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Abstract

Physical adversarial examples for camera-based com-

puter vision have so far been achieved through visible ar-

tifacts — a sticker on a Stop sign, colorful borders around

eyeglasses or a 3D printed object with a colorful texture.

An implicit assumption here is that the perturbations must

be visible so that a camera can sense them. By contrast,

we contribute a procedure to generate, for the first time,

physical adversarial examples that are invisible to human

eyes. Rather than modifying the victim object with visible

artifacts, we modify light that illuminates the object. We

demonstrate how an attacker can craft a modulated light

signal that adversarially illuminates a scene and causes

targeted misclassifications on a state-of-the-art ImageNet

deep learning model. Concretely, we exploit the radiomet-

ric rolling shutter effect in commodity cameras to create

precise striping patterns that appear on images. To human

eyes, it appears like the object is illuminated, but the camera

creates an image with stripes that will cause ML models

to output the attacker-desired classification. We conduct a

range of simulation and physical experiments with LEDs,

demonstrating targeted attack rates up to 84%.

1. Introduction

Recent work has established that deep learning models

are susceptible to adversarial examples — manipulations to

model inputs that are inconspicuous to humans but induce

the models to produce attacker-desired outputs [36, 17, 11].

Early work in this space investigated digital adversarial ex-

amples where the attacker can manipulate the input vector,

such as modifying pixel values directly in an image classifi-

cation task. As deep learning has found increasing applica-

tion in real-world systems like self-driving cars [26, 15, 31],

UAVs [8, 30], and robots [38], the computer vision com-

munity has made great progress in understanding physical

adversarial examples [14, 5, 34, 24, 10] because this attack

∗Both authors contributed equally to this work.
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Figure 1: Images as seen by human (without border) and

as captured by camera (in black border) with the attack

signal (left two images) and without (right two images). The

image without the attack signal is classified as coffee mug

(confidence 55%), while the image with the attack signal is

classified as perfume (confidence 70%). The attack is robust

to camera orientation, distance, and ambient lighting.

modality is the most realistic in physical systems.

Existing physical attacks include adding stickers on Stop

signs that make models output Speed limit instead [14],

colorful patterns on eyeglass frames to trick face recogni-

tion [34], and 3D-printed objects with specific textures [6].

However, all existing works add artifacts to the object (such

as sticker or color patterns) that are visible to a human. In this

work, we generate adversarial perturbations on real-world

objects that are invisible to human eyes, yet produce misclas-

sifications. Our approach exploits the differences between

human and machine vision to hide adversarial patterns.

We show an invisible physical adversarial example

in Fig. 1, generated by manipulating the light that shines

on the object. The light creates adversarial patterns in the

image that only a camera perceives. In particular, we show

how an attacker can exploit the radiometric rolling shutter

(RS) effect, a phenomenon that exists in rolling shutter cam-

eras that perceive a scene whose illumination changes at

a high frequency. Digital cameras use the rolling shutter

technique to obtain high resolution images at higher rate

and at a cheaper price [3, 27]. Rolling shutter technology

is used in a majority of consumer-grade cameras, such as

cellphones [19], AR glasses [32] and machine vision [1, 2].

Due to the rolling shutter effect, the adversarially-

illuminated object results in an image that contains multi-

colored stripes. We contribute an algorithm for creating a

14666



time-varying high-frequency light pattern that can create

such stripes. To the best of our knowledge, this is the first

demonstration of physical adversarial examples that exploit

the radiometric rolling shutter effect, and thus, contributes

to our evolving understanding of physical attacks on deep

learning camera-based computer vision.

Similar to prior work on physical attacks, the main chal-

lenge is obtaining robustness to dynamic environmental con-

ditions such as viewpoint and lighting. However, in our

setting, there are additional environmental conditions that

pose challenges in creating these attacks. Specifically: (1)

Camera exposure settings influence how much of the rolling

shutter effect is present, which affects the attacker’s ability

to craft adversarial examples. — long exposures lead to less

pronounced rolling shutter, providing less control. (2) The

attacker’s light signal can be de-synchronized with respect

to the camera shutter, thus causing the camera to capture

the adversarial signal at different offsets causing the striping

pattern to appear at different locations on the image, that can

destroy its adversarial property. (3) The space of possible

perturbations is limited compared to existing attacks. Unlike

sticker attacks or 3D objects that can change the victim ob-

ject’s texture, our attack only permits striped patterns that

contain a limited set of translucent colors. (4) Difference in

the light produced by RGB LEDs and the color perceived by

camera sensor makes it harder to realize a physical signal.

To tackle the above challenges, we create a simulation

framework that captures these environmental and camera

imaging conditions. The simulation is based on a differen-

tiable analytical model of image formation and light signal

transmission and reception when the radiometric rolling

shutter effect is present. Using the analytical model, we then

formulate an optimization objective that we can solve using

standard gradient-based methods to compute an adversarial

light signal that is robust to these unique environmental and

camera imaging conditions. We fabricate this light signal

using programmable LEDs.

Although light-based adversarial examples are limited

in the types of perturbation patterns compared to sticker-

based ones, they have several advantages: (1) The attack is

stealthier than sticker-based ones, as the attacker can simply

turn the light source to a constant value to turn OFF the

attack. (2) Unlike prior work using sticker or 3D printed

object, the perturbation is not visible to human eyes. (3) The

attack is dynamic and can change on-the-fly — in a sticker-

based attack, once the sticker has been placed, the attack

effect cannot be changed unless the sticker is physically

replaced. In our setting, the attacker can simply change the

light signal and thus, change the adversarial effect.

We characterize this new style of invisible physical adver-

sarial example using a state-of-the-art ResNet-101 classifier

trained using ImageNet [13]. We conduct physical testing

of our attack algorithm under various viewpoints, ambient

lighting conditions, and camera exposure settings. For exam-

ple, for the coffee mug shown in Fig. 1 we obtain a targeted

fooling rate of 84%under a variety of conditions. We find

that the attack success rate is dependent on the camera expo-

sure setting: exposure rates shorter than 1/750s produce the

most successful and robust attacks.

The main contributions of our work are the following:

• We develop techniques to modulate visible light that can

illuminate an object to cause misclassification on deep

learning camera-based vision classifiers, while being com-

pletely invisible to humans. Our work contributes to a

new class of physical adversarial examples that exploit

the differences between human and machine vision.

• We develop a differentiable analytical model of image

formation under the radiometric rolling shutter effect and

formulate an adversarial objective function that can be

solved using standard gradient descent methods.

• We instantiate the attack in a physical setting and charac-

terize this new class of attack by studying the effects of

camera optics and environmental conditions, such as cam-

era orientation, lighting condition, and exposure. Code is

available at https://github.com/EarlMadSec/

invis-perturbations.

2. Related Work

Digital Adversarial Examples. This type of attack has

been relatively well-studied [36, 17, 11, 29, 33, 7, 22] with

several attack techniques proposed. They all involve creating

pixel-level changes to the image containing a target object.

However, this level of access is not realistic when launching

attacks on cyber-physical systems — an attacker who has

the ability to manipulate pixels at a digital level already

has privileged access to the system and can directly launch

simpler attacks that are more effective. For example, the

computer security community has shown how an attacker

could directly (de)activate brakes in a car [21].

Physical Adversarial Examples. Physical perturbations

are the most realistic way to attack physical systems. Recent

work has introduced attacks that require highly visible pat-

terns affixed to the victim object, such as stickers/patches

on traffic signs, patterned eyeglass frames or 3D printed ob-

jects [14, 6, 10, 37, 34]. We introduce a new kind of physical

adversarial example that cameras can see but humans cannot.

Li et al. [24] recently proposed adversarial camera stickers.

These do not require visible stickers on the target object, but

they require the attacker to place a sticker on the camera

lens. By contrast, we target a more common and widely

used threat model where the attacker can only modify the

appearance of a victim object.

Rolling Shutter Distortions. Broadly, rolling shutter can
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manifest in two kinds of image distortions: (1) motion-based,

where the camera or object move during capture, and (2)

radiometric, where the lighting varies rapidly during camera

exposure. The more common among the two is motion-

based, and thus, most prior work has examined techniques

to correct motion distortions [3, 16, 12, 9]. Early works

derived geometric models of rolling-shutter cameras and

removed image distortions due to global, constant in-plane

translation [16, 12], which was later extended to non-rigid

motion via dense optical flow [9]. Our work focuses on

exploiting radiometric distortions caused by high-frequency

lights.

Rolling Shutter for Communication. A line of work has

explored visible light communication using the radiometric

rolling shutter effect [18, 23]. Similar to our work, the goal

is to transmit information from a light source to a camera by

modulating a high-frequency time-varying light signal such

as an LED. We take inspiration from this work and explore

how an adversary can manipulate the light source to transmit

an adversarial example. However, the key difference is that

there is no “receiver” in our setting. Rather, the attacker

must be able to transmit all information necessary for the

attack in a single image without any co-operation from the

camera. By contrast, the communication setting can involve

taking multiple images over time because the light source

and camera co-operate to achieve information transfer. In

our case, the light signal must robustly encode information

so that the attack effect is achieved in the span of a single

image — a challenge that we address.

Rolling Shutter for Visual Privacy. Zhu et al. [39] pro-

posed using radiometric rolling shutter distortions to reduce

the signal-to-noise ratio in an image until it becomes un-

intelligible to humans. This helps to prevent photography

in sensitive spaces. Our goal is orthogonal — we wish to

manipulate the rolling shutter effect to cause targeted mis-

classifications in deep learning models.

3. Image Formation under Rolling Shutter

Rolling Shutter Background. Broadly, cameras are of two

types depending on how they capture an image: (1) rolling

shutter (RS) and (2) global shutter. A camera consists of an

array of light sensors (each sensor corresponds to an image

pixel). While an image is being formed, these sensors are

exposed to light energy for a period of te, known as exposure

time, and then the data is digitized and read out to memory.

In a global shutter, the entire sensor array is exposed at the

same time and then the sensors are turned off for the readout

operation. By contrast, an RS camera exposes each row of

pixels at slightly different periods of time. Thus, while rows

are being exposed to light, the data for previously exposed

rows are read out. This leads to a higher frame-rate than for

.
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Figure 2: Modulated light induces the radiometric rolling

shutter effect. Here tr denotes the time it takes to read a row

of sensors, and te denotes the exposure of the camera.

high resolution cameras.

We visualize the rolling shutter effect in the presence of

lighting changes in Fig. 2. For an RS camera, the time it

takes to read a row is called readout time (tr).1 Each row is

exposed and read out at a slightly later time than the previous

row. Let t0 be the time when the first row is exposed, then

the yth row is exposed at time t0 + (y − 1)tr, and read at

t0 + (y − 1)tr + te.

As different rows are exposed at different points in time,

any lighting or spatial changes in the scene that occurs while

the image is being taken can lead to undesirable artifacts

in the captured image, including distortion or horizontal

stripes on the image, known as rolling shutter effect [25]. In

this work, we exploit such artifacts by modulating a light

source. We contribute a technique to determine the precise

modulation required to trick state-of-the-art deep learning

models for visual classification.

Image Formation. We represent the time-modulated at-

tacker signal as f(t). We assume that the scene contains am-

bient light in addition to the attacker-controlled light source

(e.g., a set of Smart LED lights). Let ltex(x, y) represent the

texture of the scene, which we approximate as the value of

the (x, y) pixel. As the attacker signal is a function of time,

the illumination at pixel (x, y) on the scene will vary over

time, (α+ β f(t)). Here α and β represent the intensity of

the ambient light and the maximum intensity of the attacker

controlled light, respectively. We note that the attacker can

use an RGB LED, and thus, the attacker’s signal contains

three components: Red, Green and Blue.

In rolling shutter camera, pixels on the same row are

exposed at the same time, and neighboring rows are ex-

posed at slightly different times. Let each row be exposed

for te seconds, and the yth row starts exposing at time ty.

Therefore, the intensity of a pixel (x, y) in row y, will be:

i(x, y) = ρ
∫ ty+te

ty
ltex(x, y) (α+ β f(t)) dt. Here, ρ de-

1This is also approximately the time difference between when two

consecutive rows are exposed.
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notes the sensor gain of the camera sensor that converts the

light radiance falling on a pixel sensor into a pixel intensity.

Thus, we have:

i(x, y) = ρ ltex(x, y)

(

αte + β

∫ ty+te

ty

f(t) dt

)

= ρ ltex(x, y) te α+ ρ ltex(x, y) te β g(y)

= Iamb + Isig · g(y)

Here, the signal image g(y) denotes the average effect of

signal f(t) on row y, g(y) = 1
te

∫ ty+te

ty
f(t) dt. Let Iamb

be the image captured under only ambient light, such that

Iamb = ρ ltex(x, y)teα, and Isig is the image captured under

only the full illumination of the attacker controlled light

(with no ambient light).

The time-varying signal f(t) we generate is periodic,

with period τ ; during the image capture the signal could

have an offset of δ with respect to the camera. Therefore,

final equation of pixel intensity would be,

Ifin = Iamb + Isig · g(y + δ) (1)

In the next section, we discuss how we make our attack

robust to environmental conditions, including any offset δ.

4. Crafting Invisible Perturbations

Our high-level goal is to generate a light signal by mod-

ulating a light source such that it induces striping patterns

when a rolling shutter camera senses the scene. These pat-

terns should be adversarial to a machine learning model but

should not be visible to humans. The attacker light source

flickers at a frequency that humans cannot perceive, and thus,

the scene simply appears to be illuminated. Fig. 3 outlines

the attack pipeline. To achieve this goal, we first present the

challenges in crafting such light modulation, followed by

our algorithm for overcoming these issues.

4.1. Physical World Challenges

One of the key challenges in creating physical adversarial

examples is to create a simulation framework that can accu-

rately estimate the final image taken by the camera. Without

such a framework it will be very slow to compute an attack

by repeating physical experiments. In addition, physical

world perturbations must survive varying environmental con-

ditions, such as viewpoint and lighting changes. Prior work

has proposed methods that can create adversarial examples

robust to these environmental factors. However, in our set-

ting, we encounter a unique set of additional challenges

concerning light generation, reception, and camera optics.

Desynchronization between camera and light source.

The location of the striping patterns appearing on the image

depends on the synchronization between the camera and the

light source. Failing to do so, will cyclically permute the

Figure 3: The attacker creates a time-modulated high fre-

quency light signal that induces radiometric striping dis-

tortions in rolling shutter cameras. The striping pattern is

designed to cause misclassifications.

striping pattern on the image, resulting in a different final

image. However, the attacker has no control over the camera

and when the image is taken. Therefore, we optimize our

signal to remain adversarial even when the light source is

out of sync with the camera at image capture time.

Camera exposure. The exposure of the camera will signif-

icantly change how a particular attacker signal is interpreted.

A long exposure will apply a “smoothing effect” on the

signal as two consecutive rows will receive much of the

same light. This will reduce the attacker’s ability to cause

misclassifications. A shorter exposure would create more

pronounced bands on the image, making it easier to induce

misclassification. We show that our adversarial signal can

be effective for a wide range of exposure values.

Color of light production and reception. Prior work

has examined fabrication error in the case of printer col-

ors [14, 34]. Our attack occurs through an LED and this

requires different techniques to account for fabrication er-

rors: (1) Red, Green, Blue LEDs produce light of different

intensities; (2) Cameras run proprietary color correction; (3)

Transmitted light can bleed into all three color channels (e.g.,

if only Red light is transmitted, on the sensor side, it will

still affect the Green and Blue channels). We learn approx-

imate functions to translate a signal onto an image so that

we can create a simulation framework for quickly finding

adversarial examples.

4.2. Optimization Formulation

Our goal is to compute a light signal f(t) such that, when

an image is taken under the influence of this light signal, the

loss is minimized between the model output and the desired

target class. However, unlike prior formulations, we do not

need an ℓP constraint on perturbation magnitude because

our perturbations (via high-frequency light modulation) are

invisible to human eyes by design. Instead, our formulation
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is constrained by the capabilities of the LEDs, the Arduino

chip we use to modulate them (see Sec. 5), and the camera

parameters. A novel aspect in our formulation is the dif-

ferentiable representation of the rolling shutter camera and

color correction applied by the camera. Such representation

allows us to compute the adversarial example end-to-end

using common gradient-based methods, such as PGD [28]

and FGSM [17]. Our model allows us to manipulate cam-

era parameters such as exposure time, image size and row

readout rate.

Following Eq. (1), we get the final image Ifin as a sum of

the image in ambient light(Iamb) and in only the attacker’s

light source(Isig). Based on the image formation model

discussed above, we have the following objective function:

min
f(t)

E
C,T,δ

J (M(C(Ifin)), k)

Ifin = T (Iamb) + T (Isig) · g(y + δ)

g(y) =
1

te

∫ ty+te

ty

f(t) dt

(2)

where J(., k) is the classification loss for the target class

k, M is the classifier model, C is a function to account for

color reproduction error, Tmodels viewpoint and lighting

changes, δ denotes possible signal offsets. The image under

only ambient light is Iamb and under only fully illuminated

attacker-controlled light is Isig.

As we assume the attacker does not have control over

the ambient light, we cannot take Isig (image without the

effect of the ambient light). We instead take an image where

both ambient and the attacker controlled LEDs are fully

illuminated, which we call Ifull = Iamb+Isig, and extrapolate

Isig as Ifull − Iamb.

The process of solving the above optimization problem

is shown in Algorithm 1. We use the cross-entropy as our

loss function J and used ADAM [20] as the optimizer. Next,

we discuss how our algorithm handles the unique challenges

(Sec. 4.1) to generate robust adversarial signals.

Structure of f(t). One of the challenges in solving the

above optimization problem is determining how to represent

the time-vary attacker signal f(t) in a suitable format. We

choose to represent it as an vector of intensity values, which

we denote as f̂ . Each index in f̂ represents a time interval

of tr (i.e., the readout time of the camera). This is because

the attacker will not gain any additional control over the

rolling shutter effect by changing the light intensity within a

single tr period: Within a single tr, the same set of rows are

exposed to light and any intensity changes will be averaged.

Furthermore, we bound the values of f̂ to be in [0, 1], such

that 0 denotes zero intensity and 1 denotes full intensity. The

signal values inside are scaled accordingly. To ensure our

signal is within the bounds, we use a change-of-variables.

We define f̂ = 1
2 (tanh(v) + 1). Thus, v can take any un-

Algorithm 1 Adversarial Light Signal Generation

Input: Image with only ambient light Iamb, image with ambient and at-

tacker controlled lights Ifull, target class k, and exposure value te
Output: Digitized adversarial light signal f̂ , which is an vector of size l.

Notations: c: number of color channels; shift(., δ): cyclic permutation

of an vector shifted by δ places; γ: parameter for gamma correction; N :

threshold for maximum number of iteration; s is the shutter function which

depends on the te and image size h× w

procedure OPTIMIZE(Iamb, Ifull, k, s)

n← 1
v0←$ Z

c×l ⊲ Randomly sample an vector of size c× l

while not converge and n ≤ N do

C ∼ P,T ∼ X, δ ∼ {0, 1, . . . , l}

f̂n ←
1

2
(tanh(vn−1) + 1)

on ← shift(f̂n, δ) ⊲ cyclic permutation

gn ← on ∗ s ⊲ convolution with the shutter function

Iamb,n ← T(Iamb); Ifull,n ← T(Ifull)

Isig,n ←
(

I
γ
amb,n

+ gn × (Iγ
full,n

− I
γ
amb,n

)
) 1

γ

L← J
(

M
(

C(Isig,n)
)

, k
)

⊲ loss for target class k

∆v ← ∇vn−1
L

vn ← vn−1 +∆v

n← n+ 1
end while

f̂ ← 1

2
(tanh(vn) + 1)

return f̂

end procedure

bounded value during our optimization. Finally, the attacker

must determine what is an appropriate length of f̂ because

the optimizer needs a tensor of finite size. We design f̂ to be

periodic with period equal to image capture time: tr · h+ te
where h is the height of the image in pixels. As each index

in f̂ represents tr units of time, the length of the vector for

f̂ would be l = h+
⌈

te
tr

⌉

.

Viewpoint and Lighting Changes. We build on prior work

in obtaining robustness to viewpoint (object pose) and light-

ing variability. Specifically, we use the expectation-over-

transformation approach (EoT) that samples differentiable

image transformations from a distribution (E.g., rotations,

translations, brightness) [6]. We model this using distribu-

tion X which consists of transformations for flipping the

image horizontally and vertically, magnifying the image to

account for small distance variations, and planar rotations of

the image. During each iteration of the optimization process,

we sample a transformation T from X and apply it to the

pair of object images Iamb and Ifull. We apply multiplicative

noise to the ambient light image Iamb to model small varia-

tions in the ambient light. However, to account for a wider

variation in the ambient light, we adjust our signal during

attack execution. This is one of the key benefits of this attack

to be agile to environment changes. We generate a set of

adversarial light signals, each designed to operate robustly at

specific intervals of ambient light values. During the attack,

we switch our light signal to the one that corresponds to the
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current ambient light setting.2 Using this approach, we avoid

optimizing over large ranges of ambient light conditions and

hence, improve the effectiveness of our attack.

Signal Offset. Because our signal can have a phase differ-

ence with the camera, we account for this during optimiza-

tion. The offset is an integer value δ ∈ {0, 1, . . . , l}. Each

offset value can be represented by a specific cyclic permu-

tation of the f̂ vector. A offset value of δ corresponds to

performing a δ-step cyclic rotation on the signal vector. To

gain robustness against arbitrary offsets, we model the cyclic

rotation as a matrix multiplication operation. This enables us

to use EoT by sampling random offsets during optimization.

Color Production and Reception Errors. Imperfections

in light generation and image formation by the camera can

lead to errors. Furthermore, the camera can run proprietary

correction steps such as gamma correction to improve image

quality. We account for the gamma correction by using

the sRGB (Standard RGB) standard value, γ = 2.2 [4].

However, it is infeasible to model all possible sources of

imperfection. Instead, we model the fabrication error as a

distribution of transformations in a coarse-grained manner

and perform EoT to overcome the color discrepancy. The

error transformations are a set of experimentally-determined

affine (Ax+B) or polynomial (a0x
n + a1x

n−1 + ...+ an)

transformations applied per color channel (term C in Eq. (2)).

Please see the supplementary material for exact parameter

ranges for the distribution P from which we sample C values.

Handling Different Exposures. Eq. 2 models the effect of

the attacker signal on the image as a convolution between

f(t) and a shutter function. Shorter exposure leads to smaller

convolution sizes, and longer exposure leads to larger con-

volution size. Instead of optimizing for different exposure

values, we take advantage of a feature of this new style of

physical attack — its dynamism. Specifically, the attacker

can optimize different signals f(t) for different discrete ex-

posure values and then, at attack execution, switch to the

signal that is most appropriate to the camera being attacked

and ambient light. As most cameras have standard expo-

sure rates, the attacker can apriori create different signals.

We note that dynamism is a feature of our work and is not

possible with current physical attacks [14, 6, 24, 37, 34, 10].

5. Producing Attack Signal using LED lights

We used a simulation framework to generate adversarial

light signals for a given scene and camera parameters. To

validate that these signals are effective in the real world,

we implement the attack using programmable LEDs. The

2The attacker could measure the approximate ambient light using a

light meter attached to the attacker controlled light, e.g. https://www.

lighting.philips.com/main/systems/themes/dynamic-

lighting.

primary challenge we address here is modulating an LED

according to the optimized signal f̂ , a vector of reals in [0, 1].

We use an Arduino Atmel Cortex M-3 chip (clock rate

84 MHz) to drive a pair of RGB LEDs.3 We used a Sam-

sung Galaxy S7 for taking images, whose read out time (tr)

is around 10 µs. The camera takes images at resolution

3024× 3024, which is 12x larger than the input size that our

algorithm requires(252 × 252).(Our optimization process

resizes images to (224× 224) before passing to ResNet-101

classifier). Thus, when a full-resolution image is resized to

the dimensions of the model, 12 rows of data get resized to

1 row. We account for this by defining an effective readout

time of 120 µs. That is, the LED signal is held for 120 µs
before moving to the next value in f̂ . Recall that we do not

need to change the signal intensity within the readout time

because any changes during that time will be averaged by

the sensor array.

We drive the LEDs using pulse width modulation to pro-

duce the intensities specified in the digital-version of at-

tack signal f̂ . Driving three channels simultaneously with

one driver requires pre-computing a schedule for the PWM

widths. This process requires fine-grained delays, so we use

the delayMicroseconds function in the Arduino library that

provides accurate delays greater than 4 µs. The attack might

require delays smaller than this value, but it occurs rarely

and does not have an effect on the fabricated signal (Sec. 6).4

6. Experiments

We experimentally characterize the simulation and

physical-world performance of adversarial rolling shutter

attacks. For all experiments, we use a ResNet-101 classifier

trained on ImageNet [13]. The experiments show that: (1)

We can induce consistent and targeted misclassification by

modulating lights that is robust to camera orientation. (2)

Our simulation framework closely follows physical experi-

ments, therefore the signals we generate in our simulation

also translate to robust attack in physical settings; (3) The

effectiveness of the attack signal depends on the camera ex-

posure value and ambient light — longer exposure or bright

ambient light can reduce attack efficacy.

For evaluating each attack, we take a random sample

of images with different signal phase shift values (δ) and

viewpoint transformations (T). We define attack accuracy as

the fraction of these images classified as the target. We also

record the average classifier’s confidence for all the images

when it is classified as the target.

3MTG7-001I-XML00-RGBW-BCB1 from Marktech Optoelectronics.
4There can be a small difference between the period for duty cycle and

the camera readout time (tr). But as our exposure rate te >= 0.5 ms is

significantly larger than row readout time tr = 10 µs, this difference has

only little affect on our attack.
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Source

(confid.)

Affinity targets Attack

success

Target confidence

(StdDev)

Coffee mug

(83%)

Perfume 99% 82% (13%)

Candle 98% 85% (18%)

Ping-pong ball 79% 68% (27%)

Street sign

(87%)

Monitor 99% 94% (12%)

Park bench 99% 90% (13%)

Lipstick 84% 78% (20%)

Soccer ball

(97%)

Pinwheel 96% 87% (15%)

Goblet 78% 55% (17%)

Helmet 66% 59% (22%)

Rifle (96%)

Bow 76% 64% (24%)

Tripod 65% 65% (22%)

Binoculars 35% 40% (18%)

Teddy bear

(93%)

Tennis ball 92% 88% (19%)

Acorn 75% 72% (25%)

Eraser 47% 39% (16%)

Table 1: Performance of affinity targeting using our adver-

sarial light signals on five classes from ImageNet. For each

source class we note the top 3 affinity targets, their attack

success rate, and average classifier confidence of the tar-

get class. (Average is taken over all offsets values for 200

randomly sampled transformations.)

6.1. Simulation Results

For understanding the feasibility of our attack in simula-

tion we selected five victim objects. As our signal crafting

process requires two images — object under ambient light

and object with LEDs at full capacity — we approximate

the image pair by adjusting the brightness of the base image

present in ImageNet dataset. For Iamb, we ensure the average

pixel intensity is 85 (out of 255) and for Ifull it is 160. Both

values are chosen to mimic what we get in our physical ex-

periments. Then, we optimize for various viewpoints using

the EoT approach.

As light-based attacks have a constrained effect on the

resulting image (i.e., translucent striping patterns where each

stripe has a single color) compared to current physical at-

tacks, we found that it is not possible to randomly select

target classes for the attack. Rather, we find that certain

target classes are easier to attack than others. We call this

affinity targeting. Concretely, for each source class, we com-

pute a subset of affinity targets by using an untargeted attack

for a small number of iterations (e.g., 1000), and then pick

the top 10 semantically-far target classes — e.g., for “coffee

mug,” we ignore targets like “cup” — based on the classi-

fier’s confidence. Then, we use targeted attack using the

affinity targets. The results are shown in Table 1. For brevity,

we show three affinity targets for each source class. (Please

see the supplementary material for full results.)

6.2. Physical Results

We characterize the attack algorithm’s performance

across various camera configurations and environmental con-

Figure 4: The simulation framework closely replicates the

radiometric rolling shutter effect. The left image shows the

simulation result and the right one is obtained in the physical

experiments. Both of them are classified as “ping-pong ball.”

ditions. We find that the physical world results generally

follow the trend of simulation results, implying that comput-

ing a successful simulation result will likely lead to a good

physical success rate. Fig. 4 confirms that the simulated

image is visually similar to the physical one. To ensure the

baseline imaging condition is valid, for all physical testing

conditions, we capture images of the victim object under the

same exposure, and similar ambient light and viewpoints.

All of the baseline images are correctly classified as the

object (e.g., coffee mug) with an average confidence of 68%.

Effect of Exposure. We first explore the range of cam-

era exposure values in which our attack would be effective.

Fig. 5a shows the effect of various common exposure settings

on the attack’s efficacy. We observe that the attack performs

relatively well — approximately 94% targeted attack suc-

cess rate with 67% confidence — at exposures 1/750s and

shorter. However, as exposures get longer the efficacy of the

attack degrades and it stops working at exposures longer than

1/250s. This confirms our hypothesis that longer exposures

begin to approximate the global shutter effect. Based on

the exposure results, we select a setting of 1/2000s for the

following experiments.

Ambient Lighting. Attack performance depends on the

lighting condition. We have experimentally observed that

EoT under widely-varying lighting conditions does not con-

verge for our attack. We emulate different ambient light

conditions by controlling the LED output intensity as a frac-

tion of total ambient lighting. We compute different signals

for different ambient light condition and show their attack ef-

ficacy at an exposure of 1/2000s in Fig. 5b. As expected the

attack performs better as relative strength of LEDs compared

to the ambient light is higher.

Various Viewpoints. We apply EoT to make our signal

robust to viewpoint variations. In Fig. 6 (row 1-2), we show

the resulting images with our light signal for different camera

orientations and distances for two different exposure values.

All images are classified as “perfume”. Physical targeted

attack success rate is 84% with average confidence of 69%
at an exposure of 1/2000s, and a success rate of 72% with
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(a) Exposure (b) Ambient light intensity (c) Field of View (FoV)

Figure 5: Evaluating the attack success rate for different physical settings and camera parameters.

Figure 6: A sample of images taken at different camera

orientations and two exposure values, 1/2000s (first row)

and 1/750s (second row). Two different signals are used

which are optimized for respective exposure values. The

images are classified as “perfume” at an accuracy of 86%
(for exposure of 1/2000s) and 72% (for exposure of 1/750s)

with an average confidence of 69%. Third row - The images

are classified as “whistle” at a targeted-attack success rate of

79% with an average confidence of 66%.

average confidence of 70% at an exposure of 1/750s. The

averages are computed across 167 and 194 images at varying

camera orientations. In Fig. 6 (row 3), we demonstrate the

attack against a different object.

Field of View (FoV). We optimize attack signals for dif-

ferent FoV occupancy values — the fraction of foreground

object pixels to the whole image — and observe, in simula-

tion, that the attack is stable until FoV occupancy ≤ 10%
(Fig. 5c). In the baseline case, the object is correctly classi-

fied at all FoV occupancy values, but the confidence reduces

to 51% when FoV occupancy is ≤ 10%.

7. Discussion and Conclusion

High frequency ambient sources. For low exposure set-

tings, ambient light sources powered by alternating current

(AC) can induce their own flicker patterns [35]. This results

in a sinusoidal flicker with a time period that depends on the

frequency of the electric grid, which is generally 50Hz or

60Hz. We can address this in our imaging model by adding a

signal image component to the ambient image, and use EoT

to generate an attack that is invariant to this interference.

Deployment. We envision the attack being deployed in low-

light or controlled indoor lighting situations. For example, an

attacker might compromise a LED bulb in a home to evade

smart cameras or face recognition on a smart doorbell or

laptop. Here, the attacker can acquire prior knowledge of the

sensor parameters (e.g., they can purchase a similar device

or lookup specs on the Internet). Given this knowledge,

the attacker can pre-optimize a set of signals for commonly

occurring imaging conditions for their use-case, measure the

situation at deployment time and emit the appropriate signal.

Summary. We create a novel way to generate physical

adversarial examples that do not change the object, but ma-

nipulate the light that illuminates it. By modulating light at a

frequency higher than human perceptibility, we show how to

create an invisible perturbation that rolling shutter cameras

will sense and the resulting image will be misclassified to the

attacker-desired class.The attack is dynamic because an at-

tacker can change the target class or gain robustness against

specific ambient lighting or camera exposures by changing

the modulation pattern on-the-fly. Our work contributes to

the growing understanding of physical adversarial examples

that exploit the differences in machine and human vision.
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