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Figure 1: SCANimate. Given a set of raw scans with multiple poses containing self-intersections, holes, and noise (left),

SCANimate automatically aligns all scans to a canonical pose (middle) and learns a Scanimat, a fully animatable avatar that

produces pose-dependent deformations and texture without garment-specific templates or mesh registration (right).

Abstract

We present SCANimate, an end-to-end trainable frame-

work that takes raw 3D scans of a clothed human and turns

them into an animatable avatar. These avatars are driven by

pose parameters and have realistic clothing that moves and

deforms naturally. SCANimate does not rely on a customized

mesh template or surface mesh registration. We observe that

fitting a parametric 3D body model, like SMPL, to a clothed

human scan is tractable while surface registration of the

body topology to the scan is often not, because clothing can

deviate significantly from the body shape. We also observe

that articulated transformations are invertible, resulting

in geometric cycle-consistency in the posed and unposed

shapes. These observations lead us to a weakly supervised

learning method that aligns scans into a canonical pose by

disentangling articulated deformations without template-

based surface registration. Furthermore, to complete

missing regions in the aligned scans while modeling pose-

dependent deformations, we introduce a locally pose-aware

implicit function that learns to complete and model geometry

with learned pose correctives. In contrast to commonly

used global pose embeddings, our local pose conditioning

significantly reduces long-range spurious correlations and

improves generalization to unseen poses, especially when

training data is limited. Our method can be applied to pose-

aware appearance modeling to generate a fully textured

avatar. We demonstrate our approach on various clothing
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types with different amounts of training data, outperforming

existing solutions and other variants in terms of fidelity

and generality in every setting. The code is available at

https://scanimate.is.tue.mpg.de.

1. Introduction

Parametric models of 3D human bodies are widely used

for the analysis and synthesis of human shape, pose, and

motion. While existing models typically represent “mini-

mally clothed” bodies [4, 26, 43, 52, 66], many applications

require realistically clothed bodies. Our goal is to make it

easy to produce a realistic 3D avatar of a clothed person that

can be reposed and animated as easily as existing models like

SMPL [43]. In particular, the model must support clothing

that moves and deforms naturally, with detailed 3D wrinkles,

and the rendering of realistically textured images.

To that end, we introduce SCANimate (Skinned Clothed

Avatar Networks for animation), which creates high-quality

animatable clothed humans, called Scanimats, from raw 3D

scans. SCANimate has the following properties: (1) we learn

an articulated clothed human model directly from raw scans,

completely eliminating the need for surface registration of

a custom template or synthetic clothing simulation data,

(2) our parametric model retains the complex and detailed

deformations of clothing present in the original scans such

as wrinkles and sliding effects of garments with arbitrary

topology, (3) a Scanimat can be animated directly using

SMPL pose parameters, and (4) our approach predicts
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pose-dependent clothing deformations based on local pose

parameters, providing generalization to unseen poses.

Recent data-driven approaches have shown promise

for learning parametric models of clothed humans from

real-world observations [39, 46, 54, 56]. However, these

approaches typically limit the supported clothing types

and topology because they require accurate surface regis-

tration of a common template mesh to 3D training scans

[39, 46, 56]. Concurrent work by Ma et al. [45] learns

clothing deformation without surface registration, yet it is

unclear if the method works on raw scans with noise and

holes. Learning from real-world observations is essentially

challenging because raw 3D scans are un-ordered point

clouds with missing data, changing topology, multiple

clothing layers, and sliding motions between the body and

garments. Although one can learn from synthetic data

generated by physics-based clothing simulation [23, 25, 54],

the results are less realistic, the data preparation is time

consuming and non-trivial to scale to the real-world clothing.

To address these issues, SCANimate learns directly from

raw scans of people in clothing. Body scanning is becoming

common, and scans can be obtained from a variety of

devices. Scans contain high-frequency details, capture varied

clothing topology, and are inherently realistic. To make

learning from scans possible, we make several contributions:

canonicalization, implicit skinning fields, cycle consistency,

and implicit shape learning.

Canonicalization and Implicit Skinning Fields. The first

step involves transforming the raw scans to a common pose

so we can learn to model pose-dependent surface defor-

mations (e.g. bulging, stretching, wrinkling, and sliding),

i.e. pose “correctives”. But we are not seeking a traditional

“registration” of the scans to a common mesh topology, since

this is, in general, not feasible with clothed bodies. Instead,

we learn continuous functions of 3D space that allow us to

transform posed scans to a canonical pose and back again.

The key idea is to build this on linear blend skinning

(LBS), which traditionally defines weights on the surface of a

mesh that encode how much each vertex is influenced by the

rotation of a body joint. To deal with raw scans of unknown

topology, we extend this notion by defining skinning weights

implicitly everywhere in 3D space. Specifically, given a

3D location x, we regress a continuous vector function g
represented by a neural network, g(x) : R3 → R

J , which

defines the skinning weights. An inverse LBS function uses

the regressed skinning weights to “undo” the pose of the

body and transforms the points into the canonical space. As

this representation makes no assumptions about the topology

or resolution of input scans, we can canonicalize arbitrary

non-watertight meshes. Furthermore, we can easily generate

animations of the parametric clothed avatar by applying

forward LBS to the clothed body in the canonical pose with

the learned pose correctives.

Cycle Consistency. Despite the desirable properties of

canonicalization, learning the skinning function is ill-posed

since we do not have ground truth training data that specifies

the weights. To address this, we exploit two key observations.

First, as demonstrated in previous work [27, 69, 72], fitting

a parametric human body model such as SMPL [43] to

3D scans is more tractable than surface registration. We

leverage SMPL’s skinning weights, which are defined only

on the body surface, to regularize our more general skinning

function. Second, the transformations between the posed

space and the canonical space should be cycle-consistent.

Namely, inverse LBS and forward LBS together should

form an identity mapping as illustrated in Fig. 3, which

provides a self-supervision signal for training the skinning

function. After training the skinning function, we obtain the

canonicalized scans (all in the same pose).

Learning Implicit Pose Correctives. Given the canoni-

calized scans, we learn a model that captures the pose-

dependent deformations. However a problem remains:

the original raw scans often contain holes, and so do

the canonicalized scans. To deal with this and with the

arbitrary topology of clothing, we use an implicit surface

representation [13, 47, 53]. As multiple canonicalized

scans will miss different regions, with this approach, they

complement each other, while retaining details present in the

original inputs. Furthermore, unlike traditional approaches

[39, 46, 54, 70], where pose-dependent deformations are

conditioned on entire pose parameters, we spatially filter

out irrelevant pose features from the input conditions by

leveraging the learned skinning weights. In this way, we

effectively prune long-range spurious correlations between

garment deformations and body joints, achieving plausible

pose correctives for unseen poses even from a small number

of training scans. The resulting learned Scanimat can be

easily reposed and animated with SMPL pose parameters.

In summary, our main contributions are (1) the first end-

to-end trainable framework to build a high-quality parametric

clothed human model from raw scans, (2) a novel weakly-

supervised formulation with geometric cycle-consistency

that disentangles articulated deformations from the local

pose correctives without requiring ground-truth training data,

and (3) a locally pose-aware implicit surface representation

that models pose-dependent clothing deformation and gen-

eralizes to unseen poses. Our results show that SCANimate

is superior to existing solutions in terms of generality and

accuracy. Furthermore, we perform an extensive study

to evaluate the technical contributions that are critical for

success. The code and example Scanimats can be found at

https://scanimate.is.tue.mpg.de.

2. Related Work

Parametric Models for Human Bodies and Clothing.

Parametric body models [4, 26, 43, 52, 66] learn statistical
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Figure 2: Overview. SCANimate learns a pose-aware parametric clothed human model directly from raw scans in a weakly supervised

manner. The resulting Scanimats can be animated with SMPL pose parameters, producing realistic pose-dependent deformations and texture.

body shape variations and pose-dependent shape correctives

that capture non-linear body deformation and compensate

for linear blend skinning artifacts [3, 30, 37, 38, 41]. While

these approaches achieve high-fidelity and intuitive control

of human body shape and pose, they only focus on bodies

without clothing. Similar ideas have been extended to model

clothed bodies by introducing additional garment layers

[16, 17, 23, 25, 34, 39, 67] or adding displacements or

transformations to the base human body mesh [1, 2, 46, 50,

70]. These parametric clothed human models decompose

garment deformations into articulated deformations and local

deformations such that pose correctives only focus on non-

rigid local deformations. Thus, it is essential to obtain the

inverse skinning transformation [54] by using the surface

registration of a well-defined template [39, 43, 46, 70, 72]

or using synthetic simulation data [15, 23, 25, 54]. However,

these requirements limit the applicability of the approaches

to fairly simple clothing, with a fixed topology, and without

complex interactions between garments and the body.

In contrast, our work uses a weakly supervised approach

to build a parametric clothed human model from raw

scans without the requirement of a template and surface

registration. We canonicalize posed scans and learn an

implicit surface with arbitrary topology [22] conditioned

on pose parameters by leveraging a fitted human body model

to the scan data [5, 8, 69, 71, 72]. Moon et al. [49] similarly

propose a weakly supervised method for learning a fine-

grained hand model from scan data by deforming a fitted

base hand model [58]; the approach is non-trivial to extend

to human clothing with varying topology.

The most related work to ours is Neural Articulated Shape

Approximation (NASA) [18], where the composition of

occupancy networks [13, 47] articulated by the fitted SMPL

model are directly learned from posed scans in the same

spirit as structured implicit functions [20, 21]. Concurrent

work, LEAP [48], extends a similar framework to a multi-

subject setting. Through an extensive study in Sec. 4.1, we

find that the compositional implicit functions proposed in

[18] are more prone to artifacts and less generalizable to

unseen poses than our LBS-based formulation.

Pose Canonicalization via Inverse LBS. The key to suc-

cessful canonicalization is learning transformations in the

form of skinning weights in a continuous space. Learning

skinning weights for varied topologies has become possible

using neural networks with graph convolutions [7, 42, 68].

Given a neutral-posed template, these networks predict

skinning weights together with a skeleton [68] or pose-

dependent deformations [7]. While they predict skinning

weights on a neutral-posed template in a fully supervised

manner, our problem requires learning skinning weights, not

only on the surface mesh, but in both the canonical and posed

space without ground-truth skinning weights.

Extending LBS skinning weights from an underlying

body model to the continuous space is used in the data

preparation step of ARCH [29] and LoopReg [9]. However,

in these approaches, the skinning weights are uniquely

determined by the underlining body and not learnable. We

argue, and experimentally demonstrate, in Sec. 4.1 that

jointly learning skinning weights leads to visually pleasing

canonicalization while maximizing the reproducibility of

input scans by the reconstructed parametric model. Inspired

by recent unsupervised methods using cycle consistency

[12, 75], we leverage geometric cycle consistency between

the canonical space and posed space to learn skinning

weights in a weakly supervised manner without requiring

any ground-truth training data. Concurrent work, FTP [65],

proposes a similar idea but is limited to body modeling;

instead, we extend the traditional LBS to the entire 3D space

and enable clothing surface modeling.

Reconstructing Clothed Humans. Reconstructing humans

from depth maps [14, 64, 71], images [11, 32, 36], or video

[33, 35] is also extensively studied. While many works focus

on the minimally clothed human body [11, 24, 32, 36, 40],

recent approaches show promise in reconstructing clothed

human models from RGB inputs using the SMPL mesh with

displacements [1, 2, 74], external garment layers [10, 31],

depth maps [19, 62], voxels [63, 73], or implicit functions

[29, 59, 60]. However, these approaches do not learn, or

infer, pose-dependent deformation of garments, and simply

apply articulated deformations to the reconstructed shapes.

This results in unrealistic pose-dependent deformations

that lack garment specific wrinkles. Our work differs by

focusing on learning pose-dependent clothing deformation

from scans.

2888



Input scan

CanonicalizedReposed

Figure 3: Canonicalization with cycle consistency. The

geometric cycle consistency loss, with the guidance from the

underlining body model, leads to successful canonicalization.

3. Method

Figure 2 shows an overview of our pipeline. The

input is a set of raw 3D scans of a person in clothing,

together with fitted minimally clothed body models. Here

we use the SMPL model [43] fit to the scans to obtain

body joints and blend skinning weights, which we exploit

in learning. Given the input, we first learn bidirectional

transformations between the posed space and canonical

space by predicting skinning weights as a function of space

coordinates (Sec. 3.1). To address the lack of ground truth

correspondence of the scan data, we leverage geometric cycle

consistency to learn continuous skinning functions. The raw

scans are canonicalized with the learned bidirectional trans-

formations. We further learn a locally pose-aware signed

distance function, parameterized by a neural network, from

canonicalized scans using implicit geometric regularization

[22] (Sec. 3.2). For implementation details, including hyper

parameters and network architectures, see the Sup. Mat.

3.1. Canonicalization

Instead of a traditional skinning scheme that assigns a

skinning weight vector w ∈ R
J , where J is the number of

joints, to each point on a surface, we extend the notion of

skinning using a continuous function: we train a model that

takes any point in the space as input and outputs its skinning

weight vector w. Figure 3 illustrates the principles. We

specifically focus on points from two surfaces, the clothing

surface X and the body surface B. To be more specific

about the canonicalization step, let us first define the posed

space and the canonical space. The posed space is defined

for each scan, and the canonical space is shared across all

the scans. Let Xs
i = {xs ∈ R

3} be vertices on the original

scan in the posed space, where i is the frame index of the

scans, and X
c
i = {xc ∈ R

3} be vertices on the unposed

scans in the canonical space, which are not known. Now

we seek a mapping function that aligns the posed scans

in a canonical pose. While the mapping function can be

arbitrarily defined, we observe that this can be formulated

as a composition of the known rigid transformations of body

joints, Ti = {Ti
j ∈ SE(3), j = 1, . . . , J}, which come

from the fitted SMPL model. More specifically, given a

set of blending weights w, we define linear blend skinning

(LBS) and inverse linear blend skinning (LBS−1) functions

as follows:

X
p
i = LBSTi

(Xc
i ,w(Xc

i )) = (
∑

wjTi,j)X
c
i

X
c
i = LBS−1

Ti
(Xs

i ,w(Xs
i )) = (

∑
wjTi,j)

−1
X

s
i ,

(1)

where X
p
i = {xp ∈ R

3} are the vertices of the reposed

scans and ideally should have the same value as X
s
i . The

LBS function maps arbitrary points in the canonical space

to the posed space represented by Ti and the inverse LBS

function maps points in the posed space to the canonical

space. In other words, the equations above show that given

skinning weights w on vertices, we can not only apply any

pose to the canonicalized shapes as in a traditional character

animation pipeline [41], but also transform back the posed

shapes into the canonical space.

Implicit Skinning Fields. In contrast to traditional ap-

plications, where the skinning weights for each point

are predefined, either by artists or by automatic methods

[6, 29, 70], skinning weights on the raw scan data are

not known a priori. Fortunately, we can learn them in

a weakly supervised manner, such that all the scans can

be decomposed into articulated deformations and non-rigid

deformations.

To this end, we introduce two neural networks called the

forward skinning net and the inverse skinning net:

w(xc
i ) = gcΘ1

(xc
i ) : R

3 → R
J

w(xs
i ) = gsΘ2

(xs
i , z

s
i ) : R

3 × R
Zs → R

J ,
(2)

where z
s
i represents a latent embedding, and Θ1 and Θ2

are the learnable parameters of the multilayer perceptrons

(MLP), which we omit below for notational brevity. The

forward skinning net predicts LBS skinning weights of

queried 3D locations in the canonical space. Similarly, the

inverse skinning net predicts skinning weights in the posed

space of each training scan. Notably, this continuous repre-

sentation is advantageous over other alternatives including

fully connected networks and graph convolutional networks

[42, 46, 57] as it does not depend on a fixed number of

vertices or predefined topology. Empirically we observe that

jointly learning z
s
i in an auto-decoding fashion [53] leads to

superior performance compared to taking pose parameters

as input; see Sup. Mat. for discussion.

By combining Eq. 1 and 2, we can compute the mappings
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between the canonical and posed spaces via:

x
p
i = LBSTi

(xc
i , g

c(xc
i ))

x
c
i = LBS−1

Ti
(xs

i , g
s(xs

i , z
s
i )).

(3)

Note that these functions are differentiable.

Learning Skinning. To successfully train gc(·) and gs(·)
without ground truth weights on the scans, we leverage two

key observations: (1) the regions close to the human body

model are highly correlated with the nearest body parts

where ground-truth skinning weights are available; (2) any

points in the posed space should be mapped back to the same

points after reapplying LBS to the canonicalized points. To

utilize (1), we use the underlying SMPL body model’s LBS

skinning weights as guidance for the canonical and posed

space. More specifically, gs(·) and gc(·) at points on the

scans are loosely guided by the nearest neighbor point on

the body model and its SMPL skinning weights, propagating

skinning weights from body models to the input scans.

Most importantly, observation (2) plays a central role in

the success of the weakly supervised learning. It allows us to

formulate cycle consistency constraints, updating both gc(·)
and gs(·) such that wrongly associated skinning weights that

break the cycle consistency are highly penalized. Our evalu-

ation in Sec. 4.1 shows that the cycle consistency constraints

are critical to decompose articulated deformations. Note

that the jointly learned gc(·) is used to learn and animate the

pose-aware clothed human model (see Sec. 3.2).

Our final objective function is defined as:

Ecano(Θ1,Θ2, {z
s
i}) =∑

i

(λBEB + λSES + EC + ER),
(4)

where EB and ES are body-guided loss functions, EC is

based on cycle consistency, and ER is a regularization term.

EB ensures gc(·) and gp(·) predict SMPL skinning weights

on the body surface by

EB =
∑

bc

i
∈Bc

i

‖gc(bci )−w
′(bci )‖

+
∑

bs

i
∈Bs

i

‖gs(bsi , z
s
i )−w

′(bsi )‖,
(5)

where B
c
i = {bci ∈ R

3} and B
s
i = {bsi ∈ R

3} are vertices

on the canonical and posed body surfaces, and w
′(·) are the

SMPL LBS weights. See Sup. Mat. for details to obtain B
c
i .

Similarly, ES is the regression loss between the predicted

weights and the LBS weights on the nearest neighbor body

vertex:

ES =
∑

xs

i
∈Xs

i

(‖gs(xs
i , z

s
i )−w

′(argmin
bs

i
∈Bs

i

d(xs
i , b

s
i ))‖

+ ‖gc(xc
i )−w

′(argmin
bs

i
∈Bs

i

d(xs
i , b

s
i ))‖). (6)

Note that this nearest neighbor assignment is also used in

[29] for training data preparation. However, in Sec. 4.1,

we show that this alone is prone to inaccurate assignments,

causing severe artifacts.

We facilitate cycle consistency with two terms. EC′

directly constrains the consistency of skinning weights

between the canonical space and the posed space, and EC′′

facilitates cycle consistency on the vertices of the posed

meshes as follows:

EC = λC′EC′ + λC′′EC′′ (7)

EC′ =
∑

xs

i
∈Xs

i

‖gs(xs
i , z

s
i )− gc(xc

i )‖ (8)

EC′′ =
∑

xs

i
∈Xs

i

‖xp
i − x

s
i‖. (9)

Notice that cycle consistency can hold only if we start from

the posed space since points in the canonical space can be

mapped to the same location in case of self-intersection.

Lastly, our regularization term consists of a sparsity

constraint ESp, a smoothness term ESm, and a statistical

regularization on the latent code EZ as follows:

ER = λSpESp + λSmESm + λZEZ , (10)

ESp =
∑

xs

i

|gs(xs
i , z

s
i )|

β β = 0.8, (11)

ESm =
∑

e∈E/C

‖gs(e1, z
s
i )− gs(e2, z

s
i )‖, (12)

EZ = ‖zp
i ‖

2

2, (13)

where e = (e1, e2), E is the set of edges on the triangulated

scans and we mask out concave regions C so that skinning

weights are not propagated across merged body parts due to

self-intersection (See Sup. Mat. for details.).

After training, we canonicalize all the scans by applying

the inverse LBS transform (Eq. 3) to all vertices on the

scans. By eliminating triangles with large distortion (see

Sup. Mat. for details), we obtain the canonical scans used to

learn a pose-aware parametric clothed human model.

3.2. Locally Pose­aware Implicit Shape Learning

Given the canonicalized partial scans together with the

learned skinning weights, we learn a parametric clothed

human model with pose-aware deformations. To this end,

we base our shape representation on an implicit surface

representation [13, 47, 53] as it supports arbitrary topology

with fine details. However, real scans have holes and

such partial scans cause difficulty obtaining ground truth

occupancy labels since the meshes are not water-tight. To

handle partial scans as input, we learn a signed distance

function fΦ(x) based on a multilayer perceptron (for brevity,

we omit the network parameters Φ), using implicit geometric

regularization (IGR) [22] by minimizing the following
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objective function:

Eshape(Φ) =
∑

i

(ELS + λigrEIGR + λoEO) (14)

ELS =
∑

x∈X′c

i

(|f (x)|+ ‖∇xf (x)− n(x)‖) , (15)

EIGR = Ex (‖∇xf(x)‖ − 1)
2
, (16)

EO = Ex (exp(−α · |f (x)|)) α ≫ 1, (17)

where ELS ensures the zero level-set of the predicted SDF

lies on the given points with its surface normal aligned

with that of the input scans, n(x). EIGR is the Eikonal

regularization term that regularizes the function f to satisfy

the Eikonal equation ‖∇xf(·)‖ = 1. EO regularizes

off-surface SDF values from being close to the level-set

surface as in [61]. Remarkably, this formulation does not

require ground truth signed distance for non-surface points

and naturally fills in the missing regions by leveraging the

inductive bias of multilayer perceptrons as shown in [22].

To learn pose-dependent deformations of clothing, we

could condition the function f with the pose features

θ ∈ R
J×4 (we use quaternions as in [52]). However, the

straightforward approach of concatenating the pose features

with Cartesian coordinates, namely f(x, θ), suffers from

overfitting due to the limited pose variations in the training

data and spurious correlations between joints. Since the

relationship between body joints and clothing deformation

tends to be non-local [67], it is also important to limit the

influence of irrelevant joints to reduce spurious correlations

[52]. Thus, we need an attention mechanism to associate

spatial locations with only the relevant pose features. To this

end, we modify the function f :

f(x, (W · gc(x)) ◦ θ),W ∈ R
J×J , (18)

where gc(·) is the skinning network learned in Sec. 3.1,

W is the weight map that converts skinning weights into

pose attention weights, and ◦ denotes element-wise product.

Specifically, if we want a 3D point that is skinned to the nth

joint with non-zero skinning weights to pay attention to the

mth joint, Wm,n and Wn,m are set to 1, otherwise, they are

set to 0. The weight map is essential because the movement

of one joint will be propagated to regions associated with

neighboring body joints (e.g. raising the shoulders lifts up

an entire T-shirt). In this paper, we set Wn,m = 1 when nth

joint is within 4-ring neighbors of mth joint in the kinematic

tree. By reducing spurious correlations, our formulation

significantly reduces over-fitting artifacts given a set of

unseen poses, demonstrating better generalization ability

even with a small number of input scans (see Sec. 4.1).

4. Experimental Results

Dataset and metric. For evaluation and comparison with

baseline methods, we use the CAPE dataset [46], which

includes raw 3D scan sequences and SMPL model fits.

We evaluate generalization to unseen poses with both pose

interpolation (denoted as Int. in tables) and extrapolation

tasks (denoted as Ex. in tables). The motion sequences are

randomly split into training (80%) and test (20%) sets, where

the test sequences are used to evaluate extrapolation. For

the training sequences, we choose every 10th frame starting

from the first frame as training scans and every 10th frame

with 5 frame strides from the training sequences for the

interpolation evaluation. We perform Marching Cubes [44]

to the predicted implicit surface in canonical space as in

Eq 18 and then pose it by forward LBS in Eq. 1 to get the

resulting meshes. For quantitative evaluation, we use scan-

to-mesh distance Ds2m (cm) and surface normal consistency

Dn, where a nearest neighbor vertex on the resulting meshes

is used to compute the average L2 norm.

In addition, we conduct a perceptual study to assess

the plausibility score, P , of generated garment shapes and

deformations. Workers on Amazon Mechanical Turk (AMT)

are given a pair of side-by-side images or videos showing

a rendered result from our approach and another approach;

the left-right order of the results is randomized. The task

is to choose the result with the most realistic clothing. We

continue this N times and compute the probability of the

other approach being favored P = M/N , where M is how

many times the users chose the other method over ours. In

other words, we set our approach as baseline with a constant

score P = 0.5; for other approaches, if P < 0.5, ours

achieves higher fidelity. The perceptual score for image and

video pairs is denoted as Pi and Pv, respectively. While Pi

focuses on the plausibility of static clothing, Pv reveals the

temporal consistency and realism of pose-dependent clothing

deformations. Note that we provide only the perceptual

scores for the extrapolation task as numerical evaluation is

difficult due to the stochasticity of clothing deformations.

4.1. Evaluation

Canonicalization. The goal of canonicalization is to

disentangle articulated deformations from other non-rigid

deformations for effective shape learning. We choose two

baseline approaches to replace our canonicalization module.

The first, as used by [29], copies skinning weights on the

clothed scans from the nearest neighbor body vertex. The

other approach is based on weighted correspondences by

interpolating skinning weights from the k-nearest neighbors

(we use k = 6) in the spirit of [70]. This reduces the

impact of a wrong clothing-body association that limits the

performance of single nearest neighbor assignment.

Figure 4 shows that the two baseline methods break the

cycle consistency with wrong associations of the skinning

weights, resulting in noticeable artifacts. The inaccurate

canonicalization results are propagated to the parametric

model learning, substantially degrading the quality of

reconstructed avatars as shown in Tab. 1. Our approach with
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Table 1: Quantitative comparison of canonicalization. As

the perceptual score is pair-wise and compared against ours,

we put 0.5 for the proposed approach throughout the tables.

Ds2m is in centimeters throughout the tables.

Ours NN [29] KNN

Int.

Ds2m ↓ 0.570 1.25 1.25

Dn ↓ 0.253 0.301 0.299

Pi ↑ 0.5 0.374 0.396

Pv ↑ 0.5 0.435 0.431

Ex.
Pi ↑ 0.5 0.262 0.312

Pv ↑ 0.5 0.392 0.449

Ground truth Ours NN KNN

Figure 4: Qualitative comparison on canonicalization. Top:

canonicalization results. Bottom: reposed canonicalization results.

Compared with our method, the baseline methods suffer from

severe artifacts.

cycle consistency successfully normalizes the input scans

into a canonical pose while retaining coherent geometric

details, enabling the parametric modeling of clothed avatars.

Locally Pose-aware Shape Learning. We evaluate our

local pose representation using the learned skinning weights

for pose-dependent shape learning and compare against

commonly used global pose conditioning [18, 39, 46, 54, 70].

To this end, we replace the second input of Eq. 18 with

the global pose parameter, θ, as a baseline. To assess the

generalization ability, both models are trained on 100%,

50%, 10% and 5% of the original training set.

Table 2 shows that our local pose conditioning achieves

better reconstruction accuracy and fidelity for both inter-

polation and extrapolation. Note that the performance of

global pose conditioning drastically degrades when the

training data is reduced to less than 10%, suffering from

severe overfitting. In contrast, our approach keeps roughly

equivalent reconstruction accuracy even when only 5% of

the original training data is used, exhibiting few noticeable

artifacts (see Fig. 5).

Comparison with SoTA. We compare the proposed method

with two state-of-the-art methods that also learn an ar-

ticulated parametric human model with pose correctives

from real world scans [18, 46]. CAPE [46] learns pose-

dependent deformations on a fixed mesh topology using

Table 2: Quantitative evaluation of the importance of locality

in the pose conditioning on different sizes of training data.

Train size (%) 100 50 10 5

Local pose conditioning (Ours)

Int.

Ds2m ↓ 0.570 0.663 0.699 0.732

Dn ↓ 0.253 0.253 0.261 0.268

Pi ↑ 0.5 0.476 0.466 0.398

Pv ↑ 0.5 0.453 0.435 0.425

Ex.
Pi ↑ 0.5 0.429 0.359 0.359

Pv ↑ 0.5 0.408 0.408 0.343

Global pose conditioning

Int.

Ds2m ↓ 0.768 0.786 1.54 2.38

Dn ↓ 0.253 0.256 0.293 0.354

Pi ↑ 0.424 0.393 0.350 0.252

Pv ↑ 0.468 0.457 0.363 0.301

Ex.
Pi ↑ 0.417 0.401 0.291 0.192

Pv ↑ 0.436 0.382 0.311 0.203

100% 50% 10% 5%

Figure 5: Evaluation of pose encoding with different sizes of

training data. Top row: our local pose encoding. Bottom row:

global pose encoding. While the global pose encoding suffers from

severe overfitting artifacts, our local pose encoding generalizes well

even if data size is severely limited.

graph convolutions [57], but requires surface registration

for training. NASA [18], on the other hand, can be learned

without registration but needs to determine occupancy values.

We train both methods using registered CAPE data. Table

3 shows that our approach achieves superior reconstruction

accuracy and perceptual realism, while Fig. 6 illustrates

limitations of the prior methods. As CAPE relies on a

template mesh with a fixed topology, the reconstructions

are not only less detailed but also fail to capture topological

changes such as the lifting up of the jacket. While NASA

can model pose-dependent shapes using articulated implicit

functions, discontinuites and ghosting artifacts are visible,

as the implicit functions of each body part are learned

independently, which limits generalization to unseen poses.

In contrast, our approach can produce highly detailed and
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Table 3: Comparison with the state-of-the-art pose-aware

shape modeling methods.

Ours CAPE [46] NASA [18]

Int.

Ds2m ↓ 0.570 0.970 1.12

Dn ↓ 0.253 0.308 0.289

Pi ↑ 0.5 0.268 0.432

Pv ↑ 0.5 0.455 0.457

Ex.
Pi ↑ 0.5 0.214 0.343

Pv ↑ 0.5 0.422 0.395

Ours CAPE [46] NASA [18]

Figure 6: Comparison with the SoTA methods. We show qual-

itative results on the extrapolation task, illustrating the advantages

of our method as well as the limitations of the existing approaches.

globally coherent pose-dependent deformations without

template-registration.

Learning a Fully Textured Avatar. We extend our pose-

aware shape modeling to appearance modeling by predicting

texture fields [51, 59]; see Sup. Mat. for details. Figure 7

shows that high-resolution texture can be modeled without

2D texture mapping, which illustrates another advantage of

eliminating the template-mesh requirement.

5. Discussion and Future Work

We introduced SCANimate, a fully automatic framework

to create high-quality avatars (Scanimats), with realistic

clothing deformations, driven by pose parameters, that are

directly learned from raw 3D scans. Our experiments show

that decomposing articulated deformations from scanned

data is now possible in a weakly supervised manner by

combining body-guided supervision with cycle-consistency

regularization. Previously, the difficulty of accurate and

coherent surface registration limited the field from analysing

and modeling complex clothing deformations involving

Figure 7: Textured Scanimats. Our method can be extended to

texture modeling, allowing us to automatically build a Scanimat

with high-resolution realistic texture.

multiple garments from real-world observations. Our

approach enables, for the first time, learning of physically

plausible clothing deformations from raw scans, unlocking

the possibility of realistic avatar learning from data.

Limitations and Future Work. The current representation

works well for clothing that is topologically similar to the

body. The method may fail for clothing, like skirts, that

deviates significantly from the body; see Sup. Mat. for an

example. Clothing wrinkles tend to be stochastic; that

is, for a specific pose, they may differ depending on the

preceding sequence of poses. The current model, however, is

deterministic. Future work should factor the surface texture

into albedo, shape, and lighting enabling more realistic

relighting of Scanimats. Additionally, an adversarial texture

loss [28] could improve visual quality. Here we model a

person in a single garment. Learning a generative model with

clothing variety should be possible but will require training

data of varied clothing in varied poses. Most exciting is

the idea of fitting Scanimats to, or even learning them from,

images or videos. Finally, extending this approach to model

hand articulation and facial expressions should be possible

using expressive body models like SMPL-X [55].
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[19] Valentin Gabeur, Jean-Sébastien Franco, Xavier Martin,

Cordelia Schmid, and Grégory Rogez. Moulding humans:

Non-parametric 3D human shape estimation from single

images. In 2019 IEEE/CVF International Conference on

Computer Vision, ICCV 2019, Seoul, Korea (South), October

27 - November 2, 2019, pages 2232–2241. IEEE, 2019. 3

[20] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and

Thomas A. Funkhouser. Local deep implicit functions for 3D

shape. In 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June

13-19, 2020, pages 4856–4865. IEEE, 2020. 3

[21] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,

William T. Freeman, and Thomas A. Funkhouser. Learning

shape templates with structured implicit functions. In 2019

IEEE/CVF International Conference on Computer Vision,

ICCV 2019, Seoul, Korea (South), October 27 - November 2,

2019, pages 7153–7163. IEEE, 2019. 3

[22] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and

Yaron Lipman. Implicit geometric regularization for learning

2894



shapes. In Proceedings of the 37th International Conference

on Machine Learning, ICML 2020, 13-18 July 2020, Virtual

Event, volume 119 of Proceedings of Machine Learning

Research, pages 3789–3799. PMLR, 2020. 3, 4, 5, 6

[23] Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander

Weiss, and Michael J. Black. DRAPE: dressing any person.

ACM Trans. Graph., 31(4):35:1–35:10, 2012. 2, 3

[24] Peng Guan, Alexander Weiss, Alexandru O. Balan, and

Michael J. Black. Estimating human shape and pose from

a single image. In IEEE 12th International Conference on

Computer Vision, ICCV 2009, Kyoto, Japan, September 27 -

October 4, 2009, pages 1381–1388. IEEE Computer Society,

2009. 3

[25] Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini,

Minh Dang, Mathieu Salzmann, and Pascal Fua. GarNet: A

two-stream network for fast and accurate 3D cloth draping.

In 2019 IEEE/CVF International Conference on Computer

Vision, ICCV 2019, Seoul, Korea (South), October 27 -

November 2, 2019, pages 8738–8747. IEEE, 2019. 2, 3

[26] Nils Hasler, Carsten Stoll, Martin Sunkel, Bodo Rosenhahn,

and Hans-Peter Seidel. A statistical model of human pose and

body shape. Comput. Graph. Forum, 28(2):337–346, 2009.

1, 2

[27] Pengpeng Hu, Nastaran Nourbakhsh Kaashki, Vasile Dadarlat,

and Adrian Munteanu. Learning to estimate the body shape

under clothing from a single 3-d scan. IEEE Trans. Ind.

Informatics, 17(6):3793–3802, 2021. 2

[28] Jingwei Huang, Justus Thies, Angela Dai, Abhijit Kundu,

Chiyu Max Jiang, Leonidas J. Guibas, Matthias Nießner, and

Thomas A. Funkhouser. Adversarial texture optimization

from RGB-D scans. In 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, CVPR 2020,

Seattle, WA, USA, June 13-19, 2020, pages 1556–1565. IEEE,

2020. 8

[29] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and

Tony Tung. ARCH: animatable reconstruction of clothed

humans. In 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June

13-19, 2020, pages 3090–3099. IEEE, 2020. 3, 4, 5, 6, 7

[30] Doug L. James and Christopher D. Twigg. Skinning mesh

animations. ACM Trans. Graph., 24(3):399–407, 2005. 3

[31] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo, Ligang

Liu, and Hujun Bao. BCNet: Learning body and cloth shape

from a single image. In Computer Vision - ECCV 2020 - 16th

European Conference, Glasgow, UK, August 23-28, 2020,

Proceedings, Part XX, volume 12365 of Lecture Notes in

Computer Science, pages 18–35. Springer, 2020. 3

[32] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and

Jitendra Malik. End-to-end recovery of human shape and

pose. In 2018 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,

June 18-22, 2018, pages 7122–7131. IEEE Computer Society,

2018. 3

[33] Angjoo Kanazawa, Jason Y. Zhang, Panna Felsen, and Jiten-

dra Malik. Learning 3D human dynamics from video. In IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages

5614–5623. Computer Vision Foundation / IEEE, 2019. 3

[34] Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian,

Adrien Treuille, and James F. O’Brien. Near-exhaustive

precomputation of secondary cloth effects. ACM Trans.

Graph., 32(4):87:1–87:8, 2013. 3

[35] Muhammed Kocabas, Nikos Athanasiou, and Michael J.

Black. VIBE: video inference for human body pose and shape

estimation. In 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR 2020, Seattle, WA,

USA, June 13-19, 2020, pages 5252–5262. IEEE, 2020. 3

[36] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and

Kostas Daniilidis. Learning to reconstruct 3D human pose

and shape via model-fitting in the loop. In 2019 IEEE/CVF

International Conference on Computer Vision, ICCV 2019,

Seoul, Korea (South), October 27 - November 2, 2019, pages

2252–2261. IEEE, 2019. 3

[37] Paul G. Kry, Doug L. James, and Dinesh K. Pai. EigenSkin:

real time large deformation character skinning in hardware.

In Proceedings of the 2002 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, San Antonio, TX, USA,

July 21-22, 2002, pages 153–159. ACM, 2002. 3

[38] Tsuneya Kurihara and Natsuki Miyata. Modeling deformable

human hands from medical images. In Proceedings of

the 2004 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, Grenoble, France, August 27-29, 2004,

pages 355–363. The Eurographics Association, 2004. 3

[39] Zorah Lähner, Daniel Cremers, and Tony Tung. Deep-

Wrinkles: Accurate and realistic clothing modeling. In

Computer Vision - ECCV 2018 - 15th European Conference,

Munich, Germany, September 8-14, 2018, Proceedings, Part

IV, volume 11208 of Lecture Notes in Computer Science,

pages 698–715. Springer, 2018. 2, 3, 7

[40] Christoph Lassner, Javier Romero, Martin Kiefel, Federica

Bogo, Michael J. Black, and Peter V. Gehler. Unite the people:

Closing the loop between 3D and 2d human representations.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,

2017, pages 4704–4713. IEEE Computer Society, 2017. 3

[41] John P. Lewis, Matt Cordner, and Nickson Fong. Pose space

deformation: a unified approach to shape interpolation and

skeleton-driven deformation. In Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH 2000, New Orleans, LA, USA, July

23-28, 2000, pages 165–172. ACM, 2000. 3, 4

[42] Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan,

and Kun Zhou. NeuroSkinning: automatic skin binding for

production characters with deep graph networks. ACM Trans.

Graph., 38(4):114:1–114:12, 2019. 3, 4

[43] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J. Black. SMPL: a skinned multi-

person linear model. ACM Trans. Graph., 34(6):248:1–

248:16, 2015. 1, 2, 3, 4

[44] William E. Lorensen and Harvey E. Cline. Marching cubes:

A high resolution 3D surface construction algorithm. In

Proceedings of the 14th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH 1987,

Anaheim, California, USA, July 27-31, 1987, pages 163–169.

ACM, 1987. 6

2895



[45] Qianli Ma, Shunsuke Saito, Jinlong Yang, Siyu Tang, and

Michael J. Black. SCALE: Modeling clothed humans with a

surface codec of articulated local elements. In Proceedings

IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), June 2021. 2

[46] Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades,

Gerard Pons-Moll, Siyu Tang, and Michael J. Black. Learning

to dress 3d people in generative clothing. In 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 6468–

6477. IEEE, 2020. 2, 3, 4, 6, 7, 8

[47] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer,

Sebastian Nowozin, and Andreas Geiger. Occupancy net-

works: Learning 3D reconstruction in function space. In IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages

4460–4470. Computer Vision Foundation / IEEE, 2019. 2, 3,

5

[48] Marko Mihajlovic, Yan Zhang, Michael J. Black, and Siyu

Tang. LEAP: Learning articulated occupancy of people. In

Proceedings IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), June 2021. 3

[49] Gyeongsik Moon, Takaaki Shiratori, and Kyoung Mu Lee.

Deephandmesh: A weakly-supervised deep encoder-decoder

framework for high-fidelity hand mesh modeling. In Com-

puter Vision - ECCV 2020 - 16th European Conference,

Glasgow, UK, August 23-28, 2020, Proceedings, Part II,

volume 12347 of Lecture Notes in Computer Science, pages

440–455. Springer, 2020. 3

[50] Alexandros Neophytou and Adrian Hilton. A layered model

of human body and garment deformation. In 2nd International

Conference on 3D Vision, 3DV 2014, Tokyo, Japan, December

8-11, 2014, Volume 1, pages 171–178. IEEE Computer

Society, 2014. 3

[51] Michael Oechsle, Lars M. Mescheder, Michael Niemeyer,

Thilo Strauss, and Andreas Geiger. Texture fields: Learning

texture representations in function space. In 2019 IEEE/CVF

International Conference on Computer Vision, ICCV 2019,

Seoul, Korea (South), October 27 - November 2, 2019, pages

4530–4539. IEEE, 2019. 8

[52] Ahmed A. A. Osman, Timo Bolkart, and Michael J. Black.

STAR: sparse trained articulated human body regressor. In

Computer Vision - ECCV 2020 - 16th European Conference,

Glasgow, UK, August 23-28, 2020, Proceedings, Part VI,

volume 12351 of Lecture Notes in Computer Science, pages

598–613. Springer, 2020. 1, 2, 6

[53] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representation.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,

pages 165–174. Computer Vision Foundation / IEEE, 2019.

2, 4, 5

[54] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll.

TailorNet: Predicting clothing in 3D as a function of human

pose, shape and garment style. In 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pages 7363–7373. IEEE,

2020. 2, 3, 7

[55] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo

Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and

Michael J. Black. Expressive body capture: 3D hands, face,

and body from a single image. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2019, Long

Beach, CA, USA, June 16-20, 2019, pages 10975–10985.

Computer Vision Foundation / IEEE, 2019. 8

[56] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J.

Black. ClothCap: seamless 4d clothing capture and retarget-

ing. ACM Trans. Graph., 36(4):73:1–73:15, 2017. 2

[57] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J.

Black. Generating 3D faces using convolutional mesh

autoencoders. In Computer Vision - ECCV 2018 - 15th

European Conference, Munich, Germany, September 8-14,

2018, Proceedings, Part III, volume 11207 of Lecture Notes

in Computer Science, pages 725–741. Springer, 2018. 4, 7

[58] Javier Romero, Dimitrios Tzionas, and Michael J. Black.

Embodied hands: modeling and capturing hands and bodies

together. ACM Trans. Graph., 36(6):245:1–245:17, 2017. 3

[59] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo

Morishima, Hao Li, and Angjoo Kanazawa. PIFu: Pixel-

aligned implicit function for high-resolution clothed human

digitization. In 2019 IEEE/CVF International Conference on

Computer Vision, ICCV 2019, Seoul, Korea (South), October

27 - November 2, 2019, pages 2304–2314. IEEE, 2019. 3, 8

[60] Shunsuke Saito, Tomas Simon, Jason M. Saragih, and

Hanbyul Joo. PIFuHD: Multi-level pixel-aligned implicit

function for high-resolution 3D human digitization. In 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,

2020, pages 81–90. IEEE, 2020. 3

[61] Vincent Sitzmann, Julien N. P. Martel, Alexander W.

Bergman, David B. Lindell, and Gordon Wetzstein. Implicit

neural representations with periodic activation functions.

In Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,

2020. 6

[62] David Smith, Matthew Loper, Xiaochen Hu, Paris Mavroidis,

and Javier Romero. FACSIMILE: fast and accurate scans

from an image in less than a second. In 2019 IEEE/CVF

International Conference on Computer Vision, ICCV 2019,

Seoul, Korea (South), October 27 - November 2, 2019, pages

5329–5338. IEEE, 2019. 3

[63] Gül Varol, Duygu Ceylan, Bryan C. Russell, Jimei Yang,

Ersin Yumer, Ivan Laptev, and Cordelia Schmid. BodyNet:

Volumetric inference of 3D human body shapes. In Computer

Vision - ECCV 2018 - 15th European Conference, Munich,

Germany, September 8-14, 2018, Proceedings, Part VII,

volume 11211 of Lecture Notes in Computer Science, pages

20–38. Springer, 2018. 3

[64] Lizhen Wang, Xiaochen Zhao, Tao Yu, Songtao Wang, and

Yebin Liu. NormalGAN: Learning detailed 3D human from

a single RGB-D image. In Computer Vision - ECCV 2020

- 16th European Conference, Glasgow, UK, August 23-28,

2020, Proceedings, Part XX, volume 12365 of Lecture Notes

in Computer Science, pages 430–446. Springer, 2020. 3

2896



[65] Shaofei Wang, Andreas Geiger, and Siyu Tang. Locally

aware piecewise transformation fields for 3D human mesh

registration. In Proceedings of IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), June 2021. 3

[66] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir,

William T. Freeman, Rahul Sukthankar, and Cristian Smin-

chisescu. GHUM & GHUML: generative 3D human shape

and articulated pose models. In 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR 2020,

Seattle, WA, USA, June 13-19, 2020, pages 6183–6192. IEEE,

2020. 1, 2

[67] Weiwei Xu, Nobuyuki Umetani, Qianwen Chao, Jie Mao,

Xiaogang Jin, and Xin Tong. Sensitivity-optimized rigging

for example-based real-time clothing synthesis. ACM Trans.

Graph., 33(4):107:1–107:11, 2014. 3, 6

[68] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth,

and Karan Singh. RigNet: neural rigging for articulated

characters. ACM Trans. Graph., 39(4):58, 2020. 3
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