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Abstract

Recent advances in self-supervised learning (SSL) have

largely closed the gap with supervised ImageNet pretrain-

ing. Despite their success these methods have been pri-

marily applied to unlabeled ImageNet images, and show

marginal gains when trained on larger sets of uncurated

images. We hypothesize that current SSL methods perform

best on iconic images, and struggle on complex scene im-

ages with many objects. Analyzing contrastive SSL meth-

ods shows that they have poor visual grounding and re-

ceive poor supervisory signal when trained on scene im-

ages. We propose Contrastive Attention-Supervised Tuning

(CAST) to overcome these limitations. CAST uses unsuper-

vised saliency maps to intelligently sample crops, and to

provide grounding supervision via a Grad-CAM attention

loss. Experiments on COCO show that CAST significantly

improves the features learned by SSL methods on scene im-

ages, and further experiments show that CAST-trained mod-

els are more robust to changes in backgrounds. Our code is

available at https://github.com/salesforce/CAST/.

1. Introduction

Self-supervised learning (SSL) of visual feature repre-

sentations has seen great interest in recent years. SSL in

computer vision aims to learn feature representations with-

out using any human annotations, which can be utilized

by downstream tasks such as supervised image classifica-

tion [1, 2], object detection [3, 4], and semantic segmenta-

tion [5, 6]. Recent SSL methods based on contrastive learn-

ing [7, 8] have begun to match or even outperform super-

vised pretraining on several downstream tasks [9–14].

The promise of self-supervised methods is that they

ought to allow us to learn better features by scaling to

ever-larger training sets, without the need for expensive

human-provided labels. Unfortunately, the success of re-

cent SSL methods has been largely confined to unlabeled

images from the ImageNet [2] training set. Naı̈vely ap-

plying them to larger uncurated sets of internet images
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(a) Poor visual grounding ability

(b) Sampling issues with complex images

Figure 1: We identify two issues with recent contrastive

approaches to self-supervised learning: (a) Poor ground-

ing: On iconic images, contrastive methods can match key

and query but use the wrong image regions to do so. Grad-

CAM [22] reveals that the model puts high weight (red) on

background regions, and low weight (blue) on the object of

interest. (b) Inconsistent Samples: On complex images,

randomly sampled crops may portray different objects, giv-

ing an inconsistent learning signal. We show that correcting

these issues improves self-supervised learning.

has shown marginal gains [11, 12, 14] despite using image

sets that are orders of magnitude larger than ImageNet (eg.

Instagram-1B [15], YFCC100M [16], JFT-300M [17]).

We hypothesize that current SSL methods perform best

when trained on iconic images of single objects (like those

in ImageNet) but struggle when trained on more complex

scene images with many objects. Indeed, current SSL meth-

ods struggle even when trained on curated datasets of scene

images [18, 19] such as COCO [20] or Places205 [21].

In this paper, we analyze contrastive self-supervised

models to understand the cause of these limitations and pro-

pose a solution to overcome them. Specifically, we find

that existing contrastive self-supervised models have poor

visual grounding ability and they receive imperfect supervi-

sory signal when augmented views contain different visual

concepts, which is common in images of complex scenes.

These issues may arise from the practice of training the
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instance discrimination task with random views from im-

ages. This practice does not encourage semantic under-

standing, and models often cheat by exploiting low-level

visual cues or spurious background correlations. For ex-

ample, in Figure 1a, the model relies on the grass to match

the two augmented views of the dog. Augmented views

for training these models commonly start with taking ran-

dom crops from an image. This strategy may be acceptable

for iconic images. However, for scene images, like those

in COCO, two views may contain semantically distinct ob-

jects (such as the crops in Figure 1b). This fact may ex-

plain diminishing improvements of contrastive SSL models

trained on varied web images, and the reduction in their per-

formance when trained with scene images alone.

To mitigate these limitations, we propose Contrastive

Attention-Supervised Tuning (CAST), a training method

to improve the visual grounding ability of contrastive SSL

methods. CAST consists of two algorithmic components:

(a) an intelligent geometric transform for cropping dif-

ferent views from an input image, based on constraints

derived from an unsupervised saliency map, and (b) a

Grad-CAM [22]-based attention loss that provides explicit

grounding supervision by forcing the model to attend to ob-

jects that are common across the crops.

We train the Momentum Contrastive Encoder

(MoCo) [12], a leading contrastive learning method,

using CAST on the COCO dataset. We evaluate its

performance using image classification, object detection,

and instance segmentation tasks, obtaining robust gains

in all cases. Additional experiments on the Backgrounds

Challenge [23] show that CAST-trained models are sub-

stantially more resilient to changes in object backgrounds

when performing image classification. Finally, qualitative

and quantitative experiments show that CAST improves

object localization ability of contrastive SSL feature rep-

resentations on COCO scene images and on downstream

image classification tasks. We hope that CAST can enable

self-supervised learning from unconstrained web-scale

datasets containing images with complex interactions

of multiple objects and lead to better out-of-distribution

performance and greater robustness to contextual bias.

2. Related Work

Self-supervised learning: SSL methods learn features

from unlabeled data using “pretext” tasks that provide free

supervision, with the aim of performing well on related su-

pervised learning tasks. A strand of research includes low-

to high-level computer vision-based pretext tasks, includ-

ing image inpainting [24], colorization [25, 26], predicting

patch orderings [27, 28] or degree of rotation [29]. Pretext

tasks that perform pseudo-labeling and clustering [13, 14,

19, 30–32] have also been shown to be effective. Recently,

contrastive learning methods [8] that learn to perform in-

stance discrimination [10, 12, 33–38] have been shown to

be the most competitive with fully supervised learning.

As a result, recent work has focused on developing theo-

retical and empirical understanding of contrastive represen-

tations [39–41] and improving the learning framework. For

instance, Purushwalkam and Gupta [42] propose a method

to improve viewpoint invariance of contrastively-learnt rep-

resentations. Zhang and Maire [43] utilize a hierarchical re-

gion structure of images to guide contrastive learning meth-

ods for improved segmentation performance. Zhao et al.

[44] introduce a data-driven approach to make contrastive

self-supervised models invariant to object background. In

this paper, we show the utility of visual grounding for im-

proving the contrastive representation learning.

Visual Grounding and Attention: Improving visual

grounding of CNNs is an increasingly important computer

vision problem , which can benefit applications such as im-

age captioning [45], visual question answering [46], and de-

biased computer vision [47]. Grounding methods in these

problems typically use human attention supervision [48–

50]. In our work, we improve visual grounding of self-

supervised models using object saliency maps.

Object Saliency Prediction: The goal of object saliency

prediction is to identify and segment important objects of

interest in an image. Saliency prediction methods can be

classified into supervised and unsupervised methods. Su-

pervised methods for saliency prediction [51, 52] typically

rely on expensive human annotated training data. Clas-

sically, unsupervised saliency prediction methods utilized

handcrafted priors based on human perception [53, 54] or

image statistics [52, 55, 56]. More recently proposed neu-

ral network-based saliency prediction methods [57, 58] uti-

lize saliency maps from the handcrafted unsupervised meth-

ods as noisy psuedo-labels for training, thus removing the

need for human-labeled data. In this work we make use of

Deep-USPS [59], an unsupervised saliency prediction al-

gorithm which uses a two stage mechanism that combines

hand-crafted supervision and iterative self-training.

3. Contrastive Attention-Supervised Tuning

Our method, which we call Contrastive Attention-

Supervised Tuning (CAST), aims to tune self-supervised

models to rely on the appropriate regions during contrastive

learning. At a high level, CAST consists of two steps: 1.

constrained sampling of the query and key crops from the

original image based on constraints generated using an im-

age saliency map, 2. contrastive learning with a loss that

forces models to look at the relevant object regions that are

common between the query and key crops through Grad-

CAM supervision. While our approach is generic and can

be applied to any architecture, we describe CAST in context

of the Momentum Contrast (MoCo) [12] pretraining setup.
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Figure 2: Saliency-constrained Random Crop. We com-

pute query and key crops based on a saliency map and spec-

ified area constraints.

MoCo learns to perform the instance discrimination [33]

task using the InfoNCE [35] contrastive objective (de-

scribed in detail later in Section 3.3). In this task, a query

and a key form a positive pair if they are data-augmented

versions of the same image, and form a negative pair other-

wise. MoCo builds a dynamic dictionary of negatives with

a queue and a moving-averaged encoder which enabled ac-

cess to a large and consistent dictionary which can be uti-

lized for contrastive learning of representations.

3.1. Saliencyconstrained Random Cropping

We aim to improve the visual grounding ability of self-

supervised models by explicitly supervising models to look

at relevant image regions. We provide this supervision as

a saliency map—a binary mask indicating these relevant

regions. These typically contain all the objects and other

important visual concepts present in the image. We utilize

Deep-USPS [59] to generate unsupervised saliency maps.

But providing localization supervision is not sufficient to

fix visual grounding. As shown in Figure 1b, models often

receive a noisy training signal—random crops from an im-

age may contain different objects, or none at all. To fix this

problem, we design a random crop transform that generates

input crops constrained to overlap with the saliency map.

Crop Constraints: Given an input image I with height h
and width w, the standard data augmentation involves sam-

pling two independent random crops (query and key) for

input to the model. Here, we assume access to a saliency

map M ∈ {0, 1}h×w, where Mij = 1 indicates pixel (i, j)
is salient, and area of salient region is AM =

∑

i,j Mi,j .

Consider the example in Figure 2. Our technique sam-

ples random crops based on a constraint specified by a hy-

perparameter φ ∈ [0, 1) : the area of saliency map M cov-

ered by each crop must be at least φ ·AM .

We refer φ as the area-overlap threshold. Higher val-

ues of φ imply stricter constraints—enforcing higher over-

lap between sampled crops and salient regions, whereas set-

ting φ = 0.0 recovers the unconstrained random crop, used

by MoCo and other existing SSL methods.

As seen in Figure 2, this simple area-overlap based con-

straint ensures that both the query and key crops contain

some salient regions, and we supervise models to focus on

them during training to improve visual grounding.

The premise of our approach is that when contrastive

models such as MoCo [12] are given multiple crops from an

image, focusing on the salient (object) regions in the crops

would make them learn representations that are more gen-

eralizable. These models are likely to be more grounded,

and are thus less likely to learn unwanted biases. CAST

introduces a grounding loss that encourages this behaviour.

Recall that MoCo samples two crops, query and key, and

enforces their representations to be closer compared to the

other representations in a large dynamic queue. The random

cropping transformations (shown in Fig. 2) used to obtain

the query and key crop can also be applied to the image-

specific saliency map, M . This results in two correspond-

ing saliency maps Mq and Mk, each containing the salient

object regions in the query and key crop.

However, the entirety of the object may not exist in both

the query and the key crop. Hence, when considering the

saliency map corresponding to the query, Mq , there can be

cases where only a part of the salient region in the query

exists in the key. In such scenarios, we consider all the re-

gions in the query that correspond to the salient regions in

key. See example in Fig. 3, where the two crops contain

varying extent of the sheep. In such cases, the saliency map

corresponding to the query would contain all regions in the

query that contain the sheep. Qualitative examples show-

ing how our random crops differ from regular random crops

used by self-supervised learning methods can be found in

the Appendix. As described next, we use these saliency

maps to supervise where networks attend to.

3.2. Computing Network Importance

We define network importance as the importance placed

by the encoder network, fq on the spatial regions of the

query, xq , in order to predict that the query representa-

tion is closest to the representation of the key xk, as com-

pared to all the representations present in the queue. To

compute network importance, we extend Grad-CAM [22]

to contrastively-trained models.

To obtain Grad-CAM, we first forward-propagate the

query crop xq to query encoder fq (see blue encoder box

in Fig. 3). The key is then masked with the correspond-

ing saliency map to obtain the salient regions in the key

crop (see the bottom part of Fig. 3). This masked key,

xk
m = xk ∗Mk, is then fed to the key encoder (see green en-

coder box in Fig. 3), fk. Following MoCo, we dot-product

the query representation, q = fq(x
q), with the masked key

crop representation km+ = fk(x
k ∗ Mk), and each of the

other representations in the dynamic queue, and concatenate

them. We then one-hot encode the dot-product for the cor-

rect key and compute its gradients (shown as blue backward
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Figure 3: Contrastive Attention-Supervised Tuning (CAST): Given an image (top-left), we compute a saliency map

(bottom-left), which we use to generate query and key crops and their corresponding saliency maps. We obtain the query

and key feature representations with a forward-pass through the encoder network (blue box) and momentum encoder, re-

spectively. Through the contrastive loss, we pull the representations of query and key crop together, while pushing the query

representation away from other representations in a dynamic queue. We pass the salient regions in the key crop through the

same momentum encoder, and compute the dot product between query and masked key representation. We then compute its

gradient with respect to the last encoder convolution layer and weigh the forward activation maps to get Grad-CAM map.

Finally, we add an attention loss that encourages Grad-CAM to look at all the salient image regions in the query crop.

arrow in Fig. 3) w.r.t. last convolutional layer activations of

the encoder network, A
fq
conv5, as,

αq =

global pooling
︷︸︸︷
∑

i,j

∂q · km+

∂A
fq
conv5

︸ ︷︷ ︸

gradients via backprop

(1)

As in Grad-CAM [22], the αq values indicate the im-

portance of each of the last convolutional layer neurons, n,

in the encoder network for matching the query and masked

key representation. To get the regions represented by these

important convolutional neurons, we use αq to perform a

weighted combination of forward activation maps corre-

sponding to query, A
fq
conv5, followed by a ReLU to obtain,

Gq = ReLU

(
∑

n

αqA
fq

conv5

)

︸ ︷︷ ︸

linear combination

(2)

The higher values in the resulting Grad-CAM map

(Fig. 3 top-right) indicates query regions which the network

relies on when mapping the masked key regions, xk ∗Mk,

to the entire query crop, xq . These heatmaps form the basis

for enforcing attention supervision, which we explain next.

3.3. CAST Loss

The CAST loss consists of two components: 1. a Con-

trastive loss, Lcont from [12], that measures the similarities

of original sample pairs (xq and xk) in the representation

space (yellow circle in Fig. 3), and 2. an Attention loss,

Latt, that measures the similarity of Grad-CAM heatmap to

its corresponding saliency map, Mq (purple box in Fig. 3).

Lcont is defined as

Lcont = −log
exp (q · k+/τ)

∑K

i=0 exp (q · ki/τ)
(3)

where K denotes the number of representations in the queue

and τ is the temperature hyperparameter.

As network importances (from above) are gradient

based, we penalize errors in the predicted Grad-CAM map,

Gq based on cosine distance—emphasizing alignment over

magnitude (see the top box in Fig. 3). We minimize the

cosine distance loss as,

Latt = 1−
Gq ·Mq

‖Gq‖ ‖Mq‖
(4)

The final Contrastive Attention-Supervised Tuning loss

becomes LCAST = Lcont + λLatt

The second term encourages the network to base predic-

tions on the correct regions and the first term encourages

the network to actually make the right prediction. Note that

A
fq
conv5 is a function of all the encoder parameters until last

convolution layer and αq is a function of the layers from

the last convolutional layer until the final fully-connected

layer, and the key encoder features. The keys, k and km,

are detached from the key encoder, and therefore gradients

do not get passed through them. Hence, while Grad-CAM

is a function of both the query and the key encoder weights,

during the update through an optimization algorithm, only

411061



Method

VOC07 clf. IN-1k clf. PASCAL VOC Detection COCO Instance Segmentation

mAP Top-1 acc. APbbox
all

APbbox
50

APbbox
75

APbbox
all

APbbox
50

APbbox
75

APmask
all

APmask
50

APmask
75

1) Random Init – – 33.8 60.2 33.1 36.7 56.7 40.0 33.7 53.8 35.9

2) ImageNet Fully Sup – – 53.5 81.3 59.1 38.9 59.6 42.7 35.4 56.5 38.1

3) COCO Fully Sup 86.2 46.4 50.9 79.2 54.7 40.3 61.3 43.7 36.5 58.1 39.1

4) MoCo-COCO 67.5 46.5 47.5 75.4 51.5 38.3 58.7 41.5 34.9 55.7 37.2

5) + Constrained Crop 71.1+3.6 46.0
−0.5 49.0+1.5 77.4+2.0 52.4+0.9 38.3+0.0 58.7+0.0 41.6+0.1 34.8

−0.1 55.7+0.0 37.2+0.0

6) + CAST 74.0+7.0 48.7+2.1 54.2+6.7 80.1+4.7 59.9+8.4 39.4+1.1 60.0+1.3 42.8+1.3 35.8+0.9 57.1+1.4 38.6+1.4

Table 1: Transfer Learning on Downstream Tasks: We report results on four downstream tasks. For every task, all methods

use the same architecture and learning setup. VOC07 and IN-1k use frozen feature extractor, COCO Instance Segmentation

and PASCAL VOC Detection involve end-to-end fine-tuning. Gaps with MoCo-COCO are shown on the side (differences

≥ 0.5 are colored). We observe that training with CAST outperforms all baselines by a huge margin on all downstream tasks.

the query encoder weights are updated. In MoCo, since the

key encoder is a moving average of the query encoder, the

key encoder weights get updated eventually during training.

4. Evaluation

In our experiments, we aim to show that training self-

supervised models with localization supervision offers two

benefits—better visual grounding ability, and better transfer

learning performance. We pretrain MoCo [12] with CAST

on images from the COCO dataset [20], and then evaluate

the transfer performance and grounding ability of learned

features on multiple downstream tasks.

4.1. Transfer Learning on Downstream Tasks

First, we evaluate the quality of the learned features

by transferring them to four downstream visual recogni-

tion tasks: (a) PASCAL VOC [60] linear classification,

(b) ImageNet-1k [2, 61] linear classification, (c) PASCAL

VOC object detection, (d) COCO [20] instance segmenta-

tion. Consistent with prior SSL research, our downstream

tasks involve learning setups where the pretrained network

is used as either a frozen feature extractor (a, b), or weight

initialization for fine-tuning (c, d).

Baselines: We compare MoCo-COCO + CAST with base-

line methods to show the importance of different compo-

nents of our algorithm:

1. Random Init uses no pretrained visual features.

2. MoCo-COCO, without CAST attention loss (λ = 0)

and constrained random cropping (φ = 0).

3. MoCo-COCO + Constrained Crop, without CAST at-

tention loss, to observe gains from better cropping alone.

For all tasks, we follow the same hyperparameters as Vir-

Tex [18], using its publicly available code 1. VirTex uses a

similar evaluation setup as the majority of recent work on

self-supervised learning [11–14, 62], including our primary

baseline, MoCo. We describe the main details here.

PASCAL VOC Linear Classification: We train on VOC07

1Code available at: https://github.com/kdexd/virtex

trainval split and report mAP on test split. We ex-

tract the 7 × 7 spatial grid of 2048-dimensional features

from the last convolutional layer, and downsample them

to 2 × 2 grid via adaptive average pooling. Then, we

flatten and L2-normalize these features to yield 8192-

dimensional features. We train per-class SVMs for costs

C ∈ {0.01, 0.1, 1.0, 10.0}, and select best C by 3-fold cross

validation. Other SVM hyperparameters are same as [18].

ImageNet-1k Linear Classification: We train on ILSVRC

2012 train split and report top-1 center crop accuracy on

the val split. We train a linear layer on 2048-dimensional

global average pooled features extracted from the network.

We train for 100 epochs using SGD with momentum 0.9,

weight decay 0, and with batch size 256 distributed across 8

Nvidia V100 GPUs. Similar to MoCo, we start with learn-

ing rate 30, and divide it by 10 at epochs 60 and 80.

PASCAL VOC Object Detection: We train Faster R-

CNN [4] with ResNet-50-C4 backbone. We initialize this

backbone with pretrained weights, train on trainval07+12

split, and evaluate on test2007 split. We train for 24K iter-

ations using SGD with momentum 0.9, batch size 16 (2 per

GPU), and weight decay 10−4. We use maximum learning

rate 0.02, perform linear warmup for first 100 iterations, and

divide it by 10 at iterations 18K and 22K. We fine-tune the

network end-to-end, with batch normalization layers syn-

chronized across GPUs (SyncBN) [63].

COCO Instance Segmentation: We train Mask R-

CNN [6] models with ResNet-50-FPN backbones [64] on

train2017 split, and evaluate on val2017 split. We follow

2× training schedule implemented in Detectron2 [65], and

fine-tune with SyncBN in the backbone and FPN layers.

Results: We summarize our results in Table 1. MoCo +

CAST outperforms MoCo on all downstream tasks, obtain-

ing robust gains on classification, detection, and instance

segmentation. The performance improvement is especially

large on the VOC detection task, aided by the improved

visual grounding in models trained with CAST. We also

find that our unsupervised saliency-constrained cropping

alone outperforms MoCo on VOC07 and VOC-Detection,

511062
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Area threshold φ = 0.2 φ = 0.0

VOC07 74.0 73.3
−0.7

IN-1k 48.7 47.4
−1.3

(a) Effect of Area threshold φ (Fixing λ = 3.0)

Loss weighing factor λ = 0.0 λ = 1.0 λ = 3.0 λ = 5.0

VOC07 71.1 74.0+2.9 74.0+2.9 73.3+2.2

IN-1k 46.5 48.7+2.2 48.7+2.2 47.6+1.1

(b) Effect of loss weighing factor λ (Fixing φ = 0.2)

MoCo Projection Layer 1-layer Linear 2-layer MLP

VOC07 74.0 74.3+0.3

IN-1k 48.7 50.1+1.4

(c) Effect of improving underlying MoCo-COCO

Supervision

VOC07 IN-1k PASCAL VOC Detection

mAP Top-1 APbbox
all

APbbox
50

APbbox
75

Query 74.0 48.7 54.2 80.1 59.9

Intersection 72.0
−2.0 49.4 +0.7 53.3

−0.9 79.7
−0.4 59.0

−0.9

(d) Effect of suppressing saliency supervision

Table 2: Ablations for MoCo-COCO + CAST training:

We conduct ablation studies to isolate the effects of our

training components. (a) Replacing saliency-constrained

random cropping with default version from MoCo (φ =
0.0) hurts performance. (b) Increasing weight of CAST

loss generally improves performance up to a point (λ =
1.0, 3.0). (c) Adding known improvements to underlying

MoCo model (MLP layer) also transfer to CAST. (d) Re-

stricting attention supervision to only the intersection of

query and key hurts downstream performance.

and gets close to MoCo performance on Imagenet-1k and

COCO instance segmentation tasks.

4.2. Ablation Studies

Next, we conduct ablation studies on our training setup

to isolate the effect of our design decisions. In all these

comparisons, we treat MoCo-COCO with CAST trained

with default hyperparameters as our base model. We

mainly observe downstream performance of all ablations on

VOC07 and IN-1k linear classification setups.

Effect of area threshold φ: We use area-overlap based con-

straints conditioned on saliency maps for sampling random

crops, specifying them via an area threshold hyperparame-

ter φ. Here, we quantify the downstream performance im-

provement due to better training supervision from strate-

gically sampled crops—we train a model with φ = 0.0
to recover the default random crop used in MoCo. Re-

sults are in Table 2a, we observe that removing saliency-

constrained random cropping hurts performance, indicating

that our saliency-constrained random cropping technique

indeed provides better training signal.

Figure 4: We evaluate CAST using the Backgrounds

Challenge [23] dataset designed to evaluate background-

robustness of models. FG = Foreground, BG = background.

Foreground-background combinations include: Only-BG-B

(FG: Black, BG: Unmodified), Only-BG-T (FG: Tiled back-

ground, BG: Unmodified), Mixed-Same (FG: Unmodified,

BG: Random BG of the same class), Mixed-Rand (FG: Un-

modified, BG: Random BG of a random class), and Mixed-

Next (FG: Unmodified, BG: Random BG of the next class.)

Effect of loss weighing factor λ: As described in Sec-

tion 3.3, the CAST loss is a linear combination of con-

trastive and attention losses. We combine them through

a weighted sum, and use λ to scale the attention loss.

Here, we experiment with different values of λ with λ ∈
{0.0, 1.0, 3.0, 5.0}. Note that λ = 0.0 means MoCo-COCO

+ Constrained Crop (Table 1, row 2). Results from Table 2b

show that non-zero values of λ outperform λ = 0.0, indi-

cating that attention loss is important in CAST. Higher λ
improve performance up to a point—performance improves

with λ = 1.0, 3.0, and slightly degrades with λ = 5.0.

Effect of improving underlying MoCo-COCO: CAST is

a general purpose method that can be added to contrastive

SSL methods to improve their visual grounding. Here, we

investigate whether improving the underlying SSL method

also shows improvements when trained with CAST. We

consider MoCo-v2 variant [38], replacing the linear pro-

jection with an MLP, inspired by SimCLR [10]. Results

from Table 2c show that MoCo-MLP + CAST matches or

exceeds MoCo-COCO + CAST on downstream tasks, indi-

cating that CAST can provide additive improvements over

its underlying SSL method.

Effect of suppressing saliency supervision: We believe

that focusing on salient image regions is important to im-

prove visual grounding. Hence, we force the model to fo-

cus on all the salient regions inside query crop. In contrast

to our proposed approach, we train MoCo-COCO + CAST

with reduced supervision in this ablation study, enforcing

the model to only look at salient regions inside the inter-

section of query and key crops. Results from Table 2d show

that excluding some salient regions from the query crop (ly-

ing outside the intersection) significantly hurts downstream

performance on multiple tasks. This indicates that looking
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MoCo-COCO

Performance

Backgrounds Challenge Setting

Original Mixed-Same Mixed-Rand Mixed-Next Only-FG No-FG Only-BG-B Only-BG-T

Default 72.62 45.75 30.44 26.86 30.42 23.95 5.06 12.62

+ Constrained-Crop 74.79+2.17 52.64+6.89 39.14 +8.70 34.17+7.31 33.73+3.31 22.74
−1.21 4.10

−0.96 11.88
−0.74

+ CAST 77.33+4.71 54.42+8.67 39.93+9.49 37.46+10.60 43.26+12.84 23.70
−0.15 4.40

−0.66 12.59
−0.03

Table 3: CAST obtains large improvements over MoCo on the Backgrounds Challenge, a 9-class image classification dataset

containing foreground objects superimposed on various background types. In settings where the foreground is present

(columns 1-5), CAST’s visual grounding ability leads to substantial performance gains. When foreground is absent (columns

6-8), CAST performs slightly worse, validating that CAST-trained models learn fewer background correlations.

Figure 5: CAST improves visual grounding of the contrastive self-supervised feature encoder. Column (d) shows the saliency

map according to the query crop (b). Grad-CAM visualizations in columns (e, f) show the query regions that MoCo and

MoCo + CAST models rely on, in order to match the key crop (c). Finally, the MoCo and MoCo + CAST models rely on

query regions (h) and (i) to match with the masked key representation (g). The example in top row shows that MoCo also

looks at the sky in the background to match the masked key to the tower image in the query, indicating it has learnt spurious

correlations. In contrast, the MoCo + CAST model looks just at the salient tower region. Similar trends are seen in the second

row. In the third row, where there are two women in the foreground, the two crops contain different women. The MoCo +

CAST model is able to localize the woman in black when matching the woman in white (see masked key), indicating that it

has learned semantic category-specific representations. The baseline MoCo model looks primarily at the background regions.

beyond the common visual content between two crops to

solve instance discrimination yields better visual features.

4.3. Evaluation on Backgrounds Challenge Dataset

The Backgrounds Challenge [23] aims to assess the

background-robustness of image classification models by

measuring their accuracy on images containing foreground

objects superimposed on various background types (see

[23] for details on dataset construction). The dataset

consists of 9 ImageNet classes with 450 test images per

class. The evaluations are performed on eight foreground-

background combinations summarized in Figure 4. Since

CAST forces a model to attend to salient objects during

training, we expect a CAST-trained model to be less de-

pendent on background correlations for classification.

We evaluate the performance of COCO-pretrained mod-

els on the Backgrounds Challenge using a linear layer

trained with ImageNet-1K (as described in Section 4.1) us-

ing three settings: 1. MoCo, 2. MoCo trained with saliency-

constrained random cropping alone, 3. MoCo trained with

CAST (Table 3). Models trained with cropping constrains

and with CAST outperform vanilla MoCo on all eight set-

tings of the Backgrounds Challenge, with CAST obtain-

ing the best performance on the five settings where fore-

ground is present. In the Only-FG setting, where back-

ground is set to black, CAST obtains an absolute improve-

ment of 13% over MoCo, indicating that CAST is signif-

icantly better at utilizing the foreground information, due

to the saliency-driven attention-supervised training. In set-

tings where background is swapped (Mixed-Same, Mixed-

Rand, and Mixed-Next), CAST obtains 5-10% absolute im-
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(a) (b)

(c) (d)

Figure 6: Training with CAST also leads to improvements in grounding in downstream tasks. In this comparison of Grad-

CAM attention maps from a fully supervised network and the self-supervised networks (MoCo and MoCo + CAST) on

Imagenet-1k, we find that MoCo + CAST models tend to rely less on spurious correlations. (a) The MoCo + CAST model

looks just at the player, whereas both fully supervised model and MoCo rely on the regions corresponding to the baseball

field. (c) The MoCo + CAST model looks only at the lamp, while other models also rely on the table below. (b, d) The MoCo

+ CAST model is much more precise at attending to the whole extent of the object of interest as compared to other methods.

Figure 7: CAST shows quantitative improvement in

grounding for contrastive self-supervised models. The dis-

tinct rightward shift in the green curve corresponding to the

MoCo + CAST model shows that the gradient-based local-

ization supervision loss significantly improves grounding.

provements, indicating that models trained with CAST are

less dependent on background correlations. Finally, in set-

tings that do not contain foreground objects (No-FG, Only-

BG-B, and Only-BG-T), CAST performs slightly worse

than the original model, as we would expect from a model

that has learnt to rely less on the background signal in mak-

ing classification decisions. Qualitative examples showing

how CAST makes downstream models rely less on spurious

background correlations can be found in Appendix.

4.4. Evaluating Visual Grounding

We use Grad-CAM for qualitative and quantitative eval-

uation of the visual grounding ability of a contrastive SSL

model trained with CAST and its effect on grounding in

downstream tasks. Examples in Fig. 5 show that the CAST-

trained model seems to learn semantic category-specific

feature representations, which allows it to look at objects

of interest while performing query-key matching, and avoid

learning spurious correlations. We quantify the improve-

ment in grounding due to CAST using the COCO val split.

First, we binarize the Grad-CAM maps by thresholding at

0.5. We then compute the intersection over union (IoU)

between the Grad-CAM map and the saliency map corre-

sponding to the query image. Fig. 7 shows the density of

IoU values for the baseline MoCo-COCO, MoCO-COCO

with constrained cropping and MoCO-COCO with CAST.

The mean IoU of the MoCo model trained with CAST over

the COCO val set is 0.41, substantially larger than the mean

IoU of the model trained without CAST, which is 0.24.

Moreover, the improvement in grounding ability is largely

driven by the gradient-based localization supervision loss,

as the mean IoU of a model trained with saliency-driven

cropping constraints alone is also 0.24.

Examples in Fig. 6 shows how the improved grounding

during pre-training translates to improved grounding in the

downstream task of Imagenet linear classification. As seen

in Fig. 6 (a,c), the MoCo-COCO+CAST model relies less

on spurious background correlations — relying mostly on

the player to predict Ball Player and the lamp to predict Ta-

ble Lamp. Fig. 6 (b,d) show that models pretrained with

CAST learn to look at the whole extent of the object of in-

terest as compared to other methods.

5. Conclusion

We introduced a method for visually grounding con-

trastive self-supervised learning models, which improves

feature representations learnt from scene images. These

feature representations are also less reliant on background

correlations as compared to those trained with contrastive

learning alone, which can lead to better out-of-distribution

performance and greater robustness to contextual bias and

adversarial backgrounds. We hope that our method leads

to development of more general-purpose and robust self-

supervised methods that learn from noisy, unconstrained,

real-world image data from the web.
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