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Figure 1: Our data-driven method regresses deformed garments via a generative model that is trained to avoid collisions.

Abstract

We propose a new generative model for 3D garment de-

formations that enables us to learn, for the first time, a

data-driven method for virtual try-on that effectively ad-

dresses garment-body collisions. In contrast to existing

methods that require an undesirable postprocessing step

to fix garment-body interpenetrations at test time, our ap-

proach directly outputs 3D garment configurations that do

not collide with the underlying body. Key to our success

is a new canonical space for garments that removes pose-

and-shape deformations already captured by a new diffused

human body model, which extrapolates body surface prop-

erties such as skinning weights and blendshapes to any 3D

point. We leverage this representation to train a genera-

tive model with a novel self-supervised collision term that

learns to reliably solve garment-body interpenetrations. We

extensively evaluate and compare our results with recently

proposed data-driven methods, and show that our method

is the first to successfully address garment-body contact in

unseen body shapes and motions, without compromising re-

alism and detail.

1. Introduction

The digitalization of 3D garments has important appli-

cations in many areas of our everyday lives such as online

shopping, video games, visual effects, and fashion design,

and it has traditionally been addressed with physics-based

methods [37, 38]. However, even if these methods offer so-

lutions that generalize well to any type of garment, produce

physically-accurate results, and solve body-garment con-

tact, they require computationally expensive runtime eval-

uations. Consequently, they do not meet the combined ro-

bustness and performance needed for real-time applications

such as virtual try-on. Furthermore, they are not easily dif-

ferentiable and cannot be integrated into computer vision

pipelines that, for example, fit deformable models into im-

ages to extract information about the scene.

Data-driven methods have emerged as a popular alterna-

tive to physics-based methods. The core idea is to learn

a function that mimics the garment behavior observed in a

large dataset. To this end, recent methods leverage the ca-

pability of neural networks to learn nonlinear functions, and

propose differentiable models that output 3D deformed gar-

ments as a function of the target shape, motion, style, size,

and other design parameters [62, 53, 41, 61, 64, 16, 31].

These methods showcase great realism and robustness,

however, we identify a fundamental limitation in all existing

works: despite using a loss term that penalizes unphysical

body-garment interpenetrations at training time [16, 4], pre-

dicted garments commonly suffer from body-garment inter-

penetrations in test sequences. This is usually addressed

with an added postprocessing step that pushes the problem-
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atic regions of the garment, identified by exhaustive search,

outside of the body [41, 53].

The undesired interpenetrations arise from natural resid-

ual errors in test samples when optimizing neural networks

which, combined with the extremely narrow gap between

body surface and garment, can produce artifacts even if the

predicted 3D mesh closely matches the ground truth de-

formed garment. In this work, we address this inherent

limitation and propose, to the best of our knowledge, the

first data-driven method to reliably solve garment-body in-

terpenetrations without requiring any postprocessing step.

We achieve this through three main contributions.

First, we propose to enhance existing human body mod-

els [29] by learning to smoothly expand the surface parame-

ters to any 3D point. Intuitively, this allows us to model the

deformation at any 3D point, e.g., a vertex of a deformed

loose garment, leveraging the deformation capabilities of

existing human body models. This expanded human body

represents a fundamental building block for our method.

Our second contribution addresses the common assump-

tion, made by existing data-driven models, that garment

deformations closely follow the underlying body deforma-

tions. This popular simplification is often used to define

garment models that use skinning parameters based on the

closest body vertex in rest pose, and subsequently articulate

the garment using a standard linear blend skinning (LBS)

approach. We show that simplified transformations to bring

ground truth data into a normalized representation, e.g. via

inverse LBS [53, 41], cannot correctly represent the com-

plex deformations that garments exhibit, and often intro-

duce undesirable artifacts. Instead, we propose a garment

model that represents deformations in a novel unposed and

deshaped canonical space by removing deformations al-

ready captured via our expanded human body model. Since

it yields correct skinning attributes for any 3D point, our

garment model is designed to not to introduce collisions

during projection operations between the canonical space

and the posed space.

Our third and most important contribution is to lever-

age the novel canonical representation of garments to learn

a generative subspace of deformations. Garments in this

canonical space are encoded with respect to a constant ref-

erence body configuration. This not only gives an improved

representation of garment deformations, but also allows us

to reliably learn to solve collisions via self-supervision, by

exhaustively sampling the generative space. We then learn

a regressor that outputs mesh deformations encoded in this

subspace, and use our garment model to project them to the

final deformed state. Since both the deformation subspace

and the projection step are designed to avoid collisions, our

final deformed 3D garments do not interpenetrate the under-

lying body mesh, regardless the shape and pose parameter.

2. Related Work

Current approaches to animate 3D clothing can be classi-

fied into: physics-based simulation and data-driven models.

Physics-Based Cloth Simulation. Physics-based meth-

ods use discretizations of classical mechanics to model how

cloth deforms, and typically comprise three steps: compu-

tation of internal forces, collision detection, and collision

response [38]. These methods produce highly-realistic sim-

ulations, generalize to different garments, and can handle

body-garment collisions, however, fail to meet the com-

bined robustness and performance needed for real-time ap-

plications such as virtual try-on.

A wide range of strategies have been proposed to ad-

dress the computational bottleneck in physics-based meth-

ods. Recent attempts include approximations of the dynam-

ics to trade physical accuracy for speed [3, 6, 30], adap-

tive remeshing to refine surface discretization [26, 37], up-

sampling details to enrich coarse simulations [22, 73], and

GPU-based solvers [58, 12, 59]. Another challenge in

physics-based simulation is the estimation of the model pa-

rameters. To this end, mechanical approaches have been

proposed [63, 34], but expensive studio settings are re-

quired. Alternative methods attempt to recover physical

parameters directly from videos by a model fitting process

[5, 57, 36] or learn this task directly from data [7, 66, 69, 46,

50]. Despite the impressive progress towards addressing the

critical points in physics-based models, virtual try-on appli-

cations require faster and easier to set up methods.

Data-Driven Cloth Models. The deformation of 3D

clothing can also be modeled from a data-driven per-

spective. Inspired by pioneering works that model pose-

dependent surface deformations [27], many methods pro-

pose to learn from examples how 3D garments deform

as a function of the underlying human body. This has

been demonstrated for a variety of goals, including design

[54, 64], animation [19, 8, 65, 68], and virtual try-on [15,

62, 31, 41, 16, 61]. Training data in form of 3D meshes

can be obtained using physics-based simulations [4, 37, 28],

using 3D reconstruction methods for from either multi-

view [71, 42, 48, 47] or single image [1, 13, 17, 39, 72],

or using hybrid methods [70].

To encode garment deformations a variety of represen-

tations have been used, including normal maps [24], dis-

placement maps [20], and geometry images [44], but clos-

est to our work are the methods that use 3D positions or

offsets to deform a template [41, 62, 53, 64]. To param-

eterize the deformation of clothing, a common strategy is

to borrow the parametric space from a human body model

[29, 21, 67]. However, some methods use geometric fea-

tures such as PointNet [45, 16] or sketches [64] to describe

the target body or garment style instead.
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Figure 2: Overview of our preprocessing (top) and runtime pipelines (bottom). The decoder network is trained to avoid

collisions in a self-supervised fashion, and then employed by the regressor network to reproduce these states at runtime.

Related to our data-driven approach for implementing

the regressor, the early work of Guan et al. [15] use a linear

model to produce garment deformations due to body pose

and shape. The method outputs plausible pose-dependent

wrinkles, but shape-dependent deformations are limited to

resizing the cloth model. More recent methods use deep

learning to train more sophisticated nonlinear regressors

that deform a garment template. Santesteban et al. [53]

use a fully-connected architecture with GRU [10] modules

to learn pose and shape garment deformations, including

dynamics. Similarly, Patel et al. [41] learn deformations

to produce wrinkles of different scales with a desired style,

but are limited to static deformations. Vidaurre et al. [62]

use fully convolutional graph architecture to learn shape-

dependent deformations for any garment mesh topology,

but do not model pose or style. Instead of garment tem-

plates, Bertiche et al. [4] are capable of learning deforma-

tions for a much wider variety of garments using a repre-

sentation based on 3D offsets of the body vertices. De-

spite the success of these methods in modeling how cloth

deforms as a function of different factors including body

shape, pose, motion, design, and material, a common crit-

ical weakness in all data-driven approaches is the handling

of body-garment collisions. Most methods [41, 16, 64] use

losses that penalize geometric garment-body penetrations at

training time, but all methods require exhaustive postpro-

cess steps to fix collisions in test sequences. We address this

remaining challenge with a self-supervised loss enabled by

our generative space of garment deformations.

Our work is also related to the recent trend of implicit

function learning to predict binary occupancy [33, 51, 14],

signed distance to the surface [40, 2, 9] for any 3D point,

or screen space RGB color given camera parameters [56,

35]. To the best of our knowledge, these methods have only

been used to encode 3D surfaces, learn generative spaces

for shapes, or neural rendering applications. In contrast,

we propose two new uses for implicit function learning: to

efficiently solve garment-body collisions with a novel fully

differentiable loss term; and to smoothly diffuse 3D shape

correctives and rigging weights to any 3D point.

3. Method Overview

Our goal is to learn a function to predict how a 3D gar-

ment dynamically deforms given a target human body pose

and shape. In contrast to existing methods [16, 41, 53, 4],

we put special emphasis in learning a model that directly

outputs garment geometry that does not interpenetrate with

the underlying human body, i.e., it is physically correct af-

ter inference without requiring any post-processing. Hence,

the final state is not compromised in terms of the regressed

garment details such as wrinkles and dynamics.

To this end, in Section 4.1 we introduce an extension

of standard statistical human body models [29] that learns

to smoothly diffuse skinning surface parameters, such as

rigging weights and blendshape correctives, to any point in

3D space. In Section 4.2, we leverage these learned dif-

fused skinning parameters to define a novel garment defor-

mation model. The key idea is to remove the deformations

already captured by our diffused body model to built an un-

posed and deshaped canonical space of garments. In this

space, garments appear in rest pose and mean shape but

pose- and shape-dependent wrinkle details are preserved. In

Section 4.3, we introduce a novel optimization-based strat-

egy to project physics-based simulations to our canonical

space of garments. Importantly, we show that the use of the

learned diffuse skinning parameters is fundamental for this

task, since they enable the correct representation of complex

phenomena such as garment-body sliding or loose clothing.
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Using projected physics-based simulations as ground-

truth data, in Section 4.4 we describe how we learn a gen-

erative space of garment deformations. Key to our suc-

cess is a novel self-supervised loss enabled by the canonical

space of garments, which allows us to exhaustively sam-

ple random instances of garment deformations (i.e., arbi-

trary shape, pose, and dynamics for which ground truth data

is unavailable) and test collisions against a constant body

mesh. Finally, in Section 5 we describe a neural network-

based regressor that outputs deformed garments with dy-

namics, that do not interpenetrate the body, as a function of

body shape and motion.

For detailed information about network architectures,

training data, parameters, and other implementation details,

please refer to the supplementary material.

4. Canonical Space of Garment Deformations

The central aim of our method is to obtain a regressor R

that infers the deformation of the garment via

X = R(�,�), (1)

where X ∈ R
NG⇥3 is the garment deformation in canoni-

cal space computed as a function of body shape � and mo-

tion descriptor γ. We will first describe how to obtain the

canonical space into which the garment data is transformed,

before detailing how the regressor R is trained in Section 5.

4.1. Diffused Human Model

Our garment model, defined later in Section 4.2, is driven

by a new diffused human body model that extends cur-

rent approaches in order to generalize to vertices beyond

the body surface. More specifically, current body models

[11, 29, 21] deform a rigged parametric human template

MB(�, ✓) = W (Tb(�, ✓), J(�), ✓,W) (2)

where W is a skinning function (e.g., linear blend skinning,

or dual quaternion) with skinning weights W and pose pa-

rameters ✓ that deforms an unposed parametric body mesh

Tb(�, ✓). The nowadays standard SMPL model [29] defines

the unposed body mesh as

TB(�, ✓) = Tb +Bs(�) +Bp(✓) (3)

where Tb ∈ R
NB⇥3 is a body mesh template with NB ver-

tices that is deformed using two blendshapes that output

per-vertex 3D displacements: Bs(�) ∈ R
NB⇥3 models de-

formations to change the body shape; and Bp(✓) ∈ R
NB⇥3

models deformations to correct skinning artifacts. Follow-

up works propose additional blendshapes to model soft-

tissue [43, 52] and garments [31, 1, 42].

We observe that existing data-driven garment models

[53, 41] leverage the human body models defined in Equa-

tion 2 assuming that clothing closely follows the deforma-

tions of the body. Consequently, a common approach is to

borrow the skinning weights W to model the articulation

of garments, usually by exhaustively searching the nearest

body vertex for each garment vertex in rest pose. Our key

observation is that such naive static assignment cannot cor-

rectly model complex nonrigid clothing effects. The rea-

son is twofold: first, the garment-body nearest vertex as-

signment must be dynamically updated, for example, when

a garment slides over the skin surface; and second, the

garment-body vertex assignment cannot be driven only by

the closest vertex since this causes undesirable discontinu-

ities in medial-axis areas.

To address these weaknesses, we propose to extend ex-

isting body models formulated in Equation 2 by smoothly

diffusing skinning parameters to any 3D point around the

body. It is worth mentioning that we are not the first to dif-

fuse surface parameters, but previous works are limited to

interpolate inwards to create a volumetric mesh [23, 49] in a

less smooth strategy. In Section 4.2 we show how our gen-

eralization of skinning parameters beyond the body surface

is a fundamental piece for our novel garment model.

More formally, we define the functions fW(p), eBs(p, ✓),

and eBp(p, ✓) that generalize skinning weights, shape blend-

shape offset, and pose blendshape offset, respectively, to

any point p ∈ R
3 by smoothly diffusing the surface values

fW(p) =
1

N

X

qn⇠N (p,d)

W(φ(qn)) (4)

eBs(p,�) =
1

N

X

qn⇠N (p,d)

Bs(φ(qn),�) (5)

eBp(p, ✓) =
1

N

X

qn⇠N (p,d)

Bp(φ(qn), ✓) (6)

where φ(p) computes the closest surface point to p ∈ R
3,

d the distance from p to the surface body, and Bp(p, ✓)
a function that returns the 3D offset of the vertex p com-

puted by the blendshape Bp. Notice that, for each point, we

average the values of N neighbors and therefore mitigate

potential discontinuities in areas around a medial-axis.

In order to obtain differentiable functions that seamlessly

integrate into an optimization or learning process, we em-

ploy recent works on learning implicit functions and learn
fW(p), eBs(p,�), and eBp(p, ✓) with fully-connected neural

networks. This additionally yields a very efficient evalua-

tion on modern GPUs.

4.2. Garment Model

Our next goal is to define a garment model that is ca-

pable of representing the deformations naturally present in

real garments, including dynamics, high-frequency wrin-

kles, and garment-skin sliding. To this end, a common

approach to ease this task is to decouple the deformations
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caused by different sources, and model each case indepen-

dently. For example, Santesteban et al. [53] decouple de-

formations due to shape and pose, and Patel et al. [41] due

to shape, pose, and style. More specifically, as discussed

in Section 4.1, both works model pose-dependent deforma-

tions leveraging the skinning weights associated with the

body in the unposed state and a linear blend skinning tech-

nique. This disentanglement removes many nonlinear de-

formations and enables to efficiently represent (and learn)

deformations due to other sources directly in an unpose (i.e.,

normalized) state.

We propose to go one step further and remove the shape-

dependent deformations already captured by the underlying

human body model. This effectively constructs a canonical

unposed and deshaped representation of garments, improv-

ing the disentanglement proposed by earlier works. As we

show later in Section 4.4, this is a fundamental step towards

learning a generative space of garment deformations that do

not interpenetrate the underlying body.

To formulate our unposed and deshaped garment model

we leverage the diffused skinning functions proposed in

Section 4.1

MG(X,�, ✓) = W (TG(X,�, ✓), J(�), ✓, fW(X)) (7)

TG(X,�, ✓) = X+ eBs(X,�) + eBp(X, ✓), (8)

where TG() is the deformed garment after diffused blend-

shapes correctives are applied, and X are the garment de-

formations in canonical space. Notice that our garment

model is well-defined for any garment with any topology,

thanks to the generalized diffused skinning functions. (i.e.,

no need to retrain fW(), eBs(), eBp() for each garment). The

key property of this model is that skinning parameters used

to articulate the garment (Equations 7 and 8) are defined as

a function of the unposed and deshaped deformed garment

X. This is in contrast to existing methods [53, 41] that use

a fixed weight assignment, usually defined in a relaxed state

or template, and cannot guarantee that the rigging step of the

regressed deformed garment does not introduce collisions.

4.3. Projecting the Ground-truth Data

Our ultimate goal is to learn the function R() from Equa-

tion 1, which predicts garment deformations in canonical

space, in a data-driven manner. However, obtaining ground

truth data is not trivial since we need to project deformed 3D

garments –computed with a physics-based simulator [37]–

to the unposed and deshaped space. Previous methods for-

mulate the projection to the unposed state as the inverse of

the linear blend skinning operation [41, 53, 42]. Due to

their static rigging weights assignment, this operation can

introduce body-garment collisions in the unposed state for

frames where the garment has deformed significantly or slid

in the tangential direction of the body (see Figure 3b). Even

(a) (b) (c) (d) 

Figure 3: Unposing of a T-shirt and a dress in challenging

poses: (a) input mesh; (b) unposing with constant weights

[41, 53], notice the collisions; (c) unposing with variable

weights assigned with nearest vertex, it avoids collisions but

introduces skinning artifacts and is not temporally stable,

better seen in video; (d) unposing with our optimization.

if a data-driven method can potentially learn to fix these ar-

tifacts to output collision-free posed deformations, our key

contribution discussed in detail in Section 4.4 is to show that

if a collision-free projection-and-unprojection operation ex-

ists, then the learning can be defined entirely in the unposed

and deshaped state. This carries many positive properties

that we discuss later.

We therefore need an strategy to project ground-truth

garments to our canonical space, without introducing col-

lisions. Notice that we cannot use the inverse of Equation

7 because the diffused skinning fW(X) are only defined

for unposed shapes. Furthermore, exhaustive search of

garment-body nearest vertices for each frame is highly ex-

pensive and introduces discontinuities in medial axis areas

(see Figure 3c). Therefore, we propose a new optimization-

based strategy to find the optimal vertex positions of the gar-

ment in the canonical space. Formally, given a ground-truth

deformed garment mesh MG (i.e., generated with physics-

based simulation) with known pose ✓ and shape �, we find

its unposed and deshaped representation X by minimizing

min
X

Erec + ω1Estrain + ω2Ecollision. (9)

In the minimization objective, the data term

Erec =
��MG −MG(X,�, ✓)

��2
2

(10)

aims at reducing the difference between the simulated gar-

ment, and the unposed and deshaped representation pro-

jected back to the original state. Notice that MG(X,�, ✓),
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defined in Equation 7, is well defined for any set of 3D ver-

tices X, and it is fully differentiable thanks to the diffused

skinning parameters.

The regularization term

Estrain=
�� 1
2 (F (TG(X,�,✓))>F (TG(X,�,✓))−I)

��2
2

(11)

penalizes unrealistic deformations. To measure the amount

of deformation of each triangle we use the Green-Lagrange

strain tensor, which is rotation and translation invariant. F

denotes the deformation gradient of each triangle.

Lastly, we include a term to prevent optimized vertex

positions X to interpenetrate with the underlying body:

Ecollision = max(✏− SDF (X), 0) (12)

This term requires to compute the distance to the body sur-

face for all vertices of the deformed garment, which is usu-

ally modeled with a Signed Distance Field (SDF). We lever-

age the fact that bodies in our canonical space are repre-

sented with a constant body mesh, and therefore the SDF is

static and can be precomputed. In practice, and inspired by

recent works on implicit function learning [40, 2, 9, 55], we

learn the SDF with a shallow fully-connected network that

naturally provides a fully differentiable formulation.

To optimize a sequence, we initialize the optimization

with the result of the previous frame. This not only accel-

erates convergence, but also contributes to stabilize the pro-

jection over time. For the first frame, we initialize the op-

timization with the garment template, which is obtained by

simulating the garment with the average body model (i.e., ✓

and � set to zero).

4.4. Generative Garment Deformation Subspace

With the garment model defined in Section 4.2, and

the strategy to project ground truth data into our canonical

space defined in Section 4.3, we could train a data-driven

method (e.g. a neural network) to learn the garment defor-

mation regressor R() defined in Equation 1. However, even

though our garment model is designed in such a way that

the (un)projection operation between canonical space and

posed space does not introduce collisions, residual errors in

the optimization of the regressor R() could lead to regressed

deformed garments X with body-garment collisions in the

canonical space, which would inevitably propagate to the

posed space. In fact, this is a common source of collisions

in all data-driven methods [16, 41, 53, 64].

Our key contribution to address this challenge is to learn

a compact subspace for garment deformations that reliably

solves garment-body interpretations. To do so, we leverage

the fact that in our unposed and deshaped canonical repre-

sentation of garments, the underlying body shape is con-

stant, namely, it is a body shape with � = 0 and ✓ = 0.

This property enables us to train a variational autoencoder

(VAE) to learn a generative space of garment deformations

with a novel self-supervised collision loss term that is inde-

pendent of the underlaying body and shape, and therefore

naturally generalizes to arbitrary bodies. More specifically,

we train the VAE with a loss

LVAE = Lrec + λ1Llaplacian + λ2Lcollision + λ3LKL. (13)

We define the standard VAE reconstruction term as

Lrec =
��X−D(E(X))

��
1
, (14)

where E() and D() are the encoder and decoder networks,

respectively. Since Lrec does not take into account the

neighborhood of the vertex, we add an additional loss term

that penalizes error between the mesh laplacians [60, 65]

Llaplacian =
��∆x−∆D(E(X))

��
1

(15)

To enforce a subspace free of garment-body collisions,

we propose the collision term

Lcollision = max(✏− SDF (D(E(X)), 0)

+max(✏− SDF (D(X̄rand)), 0)
(16)

where X̄rand ∼ N (0, 1). The first term penalizes collisions

in the reconstruction of train data. Our fundamental contri-

bution is the second term, max(✏ − SDF (D(X̄rand)), 0),
that samples the latent space and, enabled by the de-

shaped and unpose canonical representation, checks colli-

sions against a constant body mesh with a self-supervised

strategy (i.e., we do not need ground truth garments for this

term). This key ingredient allows us to exhaustively sample

the latent space and learn a compact garment representation

that reliably solves garment-body interpenetrations. As al-

ready highlighted, since our garment model is designed to

not to introduce body-garment collisions in both the pro-

jection and unprojection operations, garment deformations

regressed in the generative subspace do not suffer from col-

lisions even in unseen (i.e., test) sequences.

The self-supervised loss is only useful if the values are

sampled from the same distribution as the data. For this

purpose, we include an additional term LKL to enforce a

normal distribution in our latent space.

5. Regressing Garment Deformations

Once we have built our generative garment subspace, we

encode the ground-truth data and use it to train the recurrent

regressor R(�, γ) from Equation 1, which predicts garment

deformations as a function of body shape � and motion γ.

Our motion descriptor � carries information of the cur-

rent pose as well as its global movement. The off-the-shelf

encoding for pose information is to use the joint rotations

✓ ∈ R
72 of the underlying human model, but this represen-

tation suffers from several problems such as discontinuities,
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Figure 4: Number of body-garment collisions, evaluated in

a test set, during the training of the generative subspace.

Our novel self-supervised term, described in Equation 16,

is the key term to reduce collisions in unseen sequences.

redundant joints, and unnecessary degrees of freedom. In-

stead, we adopt a more compact, learned pose descriptor

✓̄ ∈ R
10 [52] which we found to generalize better. We

build the motion vector � for a given frame by concatenat-

ing the descriptor to the velocities and accelerations (com-

puted with finite differences) of the pose, the global rotation

K (represented as Euler angles) and translation H

� = {✓̄,
d✓̄

dt
,
d2✓̄

dt2
,
dH

dt
,
d2H

dt2
,
dK

dt
,
d2K

dt2
} (17)

The regressor takes as input the motion descriptor � ∈

R
42 and the shape coefficients � ∈ R

10 and predicts the en-

coded garment deformation X̄pred ∈ R
25. To learn dynamic

effects that depend on previous frames, we use Gated Re-

current Units [10] as the building blocks of our model. We

train using the L1-error of encoded canonical space posi-

tions, velocities, and accelerations, which we find improves

dynamics compared to optimizing positions alone.

LR = Lpos + ρ1Lvel + ρ2Lacc (18)

6. Evaluation

6.1. Quantitative Evaluation

To quantitatively evaluate the ability of our compact gen-

erative subspace to solve body-garment collisions, we show

the number of collisions during the training in Figure 4,

evaluated on a test set that includes 4 unseen sequences

and 17 different shapes. Specifically, we plot an ablation

study that shows, in orange, the collisions remaining at each

epoch when using only the supervised collision loss (i.e.,

1st term of Equation 16), and, in black, when also using

our self-supervision with the 2nd term of Equation 16. The

latter dramatically improves the collision handling, and it

shows the generalization capabilities of our approach by

reaching values close to 0 collisions in unseen sequences.

In Figure 5 we show a quantitative evaluation of the col-

lisions in a test sequence from the AMASS dataset [32], and
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Figure 5: Quantitative evaluation of collisions per frame in

test sequence 86 07. See supplementary video for a quali-

tative visualization of this comparison.
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Collisions 5.70% 8.80% 0.62% 0.24% 0.09%

Table 1: Average number of collisions in 105 test motions

from the AMASS dataset [32].

compare our results with the recent works of Santesteban et

al. [53] and TailorNet [41]. These previous methods, with-

out the postprocessing step, generate garment deformations

that consistently collide with the underlying body mesh.

In contrast, our method directly regresses garment defor-

mations with almost no collisions. Importantly, the pri-

mary source of the remaining collisions for our method are

self-intersections in the body mesh already present AMASS

dataset (e.g., a hand interpenetrates the torso).

Furthermore, in Table 1 we present an ablation study

evaluated on test sequences from AMASS [32] with 53,998

frames and 20 body shapes. We report the number of col-

lisions for 3 configurations of our method: without the full

collision loss, without the self-supervised term, and the full

model. All components of our model contribute, leading to

a residual of 0.09% with our full model. In contrast, com-

petitive methods suffer from a significantly higher number.

6.2. Qualitative Evaluation

We qualitatively evaluate the output of our method and

compare to recent approaches. Please notice that the visual

quality of our results is much better demonstrated in the

supplementary video, which contains an exhaustive quali-

tative analysis, including a real-time demo in test sequences

with unseen shapes from the AMASS dataset [32].

In Figure 6 we qualitatively evaluate the generalization

capabilities our method to unseen body shapes. Specifically,
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Figure 6: Generalization to new shapes. Interpolation be-

tween two unseen body shapes (left and right) from the

AMASS dataset [32]. Our deshaped canonical space avoids

collisions even in shapes far from the training data.

(a) TailorNet [41]
(w/o postprocess)

(b) TailorNet [41]
(w/ postprocess)

(c) Our method

Figure 7: Fixing collisions in a postprocess step can intro-

duce undesired bulges, see chest area in (b).

we interpolate between 2 extremely different real shapes

from AMASS [32], and compare to state-of-the-art data-

driven garment models. Importantly, the input shapes are

far beyond the range of our training data, therefore here

we are also evaluating the extrapolation capabilities of the

methods. Our method handles such extremely challenging

cases very well and does not show visible garment-body

collision, while existing methods [53, 41] suffer from very

noticeable interpenetrations. In Figure 7 we show that, al-

though a postprocessing step can effectively mitigate this

issue, it can also introduce additional problems.

In Figure 8 we evaluate the generalization capabilities of

our approach to unseen motions, and we compare our results

against those of a physics-based simulator. Notice that our

method is the first to showcase such a highly-challenging

scenario featuring a dress sequence with dynamics.

6.3. Runtime Performance

In Table 2 we show our runtime performance in a regular

desktop PC (AMD Ryzen 7 2700 CPU, Nvidia GTX 1080

Ti GPU, and 32GB of RAM). We produce detailed meshes

at high frame rates, even for garments with many triangles.

Figure 8: Generalization to new motions. Qualitative com-

parison with physical simulation [37] (top) in sequence

01 01. Our model (bottom) synthesizes highly realistic dy-

namics and wrinkles even for challenging unseen motions.

Triangles Regressor Decoder Projection

T-shirt 8,710 1.7 ms 1.6 ms 1.4 ms

Dress 23,949 1.7 ms 3.5 ms 2.9 ms

Table 2: Execution time of each step of our model.

7. Conclusions and Future Work

We have presented a first algorithm to learn garment de-

formations such that they are essentially collision free. We

achieve this by a diffused, volumetric representation of the

underlying body together with the construction of a sub-

space for the garment that yields a differentiable, canonical

configuration. This subspace is crucial for the regression

of the garment deformation and its dynamics. Our algo-

rithm not only allows for avoiding collisions, it also reduces

complexity for inference, such that a learned representation

yields higher quality than previously achievable. Generated

garments exhibit a large amount of spatial and temporal de-

tail, and can be inferred extremely quickly.

Additionally, the high quality of the garments generated

by our method and the differentiable nature of our algo-

rithm point to a large number of highly interesting avenues

for follow up work: from virtual try-on applications [18],

to inverse problems in computer vision [25]. Extending

our method to handle collisions between multiple layers of

clothing is also a promising line of future research.
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timating Cloth Simulation Parameters from Video. In Proc.

of ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, page 37–51, 2003. 2

[6] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Ka-

van, and Mark Pauly. Projective Dynamics: Fusing Con-

straint Projections for Fast Simulation. ACM Transactions

on Graphics (Proc. SIGGRAPH), 33(4):1–11, 2014. 2

[7] Katherine L Bouman, Bei Xiao, Peter Battaglia, and

William T Freeman. Estimating the Material Properties of

Fabric from Video. In Proc. of Computer Vision and Pattern

Recognition (CVPR), pages 1984–1991, 2013. 2

[8] Dan Casas, Marco Volino, John Collomosse, and Adrian

Hilton. 4D Video Textures for Interactive Character Ap-

pearance. Computer Graphics Forum (Proc. Eurographics),

33(2):371–380, 2014. 2

[9] Zhiqin Chen and Hao Zhang. Learning Implicit Fields for

Generative Shape Modeling. In Proc. of Computer Vision

and Pattern Recognition (CVPR), 2019. 3, 6

[10] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre,
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