser in both inner and outer loops with learning
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Table 1. Comparative results of our model against other

methods on FG-SBIR (D→ disentanglement baselines).

Methods
Chair-V2 Shoe-V2

acc.@1 acc.@10 acc.@1 acc.@10

S
O

T
A

Triplet-SN [60] 47.65 84.24 28.71 71.56

Triplet-Attn [49] 53.41 87.56 31.74 75.78

Triplet-RL [5] 56.54 89.61 34.10 78.82

CC-Gen [35] 54.21 88.23 33.80 77.86

D

D-TVAE [21] 49.37 81.63 27.62 70.32

D-DVML [29] 52.78 85.24 32.07 76.23

O
th

er
s

B-Basic-SN 49.58 85.41 29.45 72.83

B-SN-Group 50.35 88.28 30.14 75.62

B-Cross-Modal [50] 52.24 86.58 31.18 73.51

B-Meta-SN 53.57 87.69 32.74 76.92

Proposed 62.86 91.14 36.47 81.83

Table 2. Comparative results of our model against other

methods on SBIR (D→ disentanglement baselines).

Methods
Sketchy (ext) TU Berlin (ext)

mAP P@200 mAP P@200

S
O

T
A DSH (64 bit) [25] 0.711 0.858 0.521 0.655

GDH (64 bit) [63] 0.810 0.894 0.690 0.728

D

D-TVAE [21] 0.695 0.839 0.507 0.643

D-DVML [29] 0.785 0.891 0.648 0.693

O
th

er
s

B-Basic-SN 0.715 0.861 0.531 0.659

B-SN-Group 0.738 0.872 0.572 0.661

B-Cross-Modal [50] 0.763 0.884 0.622 0.688

B-Meta-SN 0.824 0.897 0.674 0.715

Proposed 0.905 0.927 0.778 0.795

rates of 0.0005 and 0.0001 respectively. Hyperparameters

λ1→3 (determined empirically) are set to 0.001, 1.0, 0.7 re-

spectively while λ1 is increased with linear scheduling to

1.8 for the last 75 of 200 epochs, for better training stabil-

ity. We use a meta-batch size of 16 and set µzinv and µzf to

0.5 and 0.3 respectively (further details in supplementary).

Evaluation: Category-level SBIR is evaluated similar

to [30] using mean average precision(MAP) and preci-

sion at top-rank 200 (P@200) . For FG-SBIR we use

top-q (acc@q) accuracy. We also design an unconven-

tional metric solely for qualitative comparison of mod-

elling sketch diversity in FG-SBIR. Out of ‘m’ photos with

‘k’ sketches per photo (pi), we define average retrieval

rank Ravg = 1
m

∑
iRi where Ri is the rank of retriev-

ing ‘pi’ against sketch ‘si’. ∀pi, let rank variance Vi =

variance(Ri1,R
i
2, . . . ,R

i
k) where Rij |

k
j=1 is the retrieval

rank of pi against its jth sketch-style. Accordingly, average

rank variance Vavg = 1
m

∑
i Vi. Lower the value of Ravg

and Vavg , higher is the score and consistency in retrieval

accuracy against varying styles per photo, respectively.

4.1. Competitors

For both category-level and FG-SBIR, we evaluate

our method against existing state-of-the-art (SOTA) SBIR

methods, and a few relevant latent representation disentan-

glement baselines adapted to our problem. These include:

(a) SOTA: Triplet-SN [60] use Sketch-A-Net as baseline

feature extractor trained using triplet loss. Triplet-Attn-SN

[49] extended [60] with spatial attention using a higher

order HOLEF ranking loss. CC-Gen [35] takes a cross-

category (CC) domain-generalisation approach, modelling

a universal manifold of prototypical visual sketch traits that

dynamically embeds sketch and photo, to generalise for un-

seen categories. Triplet-RL [5] leverages triplet-loss based

pre-training, followed by RL based fine-tuning for on-

the-fly FG-SBIR. We report its results only on completed

sketches as early retrieval is not our goal. DSH [25] unifies

discrete binary code learning with visual sketch/photo fea-

ture maps to alleviate geometric distortion between sketches

and photos. GDH [63] learns a domain-migration net-

work using binary hash codes in a generative adversarial

paradigm with cycle-consistency losses, without relying on

pixel-level alignment between cross-modal pairs.

(b) Disentanglement methods: None of the existing

SOTA SBIR models consider latent representation disentan-

glement. We therefore choose a number representative dis-

entanglement methods and adapt them for (FG-)SBIR for

a fair comparison. For these models, encoded features are

used for distance-based retrieval during evaluation as done

in our model. D-TVAE [21] uses a standard VAE train-

ing paradigm with single modality translation. A triplet

loss is imposed on the extracted mean feature to bring the

sketch and matching photo feature closer while distancing

the negative photo-feature. D-DVML [29] employs a VAE

framework with same-modality translation. It involves dis-

entangling sketch features into invariant and variant compo-

nents but the disentanglement operation is unregulated un-

like ours. Besides VAE losses, the model is also guided by

triplet loss objective between the invariant component of the

sketch, its matching photo, and its non-matching photo.

(c) Other relevant Baselines: B-Basic-SN is a naively

built Siamese baseline similar to Triplet-SN which replaces

its Sketch-a-Net with Inception-V3 as a backbone feature

extractor. B-Cross-Modal [50] learns a cross-modal latent

space in a VAE framework, involving translation amongst

multiple (sketch and photo) modalities without disentangle-

ment. We further impose a Triplet loss [60] on the gener-

ated latent feature bringing sketch and matching photo fea-

tures closer while distancing the negative one. B-Group-

SN is similar to Triplet-SN with Inception V3 [44] back-

bone feature extractor, where we concatenate feature em-

bedding of three sketches against one corresponding cate-

gory (SBIR) or photo-instance (FG-SBIR) and pass them

through a linear layer to match the embedding dimension of

the photo. This ensures that the sketch representation holds

knowledge on multiple sketch-styles per object to some ex-

tent. B-Meta-SN simply employs vanilla MAML [14] on a

Triplet-SN with an Inception-V3 backbone, without the FT

layers or any disentangling regulariser. It adapts using inner

loop updates across retrieval tasks over categories in SBIR

and over instances in FG-SBIR frameworks
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Figure 3. Qualitative retrieval results on QMUL ShoeV2, ChairV2 and Sketchy datasets. B-Basic-SN (orange) vs Ours (magenta).

4.2. Performance Analysis

Comparative results on category-level and FG-SBIR are

shown in Table 2 and Table 1 respectively. The follow-

ing observations can be made: (i) Our method outperforms

all other compared methods under both settings and on all

four datasets. This clearly illustrates the efficacy of the pro-

posed method thanks to its ability of dynamically adapting

to new user styles. (ii) The inferior results of Triplet-SN

and Triplet-Attn are partially due to their apparently weaker

backbone feature extractor of Sketch-A-Net. (iii) Triplet-

RL performs much better owing to its novel reward func-

tion designed in reinforcement setup towards sketch com-

pletion. CC-Gen on the other hand comes close in perfor-

mance, owing to its learning of universal manifold of visual

traits aiding its generalising ability. However both Triplet-

RL and CC-Gen ignore the style diversity issue. Com-

pared to our model, their accuracy is lower by 6.32(2.37)%
and 8.65(2.67)% for ChairV2 (ShoeV2) datasets respec-

tively. (iv) For category-level SBIR, although both GDH

and DSH perform well, they are clearly inferior to our

method, as they rely on only a singular sketch-image em-

bedding via shared hashing network, without incorporat-

ing diverse sketch-styles belonging to the same object. (v)

D-TVAE performs poorly as it uses the same mean feature

used for reconstruction as the modal-invariant component,

thus offering sub-optimal disentanglement. In contrast, D-

DVML fares better owing to better formulated guiding ob-

jectives and better modelling of the invariant component

of a sketch/photo with higher discriminative knowledge in-

stilled into the model. (vi) Being trained in a learning-

to-learn setup B-Meta-SN performs better than its simpler

counterpart B-Basic-SN by 3.99 (3.29)%, but lags behind

ours by 9.29 (3.73)%, as neither does it disentangle the

stylistic variance, nor does it enforce style agnostic encod-

ing of sketches. (vii) B-Cross-Modal fares better than D-

TVAE as it harnesses greater information owing to learning

a latent space aware of cross-modal knowledge. Without

learning a disentangled feature space or style-agnostic en-

coding however, it performs poorer than our model. (viii) B-

SN-Group performs higher than Triplet-SN with a boosted

Acc@10 by 4.04(4.06)% as it now holds a stronger under-

standing of the search space with increased query knowl-

edge. However, without disentanglement and meta-learning

for better generalisation, it lags far behind our method.

Diving deeper into the diversity modelling capability of

our method, we plot the respective Ravg and Vavg values

for some baselines (B) on QMUL ChairV2 and ShoeV2

datasets, obtained via our novel metric (§4-Evaluation) in

Fig. 4. While the basic siamese net B-Basic-SN shows

a large variance among retrieval ranks of the same photo

using its different sketches, our method has a lower rank

variance in addition to a much lower average rank. This

proves our method indeed models sketch-style diversity to

a considerable extent, thus ensuring higher consistency in

retrieval accuracy. Qualitative results are shown in Fig. 3.

Figure 4. Figure shows proposed method to clearly surpass (lower

is better) other baselines in both Ravg (bar height) and Vavg (vari-

ance line) in QMUL ShoeV2 and ChairV2 datasets.

4.3. Ablation Study

Is modelling sketching diversity beneficial? For an in

depth analysis we perform three experiments: (i) A simple

FG-SBIR baseline is trained similar to Triplet-SN, on pho-

tos and two out of three styles of sketches per photo, keep-
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