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Abstract

From a simplified analysis of adaptive methods, we de-

rive AvaGrad, a new optimizer which outperforms SGD on

vision tasks when its adaptability is properly tuned. We ob-

serve that the power of our method is partially explained

by a decoupling of learning rate and adaptability, greatly

simplifying hyperparameter search. In light of this obser-

vation, we demonstrate that, against conventional wisdom,

Adam can also outperform SGD on vision tasks, as long

as the coupling between its learning rate and adaptability

is taken into account. In practice, AvaGrad matches the

best results, as measured by generalization accuracy, de-

livered by any existing optimizer (SGD or adaptive) across

image classification (CIFAR, ImageNet) and character-level

language modelling (Penn Treebank) tasks. When training

GANs, AvaGrad improves upon existing optimizers.1

1. Introduction

Deep neural networks are notoriously difficult and costly

to train due to the non-convexity of the underlying objective

coupled with limitations of first-order methods, like vanish-

ing and shattered gradients [15, 16, 2]. Architectural designs

such as normalization layers [19, 1] and residual connections

[12] facilitate training by improving gradient statistics, and

are broadly used in practice. However, modern architectures

often contain modules with different functionalities, such

as attention heads [41] and gating mechanisms [17], whose

parameter gradients naturally present distinct statistics.

Adaptive gradient methods such as AdaGrad [8] and

Adam [21] are particularly suitable for training complex

networks, as they designate per-parameter learning rates

which are dynamically adapted based on individual gradient

statistics collected during training. Although widely adopted,

recent works have shown shortcomings in both theoretical

and practical aspects of adaptive methods, such as noncon-

vergence [34] and poor generalization [42].

Moreover, SGD is still dominant when training relatively

1AvaGrad is available at github.com/lolemacs/avagrad

simple architectures such as ResNets [12, 13] and DenseNets

[18], where model-based methods [19, 12] suffice to over-

come the obstacles of training deep networks.

A clear trend in the literature is that SGD is more com-

monly adopted in computer vision tasks, where convolu-

tional networks are prominent [35, 4, 40], while adaptive

methods are typically employed in natural language process-

ing tasks, where the most successful networks are either

recurrent [17, 30] or attention-based [7, 41]. This situation

persists despite the fact that considerable effort has been put

into the design of sophisticated adaptive methods, with the

goal of providing SGD-like performance in computer vision

tasks and formal convergence guarantees.

Newly-proposed optimizers typically offer convergence

guarantees for stochastic convex problems [34, 27, 37], but,

as we will see, either fail to match SGD’s performance when

training simpler networks, or behave similarly to SGD and

thus underperform Adam when training complex models.

The behavior of recently-proposed adaptive methods when

training deep networks is unclear due to the scarcity of non-

convex guarantees and analyses.

In this paper, we focus on the question of whether an

optimizer can be dominant in multiple domains. That is,

we are concerned with finding conditions and properties for

which an optimization method trains convolutional networks

as well as SGD, while at the same time being able to train

more complex models as well as Adam. We refer to this

property as domain-independent dominance.

We start in Section 3 by analyzing the convergence of

adaptive methods for stochastic non-convex problems, pro-

viding a sufficient condition to guarantee a O(1/
√
T ) conver-

gence rate – the same as SGD. Moreover, we later (Section 8)

propose a simple procedure that, given an arbitrary adaptive

method, produces a similar optimizer that satisfies said con-

dition and hence offers a guaranteed O(1/
√
T ) convergence

rate for stochastic non-convex problems. From this result,

we also show how Adam can provably achieve SGD-like

convergence in stochastic non-convex problems given proper

tuning of its adaptability parameter ǫ, and show how this

does not contradict [34].

Further inspecting the convergence rate of adaptive meth-
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ods and the relation with ǫ motivates AvaGrad, a new adap-

tive method that decouples the learning rate and the adapt-

ability parameter ǫ. In light of our theoretical results, Av-

aGrad (introduced in Section 4) is uniquely attractive as it

virtually removes the interaction between the learning rate –

the hyperparameter that requires the most tuning to achieve

strong generalization – and the adaptability parameter ǫ –

which we show to be strongly connected to convergence.

Section 5 demonstrates through extensive experiments

that, against conventional wisdom, Adam can be superior

to SGD when training ResNets, even in challenging tasks

such as ImageNet [36] classification. The caveat is that

achieving SGD-like performance on vision tasks requires

extensive tuning of both the learning rate and ǫ, inducing

high computational costs due to their interaction.

Our experiments also show that AvaGrad is not merely a

theoretical exercise, as it performs as well as both SGD and

Adam in their respectively favored usage scenarios without

requiring extensive hyperparameter tuning. Section 7 quanti-

fies these differences by measuring suboptimality w.r.t. hy-

perparameters given a fixed training budget.

Contributions. We offer marked improvements to adap-

tive optimizers, from theoretical and practical perspectives:

• We show that Adam can provably converge for non-

convex problems given a proper tuning of its adaptability

parameter ǫ. We address the apparent contradiction with

[34], providing new insights on the role of ǫ in terms of

convergence and performance of adaptive methods.

• Extensive experiments show that Adam can outperform

SGD in tasks where adaptive methods have found little

success. As suggested by our theoretical results, tuning ǫ
is key to achieving optimal results with adaptive methods.

• We propose AvaGrad, a theoretically-motivated adap-

tive method that decouples the learning rate α and the

adaptability parameter ǫ. Quantifying the hyperparame-

ter tuning cost using a zeroth-order method, we observe

that AvaGrad is significantly cheaper to tune than Adam.

Matching the generalization accuracy of SGD and other

adaptive methods across tasks and domains, AvaGrad

offers performance dominance given low tuning budgets.

2. Preliminaries

Notation. For vectors a = [a1, a2, . . . ], b =
[b1, b2, . . . ] ∈ R

d we use 1
a = [ 1

a1

, 1
a2

, . . . ] for element-wise

division,
√
a = [

√
a1,

√
a2, . . . ] for element-wise square

root, and a⊙ b = [a1b1, a2b2, . . . ] for element-wise multi-

plication. ‖a‖ denotes the ℓ2-norm, while other norms are

specified whenever used. The subscript t is used to denote

a vector related to the t-th iteration of an algorithm, while

i is used for coordinate indexing. When used together, t
precedes i: wt,i ∈ R denotes the i-th coordinate of wt ∈ R

d.

Stochastic Non-Convex Optimization. We consider

problems of the form

min
w∈Rd

f(w) := Es∼D [fs(w)] , (1)

where D is a probability distribution over a set S of “data

points”, fs : Rd → R are not necessarily convex and indi-

cate the instant loss for each data point s ∈ S . As is typically

done in non-convex optimization, we assume throughout the

paper that f is M -smooth, i.e. there exists M such that

‖∇f(w)−∇f(w′)‖ ≤ M‖w − w′‖ (2)

for all w,w′ ∈ R
d.

We also assume that the instant losses have bounded

gradients, i.e. ‖∇fs(w)‖∞ ≤ G∞ for some G∞ and all

s ∈ S , w ∈ R
d.

Following the literature on stochastic non-convex opti-

mization [9], we evaluate optimization methods in terms of

number of gradient evaluations required to achieve small loss

gradients. We assume that the algorithm takes a sequence

of data points S = (s1, . . . , sT ) from which it sequentially

and deterministically computes iterates w1, . . . , wT , using a

single gradient evaluation per iterate.

The algorithm then constructs a distribution P(t|S) over

t ∈ {1, . . . , T}, samples t′ ∼ P and outputs wt′ . We say an

algorithm has a convergence rate of O(g(T )) if

E

[

‖∇f(wt)‖2
]

≤ O(g(T )) , (3)

where the expectation is over the draw of the T data points

S ∼ DT and the chosen iterate wt, t ∼ P(t|S).
Related Work and Adaptive Methods. We consider

methods which, at each iteration t, receive or compute a

gradient estimate gt := ∇fst(wt) and perform an update

wt+1 = wt − αt · ηt ⊙mt , (4)

where αt ∈ R is the global learning rate, ηt ∈ R
d are the

parameter-wise learning rates, and mt ∈ R
d is the update

direction, typically defined in terms of momentum

mt = β1,tmt−1 + (1− β1,t)gt and m0 = 0 . (5)

Note that this definition includes non-momentum methods

such as AdaGrad and RMSProp, since setting β1,t = 0
yields mt = gt. While in (4) αt can always be absorbed

into ηt, our representation will be convenient throughout

the paper. SGD is a special case of (4) when ηt = ~1, and

although it offers no adaptation, it enjoys a convergence rate

of O(1/
√
T ) with either constant, increasing, or decreasing

learning rates [9]. It is widely used when training relatively

simple networks such as feedforward CNNs [12, 18].

Adaptive methods, e.g., RMSProp [6], AdaGrad [8],

Adam [21] use ηt = 1/(
√
vt + ǫ), with vt ∈ R

d as an expo-

nential moving average of second-order gradient statistics:

vt = β2,tvt−1 + (1− β2,t)g
2
t and v0 = 0 . (6)

Here, mt and ηt are functions of gt and can be non-trivially

correlated, causing the update direction ηt ⊙mt not to be
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an unbiased estimate of the expected update. Precisely this

“bias” causes RMSProp and Adam to present nonconvergent

behavior even in the stochastic convex setting [34].

We summarize recent advances in adaptive methods as fol-

lows, where convergence rates are for stochastic non-convex

problems. [46] shows that Adam and newly-proposed Yogi

converge as O(1/T ) given a batch size of Θ(T ), a setting

that neither captures the small batch sizes used in practice

nor fits in the stochastic non-convex optimization framework

– their analysis does not yield convergence for a batch size

of 1. [5] proves a rate of O(log T/
√
T ) for AdaGrad and

AMSGrad given a decaying learning rate. [27] proposes

AdaBound, whose adaptability is decreased during training,

but its convergence is only shown for convex problems [37].

The correlation between mt and ηt is studied in [47],

which proposes making the two independent of the sample st:
the proposed method, AdaShift, is guaranteed to converge

in the convex case but at an unknown rate. [43] provides

convergence rates for a form of AdaGrad without parameter-

wise adaptation, also showing that AdaGrad converges but

at an unknown rate. [3] proposes PAdam, which matches or

outperforms SGD given proper tuning of a newly-introduced

hyparameter – in contrast with their work, we show that

even Adam can match SGD given proper tuning and without

introducing new hyperparameters.

3. The Role of Adaptivity

We start with a key observation to motivate our studies

on how adaptivity affects the behavior of adaptive methods

like Adam in both theory and practice: if we let αt = γǫ for

some positive scalar γ, then as ǫ goes to ∞ we have

αt√
vt + ǫ

→ ~γ , (7)

where ~γ is the d-dimensional vector with all components

equal to γ, and d is the dimensionality of vt (i.e. the total

number of parameters in the system). This holds as long as

vt does not explode as ǫ → ∞, which is guaranteed under

the assumption of bounded gradients.

In other words, we have that adaptive methods such as

AdaGrad and Adam lose their adaptivity as ǫ increases, and

behave like SGD in the limit where ǫ → ∞ i.e. all compo-

nents of the parameter-wise learning rate vector ηt converge

to the same value. This observation raises two questions

which are central in our work:

1. How does ǫ affect the convergence behavior of

Adam? It has been shown that Adam does not gen-

erally converge even in the linear case [34]. However,

as ǫ increases it behaves like SGD, which in turn has

well-known convergence guarantees, suggesting that ǫ
plays a key, although overlooked, role in the conver-

gence properties of adaptive methods.

2. Is the preference towards SGD for computer vision

tasks purely due to insufficient tuning of ǫ? SGD

is de-facto the most adopted method when training

convolutional networks [38, 39, 12, 13, 45, 44], and

it is belived that it offers better generalization than

adaptive methods [42]. Morever, recently proposed

adaptive methods such as AdaBelief [48] and RAdam

[25] claim success while underperforming SGD on Im-

ageNet. However, it is not justified to view SGD as

naturally better suited for computer vision, because

SGD itself can be seen as a special case of Adam.

On the Convergence of Adam, Revisited. We focus on

the first question regarding how the convergence behavior of

Adam changes with ǫ. As mentioned previously, Reddi et

al. [34] has shown that Adam can fail to converge in the

stochastic convex setting. The next Theorem, stated infor-

mally, shows that Adam’s nonconvergence also holds in the

stochastic non-convex case, when convergence is measured

in terms of stationarity instead of suboptimality:

Theorem 1. (informal, full version in Appendix B) There

exists a stochastic optimization problem (which depends on

ǫ) for which Adam does not converge to a stationary point.

Note that the problem is constructed adversarially in

terms of ǫ. The problem considered in Theorem 3 of Reddi et

al. [34], used to show Adam’s nonconvergence, has no de-

pendence on ǫ because the proof assumes that ǫ = 0.

The next result, also stated informally, shows that for

stochastic non-convex problems that do not depend on ǫ,
Adam actually converges like SGD as long as ǫ is large

enough (or, alternatively, increases during training):

Theorem 2. (informal, full version in Appendix E) Adam

converges at a O(1/
√
T ) rate for stochastic non-convex

problems as long as ǫ is large enough (as a function of

the total number of iterations / desired stationarity) or is

increased during training (at a rate of
√
t or faster).

Together, the two theorems above give a precise charac-

terization of how ǫ affects the theoretical behavior of Adam

and other adaptive methods: not only is convergence ensured

but a SGD-like rate of O(1/
√
T ) is guaranteed as long as ǫ

is large enough. While Adam behaves like SGD in the limit

ǫ → ∞, we show that it suffices for ǫ to be O(
√
T ) to guar-

antee a SGD-like convergence rate. We believe Theorem 2 is

more informative than Theorem 1 for characterizing Adam’s

behavior, as convergence analyses in the optimization litera-

ture typically consider non-adversarial examples.

4. AvaGrad: A New Adaptive Optimizer

We now introduce AvaGrad, a novel adaptive method

presented as pseudo-code in Algorithm 1. We describe Av-

aGrad in this section, but defer its principled motivation to

Section 6. Section 5 first presents an experimental study
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Algorithm 1 AVAGRAD

Input: w1 ∈ R
d, αt, ǫ > 0, β1,t, β2,t ∈ [0, 1)

1: Set m0 = 0, v0 = 0
2: for t = 1 to T do

3: Draw st ∼ D
4: Compute gt = ∇fst(wt)
5: mt = β1,tmt−1 + (1− β1,t)gt
6: ηt =

1√
vt−1+ǫ

7: wt+1 = wt − αt · ηt

‖ηt/
√
d‖

2

⊙mt

8: vt = β2,tvt−1 + (1− β2,t)g
2
t

9: end for

comparing different optimizers, demonstrating AvaGrad’s

effectiveness across a variety of tasks and domains.

The key difference between AvaGrad and Adam lies in

how the parameter-wise learning rates ηt are computed and

their influence on the optimization dynamics. In particu-

lar, AvaGrad adopts a normalized vector of parameter-wise

learning rates, which we later show to be advantageous in

multiple aspects: it yields better performance and easier hy-

perparameter tuning in practice, while in theory it results in

better convergence rate guarantees.

For convenience, we also account for the dimensionality

d of ηt (i.e. the total number of parameters in the system)

when performing normalization: more specifically, we divide

ηt by ‖ηt/
√
d‖2 in the update rule, which is motivated by

fact that the norm of random vectors increases as
√
d, and

also observed to be experimentally robust to changes in

d (e.g., networks with different sizes). Alternatively, this

normalization can be seen as acting on the global learning

rate αt instead, in which case AvaGrad can be seen as adding

an internal, dynamic learning rate schedule for Adam.

Lastly, AvaGrad also differs from Adam in the sense that

it updates vt, the exponential moving average of gradients’

second moments, after the update step. This implies that

parameters are updated according to the second-order esti-

mate of the previous step i.e. there is a 1-step delay between

second-order estimates and parameter updates. Such delay

is fully motivated by theoretical analyses, and our prelimi-

nary experiments suggest that it does not impact AvaGrad’s

performance on natural tasks.

5. The Value of Adaptive Gradient Methods

We turn focus to the second question raised in Section 3,

on whether tuning ǫ suffices to achieve SGD-like empirical

performance regardless of the underlying task and domain.

5.1. Image Classification

We study how adaptive methods perform in computer

vision tasks where SGD is the dominant approach – in partic-

ular, image classification on the CIFAR [22] and ImageNet

[36] datasets, tasks where the state-of-the-art has been con-

sistently surpassed by methods that adopt SGD. Unlike other

works in the literature, we perform extensive hyperparameter

tuning on ǫ (while also tuning the learning rate α): following

our observation that Adam behaves like SGD when ǫ is large,

we should expect adaptive methods to perform comparably

to SGD if hyperparameter tuning explores large values for ǫ.

For all experiments we consider the following popular

adaptive methods: Adam [21], AMSGrad [34], AdaBound

[27], AdaShift [47], RAdam [25], AdaBelief [48], and

AdamW [26]. We also report results of AvaGrad, our newly-

proposed adaptive method, along with its variant with decou-

pled weight decay [26], which we refer to as AvaGradW.

CIFAR. We train a Wide ResNet-28-4 [45] on the CIFAR

dataset [22], which consists of 60,000 RGB images with

32× 32 pixels, and comes with a standard train/test split of

50,000 and 10,000 images. Following [45], we normalize

images prior to training. We augment the training data with

horizontal flips and by sampling 32× 32 random crops after

applying a 4-pixel padding to the images.

We adopt the same learning rate schedule as [45], decay-

ing α by a factor of 5 at epochs 60, 120 and 160 – each

network is trained for a total of 200 epochs on a single GPU.

We use a weight decay of 0.0005, a batch size of 128, a

momentum of 0.9 for SGD, and β1 = 0.9, β2 = 0.999 for

each adaptive method.

We select a random subset of 5,000 samples from CIFAR-

10 to use as the validation set when tuning α and ǫ of each

adaptive method. We perform grid search over a total of 441

hyperparameter settings, given by all combinations of ǫ ∈
{10−8, 2·10−8, 10−7, . . . , 100} and α ∈ {5·10−7, 10−6, 5·
10−6, . . . , 5000}.

Results of our hyperparameter tuning procedure agree

with our hypothesis: for this specific setting, adaptive meth-

ods perform best with aggressive values for ǫ, ranging from

0.1 (Adam, AMSGrad) to 10.0 (AvaGrad, AdamW) – values

drastically larger then the default ǫ = 10−8. In terms of

the learning rate, Adam and AMSGrad perform best with

α = 0.1, a value 100 times larger than the default.

Next, we fix the best (α, ǫ) values found for each method

and train a Wide ResNet-28-10 on both CIFAR-10 and

CIFAR-100, this time evaluating the test performance. We

do not re-tune α and ǫ for adaptive methods due to the prac-

tical infeasibility of training a Wide ResNet-28-10 roughly

8000 times. We tune the learning rate α of SGD using the

same search space as before, and confirm that the learning

rate α = 0.1 commonly adopted when training ResNets

[12, 13, 45] performs best in this setting.

The leftmost columns of Table 1 present results: on

CIFAR-10, SGD (3.86%) is outperformed by Adam

(3.64%) and AvaGrad (3.80%), while on CIFAR-100 Adam

(18.96%), AMSGrad (18.97%), AdaShift (18.88%), Ava-

Grad (18.76%), and AvaGradW (19.04%) all outperform
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SGD (19.05%). These results disprove the conventional wis-

dom that adaptive methods are not suited for computer vision

tasks such as image classification. While tuning ǫ, a step typ-

ically overlooked or skipped altogether in practice, suffices

for adaptive methods to outperform SGD (and hence can be

a confounding factor in comparative studies), our results also

suggest that adaptive methods might require large compute

budgets for tuning to perform optimally on some tasks.

ImageNet. To further validate that adaptive methods can

indeed outperform SGD in settings where they have not

been historically successful, we consider the challenging

task of training a ResNet-50 [13] on the ImageNet dataset

[36]. The task consists of 1000-way classification given

1.2M training and 50,000 validation images. Following [11],

we perform scale/color transformations for training and use

single 224× 224 crops to compute the top-1 validation error.

We transfer the hyperparameters from our CIFAR experi-

ments for all methods. The network is trained for 100 epochs

with a batch size of 256, split between 4 GPUs, where the

learning rate α is decayed by a factor of 10 at epochs 30, 60

and 90, and we also adopt a weight decay of 10−4. Note

that the learning rate of 0.1 adopted for SGD agrees with

prior work that established new state-of-the-art results on

ImageNet with residual networks [12, 13, 44].

SGD yields 24.01% top-1 validation error, underper-

forming Adam (23.45%), AMSGrad (23.46%), RAdam

(23.60%), AvaGrad (23.58%) and AvaGradW (23.49%), i.e.

5 out of the 8 adaptive methods evaluated on this task. We

were unable to train with AdaShift due to memory con-

straints: since it keeps a history of past gradients, our GPUs

ran out of memory even with a reduced batch size of 128,

meaning that circumventing the issue with gradient accumu-

lation would result in considerably longer training time.

The third column of Table 1 summarizes the results.

In contrast to numerous papers that surpassed the state-

of-the-art on ImageNet by training networks with SGD

[38, 39, 12, 13, 45, 44], our results show that adaptive meth-

ods can yield superior results in terms of generalization

performance as long as ǫ is appropriately chosen. Most

strikingly, Adam outperforms AdaBound, RAdam, and Ad-

aBelief: sophisticated methods whose motivation lies in

improving the performance of adaptive methods.

5.2. Language Modelling

We now consider a task where state-of-the-art results

are achieved by adaptive methods with small values for ǫ
and where SGD has little success: character-level language

modelling with LSTMs [17] on the Penn Treebank dataset

[29, 31]. We adopt the 3-layer LSTM [17] model from

Merity et al. [30] with 300 hidden units per LSTM layer.

We first perform hyperparameter tuning over all com-

binations of ǫ ∈ {10−8, 5 · 10−7, . . . , 100} and α ∈ {2 ·
10−4, 10−3, . . . , 20}, training each model for 500 epochs

and decaying α by 10 at epochs 300 and 400. Since ǫ affects

AdaBelief differently and its official codebase recommends

values as low as 10−16 for some tasks 2, we adopt a search

space where candidate values for ǫ are smaller by a factor of

10−8 i.e. starting from 10−16 instead of 10−8.

We use a batch size of 128, BPTT length of 150, and

weight decay of 1.2×10−6. We also employ dropout with the

recommended settings for this model [30]. Not surprisingly,

our tuning procedure returned small values for ǫ as being

superior for adaptive methods, with Adam, AMSGrad, and

AvaGrad performing optimally with ǫ = 10−8.

Next, we train the same 3-layer LSTM but with 1000

hidden units, transferring the (α, ǫ) configuration found by

our tuning procedure. For SGD, we again confirmed that the

transferred learning rate performed best on the validation set

when training the wider model.

Results in Table 1 show that only AvaGrad and Ava-

GradW outperform Adam, achieving test BPCs of 1.179
and 1.175 compared to 1.182. Combined with the previous

results, we validate that, depending on the underlying task,

adaptive methods might require vastly different values for ǫ
to perform optimally, but, given enough tuning, are indeed

capable of offering best overall results across domains.

We also observe that AdaBound, RAdam, and AdaBelief

all visibly underperform Adam in this setting where adap-

tivity (small ǫ) is advantageous, even given extensive hyper-

parameter tuning. RAdam, and more noticeably AdaBound,

perform poorly in this task. We hypothesize that this is re-

sult of RAdam incorporating learning rate warmup (see Ma

& Yarats [28] for more details), which is not typically em-

ployed when training LSTMs, and AdaBound’s adoption of

SGD-like dynamics early in training [37].

5.3. Generative Adversarial Networks

Finally, we consider a task where adaptivity is not only

advantageous, but often seen as necessary for successful

training: generative modelling with GANs. We train a Geo-

metric GAN [24], i.e. a DCGAN model [33] with the hinge

loss, on the CIFAR-10 dataset to perform image generation.

We do not apply gradient penalties.

We adopt a batch size of 64 and train the networks for a to-

tal of 60,000 steps, where the discriminator is updated twice

for each generator update. We train the GAN model with the

same optimization methods considered previously, perform-

ing hyperparameter tuning over ǫ ∈ {10−8, 10−6, 10−4}
and α ∈ {10−5, 2 · 10−5, 10−4, . . . , 0.1} for each adaptive

method, and α ∈ {10−6, 2 · 10−6, 10−5, . . . , 1.0} for SGD.

The performance of each model is measured in terms of

the Fréchet Inception Distance (FID) [14] computed from

a total of 10,000 generated images. Results are summa-

rized in Table 1, showing that AvaGrad offers a signifi-

cant improvement in terms of FID over all other methods,

2github.com/juntang-zhuang/Adabelief-Optimizer, ver. 9b8bb0a
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Table 1: Test performance of standard models on benchmark tasks, when trained with different optimizers. Gray background

indicates the optimization method (baseline) adopted by the paper that proposed the corresponding network model. The

best task-wise results are in bold, while other improvements over the baselines are underlined. Numbers in parentheses

indicate standard deviation over three runs. Across tasks, AvaGrad closely matches or exceeds the results delivered by existing

optimizers, and offers notable improvement in FID when training GANs.

CIFAR-10

Test Err%

CIFAR-100

Test Err %

ImageNet

Val Err %

Penn Treebank

Test BPC ↓

Penn Treebank

Test BPC ↓

CIFAR-10

FID ↓

Model WRN 28-10 WRN 28-10 ResNet-50 3xLSTM(300) 3xLSTM(1000) GGAN

SGD 3.86 (0.08) 19.05 (0.24) 24.01 1.404 1.237 (0.000) 133.0

Adam 3.64 (0.06) 18.96 (0.21) 23.45 1.377 1.182 (0.000) 43.0

AMSGrad 3.90 (0.17) 18.97 (0.09) 23.46 1.385 1.187 (0.001) 41.3

AdaBound 5.40 (0.24) 22.76 (0.17) 27.99 — 2.891 (0.041) 247.3

AdaShift 4.08 (0.11) 18.88 (0.06) OOM 1.395 1.199 (0.001) 43.7

RAdam 3.89 (0.09) 19.15 (0.13) 23.60 — 1.349 (0.003) 42.5

AdaBelief 3.98 (0.07) 19.08 (0.09) 24.11 1.377 1.198 (0.000) 44.8

AdamW 4.11 (0.17) 20.13 (0.22) 26.70 1.401 1.227 (0.003) —

AvaGrad 3.80 (0.02) 18.76 (0.20) 23.58 1.375 1.179 (0.000) 35.3

AvaGradW 3.97 (0.02) 19.04 (0.37) 23.49 1.375 1.175 (0.000) —

achieving an improvement of 7.7 FID over Adam (35.3

against 43.0). Note that the performance achieved by Adam

matches other sources3 [20], and Adam performed best with

α = 0.0002, ǫ = 10−6 in our experiments, closely matching

the commonly-adopted values in the literature.

6. Decoupling α and ǫ with AvaGrad

The results in the previous section establish the impor-

tance of optimizing ǫ when using adaptive methods, and how

not tuning ǫ can be a confounding factor when comparing

different adaptive optimizers.

A key obstacle to proper tuning of ǫ is its interaction with

the learning rate α: as discussed in Section 3, ‘emulating’

SGD with a learning rate γ can be done by setting α = γǫ in

Adam and then increasing ǫ: once its value is large enough

(compared to vt), scaling up ǫ any further will not affect

Adam’s behavior as long as α is scaled up by the same

multiplicative factor. Conversely, when ǫ is small (compared

to components of vt), we have that
√
vt + ǫ ≈ √

vt, hence

decreasing ǫ even further will not affect the optimization

dynamics as long as α remains fixed.

This suggests the existence of two distinct regimes for

Adam (and other adaptive methods): an adaptive regime,

when ǫ is small and there is no interaction between α and ǫ,
and a non-adaptive regime, when ǫ is large and the learning

rate α must scale linearly with ǫ to preserve the optimization

dynamics. The exact phase transition is governed by vt i.e.

the second moments of the gradients, which depends not

only on the task but also on the model.

3github.com/POSTECH-CVLab/PyTorch-StudioGAN
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Figure 1: Performance of Adam and AvaGrad with different

learning rate α and adaptability parameter ǫ, measured in

terms of validation error on CIFAR-10 of Wide ResNet 28-4.

Best performance is achieved with low adaptability/large ǫ.

By normalizing the parameter-wise learning rates ηt at

each iteration, AvaGrad guarantees that the magnitude of

the effective learning rates is independent of ǫ, essentially

decoupling it from α. With AvaGrad, α governs optimization
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Figure 2: Left: Iterations to achieve 0.5% suboptimality, measured in terms of

validation accuracy on CIFAR-10, for Adam and AvaGrad when tuning α and ǫ
with various standard hyperparameter optimizers. Right: Suboptimality (gap in

validation accuracy) when optimizing α and ǫ with GLD/CGLD, as a function

of trials (i.e. validation accuracy evaluations for a value of (α, ǫ)): AvaGrad is

significantly cheaper to tune than Adam, being especially efficient when adopting

Coordinate GLD due to its hyperparameter separability.
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Figure 3: The mean gradient norm as

function of the iteration t when optimiz-

ing Equation (11). Matching our theo-

retical results, Delayed Adam and Adam

with dynamic ǫt both converge, while

Adam fails to converge.

dynamics in both regimes: when ǫ is small, changing its

value has negligible impact on ηt and ‖ηt‖, hence the updates

will be the same, while in the non-adaptive regime we have

that ηt ≈ [ 1ǫ ,
1
ǫ , . . . ] and ‖ηt/

√
d‖2 ≈ 1

ǫ , hence normalizing

ηt yields an all-ones vector regardless of ǫ (as long as it

remains large enough compared to all components of vt).
Figure 1 shows the performance of a Wide ResNet 28-4

on CIFAR-10 when trained with Adam and AvaGrad, for

different (α, ǫ) configurations i.e. the grid search employed

in Section 5.1. For Adam, the non-adaptive regime is indeed

characterized by a linear relation between α and ǫ, while its

performance in the adaptive regime depends mostly on α
alone. AvaGrad offers decoupling between the two parame-

ters, with α precisely characterizing the non-adaptive regime

(i.e. the performance is independent of ǫ) while almost fully

describing the adaptive regime as well, except for regions

close to the phase transition. For each of the 21 different

values of ǫ, AvaGrad performed best with α = 1.0.

7. Separability & Hyperparameter Tuning

To assess our hypothesis that AvaGrad offers hyperpa-

rameter decoupling, which enables α and ǫ to be tuned inde-

pendently via two line-search procedures instead of a grid

search, we compare tuning costs of Adam and AvaGrad with

prominent hyperparameter optimization methods such as

Parzen Trees and CMA-ES. We also consider Gradientless

Descent (GLD) [10], a powerful zeroth-order method.

We frame the task of tuning α and ǫ as a 2D optimization

problem with a 21×21 discrete domain representing all (α, ǫ)
configurations explored in Section 5.1, with the minimization

objective being the error of a Wide ResNet-28-4 on CIFAR-

10 when trained with the corresponding (α, ǫ) values.

Figure 2 (left) shows the number of iterations required

by different hyperparameter optimizers to achieve 0.5% sub-

optimality i.e. an error at most 0.5% higher than the lowest

achieved in the grid. AvaGrad is significantly cheaper to

tune than Adam, regardless of the adopted tuning algorithm,

including random search – showing that AvaGrad is able to

perform well with a wider range of hyperparameter values.

We also consider a variant of GLD where descent steps

on α and ǫ are performed separately in an alternating manner,

akin to coordinate descent [23, 32]. This variant, which we

denote by CGLD, is in principle well-suited for problems

where variables have independent contributions to the ob-

jective, as is approximately the case for AvaGrad. Results

are given in Figure 2 (right): AvaGrad achieves less than 1%
suboptimality in 13 iterations when tuned with CGLD, while

Adam requires 74 with GLD. As expected, coordinate-wise

updates result in considerably faster tuning for AvaGrad.

8. Theoretical Foundations

Finally, we present a theoretical analysis on the conver-

gence of adaptive methods, but taking a different approach

from the one considered in Section 3: instead of analyz-

ing how ǫ affects the convergence of Adam, here we focus

on better understanding why Adam can fail to converge for

problems that depend on its hyperparameter settings.

We first note that the ‘adversarial’ problems designed to

show Adam’s nonconvergence in Theorem 3 of Reddi et

al. [34] and our Theorem 1 exploit the correlation between

mt and ηt to guarantee that Adam takes overly conserva-

tive steps when presented with rare samples that contribute

significant to the objective.

While Reddi et al. already propose a modification for

Adam that guarantees its convergence, it relies on explicitly

constraining the parameter-wise learning rates ηt to be point-

wise decreasing which can harm the method’s adaptiveness.

We present a simple way to directly circumvent the fact that

mt and ηt are correlated without constraining ηt, guaran-

teeing a O(1/
√
T ) rate for stochastic non-convex problems

while being applicable to virtually any adaptive method.

Our modification consists of employing a 1-step delay
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in the update of ηt, or equivalently replacing ηt by ηt−1

in the method’s update rule for wt+1. Although there is

still statistical dependence between mt and vt, this ensures

that ηt is independent of the current sample st, which the

following result shows to suffice for SGD-like convergence:

Theorem 3. Assume that f is smooth and fs has bounded

gradients for all s ∈ S. For any optimization method that

performs updates following (4) such that ηt is independent

of st and L ≤ ηt,i ≤ H for positive constants L and H ,

setting αt = α′/
√
T yields

E

[

‖∇f(wt)‖2
]

≤ O
(

1

L
√
T

(

1

α′ + α′H2

))

, (8)

where wt is uniformly sampled from {w1, . . . , wT }.

Moreover, if st is independent of Z :=
∑T

t=1 αt mini ηt,i,

then setting αt = α′
t/
√
T yields

E

[

‖∇f(wt)‖2
]

≤ O
(

1√
T

· E
[

∑T
t=1 1 + α′

t
2 ‖ηt‖2

∑T
t=1 α

′
t mini ηt,i

])

,
(9)

where wt is sampled from p(t) ∝ αt ·mini ηt,i.

The bound in (9) depends on the learning rate αt and on

both the squared norm and smallest value of the parameter-

wise learning rate ηt, namely ‖ηt‖2 and mini ηt,i, enabling

us to analyze how the relation between αt and ηt affects the

convergence rate, including how the rate can be improved by

adopting a learning rate αt that depends on ηt.
Setting α′

t = ‖ηt‖−1
yields a bound on the convergence

rate of

O
( √

T
∑T

t=1
mini ηt,i

‖ηt‖

)

(10)

Note that such bound is stronger than the one in (8): given

constants L and H as in Theorem 3, we have L ≤ mini ηt,i
and ‖ηt‖ ≤

√
dH , yielding an upper bound of O(H/L

√
T )

that matches (8) when α′ = H−1.

Note that, for ηt = 1/(
√
vt + ǫ), having α′

t = ‖ηt‖−1
is

equivalent to normalizing ηt prior to each update step, which

is precisely how we arrived at AvaGrad’s update rule (with

the exception of accounting the d, the dimensionality of ηt,
when performing normalization).

Additionally, Theorem 3 predicts the existence of two

distinct regimes in the behavior of Adam-like methods. Tak-

ing α′ = Θ(H−1) minimizes the bound in (8) and yields

a rate of O( 1√
T

H
L ) = O

(

1√
T
max

(

1, G∞

ǫ

)

)

once we take

L = (G∞ + ǫ)−1 and H = ǫ−1, which can be shown to

satisfy L ≤ ηt,i ≤ H for Adam-like methods.

In this case, the convergence rate depends on G∞

ǫ , or,

informally, how vt compares to ǫ (G∞ is an upper bound on

the magnitude of the gradients, hence directly connected to

vt). This closely matches the empirical results presented in

Figure 1, which shows two visible phases with a transition

around ǫ = 10−3.

Lastly, we demonstrate our convergence results in Theo-

rems 2 and 3 experimentally by employing Adam, AMSGrad,

Adam with a 1-step delay (Delayed Adam), and Adam with

ǫt =
√
t3, on a synthetic problem with the same form as the

one used in the proof of Theorem 1:

min
w∈[0,1]

f(w), fs(w) =

{

999w2

2 , w.p. 1
500

−w, otherwise
(11)

where f(w) := E [fs(w)].

This problem admits a stationary point w⋆ ≈ 0.5, and

satisfies Theorem 5 for β1 = 0, β2 = 0.99, ǫ = 10−8. Fig-

ure 3 presents 1
t

∑t
t′=1 ‖∇f(wt′)‖2 during training, and

shows that Adam fails to converge (Theorem 1), while both

Delayed Adam and dynamic Adam converge successfully

(Theorem 3 and Theorem 2). We attribute the faster con-

vergence of Delayed Adam to the lack of constraints on the

parameter-wise learning rates.

9. Conclusion

Adaptive methods are widely used when training complex

architectures, but are far from being well-understood in the-

ory and practice. Our theoretical results show that adaptive

methods enjoy a SGD-like convergence under a constraint

on how parameter-wise learning rates are computed from

samples, motivating a simple and universal modification to

provide convergence guarantees to arbitrary adaptive meth-

ods. Our analysis also suggests a sensible connection be-

tween the learning rate α, the adaptability parameter ǫ, and

the magnitude of the stochastic gradients.

Experimentally, we show that, contrary to prior beliefs,

adaptive methods can outperform SGD even on challenging

tasks such as ImageNet – given a large enough budget for

hyperparameter tuning. We identify hyperparameter tuning

as a key concern in understanding and designing adaptive

methods, and propose AvaGrad, a theoretically-motivated

method that decouples α and ǫ.

AvaGrad enables cheap of tuning of α and ǫ with coordi-

nate zeroth-order methods, requiring a fraction of time taken

by other optimizers. Being able to outperform competing

methods while offering efficient hyperparameter tuning, Av-

aGrad can be a valuable tool for practitioners with limited

computational resources.
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