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Abstract

This paper addresses the problem of 3D human body

shape and pose estimation from RGB images. Recent

progress in this field has focused on single images, video

or multi-view images as inputs. In contrast, we propose a

new task: shape and pose estimation from a group of multi-

ple images of a human subject, without constraints on sub-

ject pose, camera viewpoint or background conditions be-

tween images in the group. Our solution to this task predicts

distributions over SMPL body shape and pose parameters

conditioned on the input images in the group. We proba-

bilistically combine predicted body shape distributions from

each image to obtain a final multi-image shape prediction.

We show that the additional body shape information present

in multi-image input groups improves 3D human shape es-

timation metrics compared to single-image inputs on the

SSP-3D dataset and a private dataset of tape-measured hu-

mans. In addition, predicting distributions over 3D bodies

allows us to quantify pose prediction uncertainty, which is

useful when faced with challenging input images with sig-

nificant occlusion. Our method demonstrates meaningful

pose uncertainty on the 3DPW dataset and is competitive

with the state-of-the-art in terms of pose estimation metrics.

1. Introduction

3D human body shape and pose estimation from RGB

images is a challenging problem with potential applications

in augmented and virtual reality, healthcare and fitness tech-

nology and virtual retail. Recent solutions have focused on

three types of inputs: i) single images [7, 48, 19, 27, 28,

57, 36, 45, 38, 41, 50], ii) video [26, 20, 47, 40, 16] with

temporal constraints on pose, camera viewpoint and back-

ground conditions and iii) multi-view images [32, 46] with

a fixed subject pose captured from multiple viewpoints. In

contrast, we aim to estimate 3D body shape and pose from

a group of images of the same human subject without any

constraints on the subject’s pose, camera viewpoint or back-

Figure 1: Example shape and pose predictions from a group

of input images. Probabilistic shape combination results in

a more accurate body shape estimate than both individual

single-image predictions (visualised here from SPIN [27]

and STRAPS [45]) and naively-averaged single-image pre-

dictions, as our experiments show in Section 5.

ground conditions between the images, as illustrated in Fig-

ure 1. This task is motivated by the intuition that multiple

images of the same subject should contain additional visual

information about their body shape compared to a single im-

age, regardless of whether the subject’s pose or surrounding

environment change between images. A suitable shape and

pose estimator should leverage this information to improve

shape prediction accuracy over single-image methods.

We present a probabilistic body shape and pose estima-

tion method from a group of unconstrained images of the

same subject. Inference occurs in three stages (see Figure

2). First, we predict a proxy representation from each in-

put image in the group, consisting of the subject’s silhouette

and 2D joint location heatmaps, using off-the-shelf segmen-

tation and 2D keypoint detection CNNs [14, 13, 25, 53].

Then, each proxy representation is passed through a 3D

distribution prediction network that outputs a probability

distribution over SMPL [33] body shape and pose pa-

rameters conditioned on the input representation. Lastly,

body shape distributions from each input image are prob-
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abilistically combined to procure a final shape prediction.

This yields a better estimate of the subject’s body shape

than current single-image body shape and pose estimators

[19, 27, 28, 57, 45], which may be inaccurate or inconsis-

tent, as shown in Figure 1.

Moreover, most single-image body model parameter re-

gressors [19, 27, 38, 57, 45, 54, 10] do not consider the un-

certainty associated with each pose parameter estimate. If

certain body parts are occluded or out-of-frame in the input

image, the estimator can only guess about the pose parame-

ters corresponding to these body parts. Such situations fur-

ther motivate our approach of predicting a distribution over

body pose, since the variance of the distribution quantifies

the uncertainty associated with each pose parameter predic-

tion, as shown in Figures 3 and 4.

Training body model parameter regressors to accurately

predict body shape is challenging due to the lack of suitable

training datasets of in-the-wild images paired with accurate

and diverse body shape labels. Collecting such data is prac-

tically difficult, particularly for our proposed task of shape

estimation from a group of unconstrained images. Recent

works [45, 46, 51] propose using synthetic input-label pairs

to overcome the lack of suitable training datasets. We adopt

the same synthetic training approach as STRAPS [45] to

train our 3D distribution prediction network, but extend the

data augmentations used to bridge the gap between syn-

thetic and real inputs. In particular, our synthetic training

data better models occluded and out-of-frame body parts

in silhouettes and joints such that the domain gap to real

occluded data is smaller. This allows our method to es-

timate pose prediction uncertainty and also results in im-

proved single-input pose prediction metrics on challenging

evaluation datasets, such as 3DPW [52].

In summary, our main contributions are as follows:

• We propose a novel task: predicting body shape from

a group of images of the same human subject, with-

out imposing any constraints on subject pose, camera

viewpoint or backgrounds between the images.

• We present a solution to the proposed task which pre-

dicts a distribution over 3D human body shape and

pose parameters conditioned on the input images in the

group. Body shape distributions from each image are

probabilistically combined to yield a final body shape

estimate which leverages multi-image shape informa-

tion, resulting in a more accurate body shape estimate

compared to single-input methods.

• To the best of our knowledge, our method is the

first to output uncertainties alongside associated SMPL

[33] shape and pose parameter predictions, which are

shown to be useful when input images contain oc-

cluded or out-of-frame body parts.

• We extend the synthetic training framework introduced

by [45] to better model occlusion and missing body

parts, allowing our synthetically-trained distribution

prediction neural network to yield better 3D shape and

pose metrics.

2. Related Work

This section discusses recent approaches to 3D human

shape and pose estimation from single images, multi-view

images and video.

Single-image shape and pose estimation methods can

be classified into 2 categories: optimisation-based and

learning-based. Optimisation-based methods fit a paramet-

ric 3D body model [33, 39, 2, 18] to 2D observations (e.g.

2D joints [7, 39], surface landmarks [30], silhouettes [30]

or part segmentations [55]) via optimisation. They can ac-

curately estimate 3D poses without requiring expensive 3D-

labelled datasets, however they are susceptible to poor ini-

tialisation and tend to be slow at test-time.

Learning-based methods can be further classified as

model-free or model-based. Model-free approaches directly

predict a 3D body representation from an image, such as a

voxel occupancy grid [50], vertex mesh [28, 36, 56] or im-

plicit surface representation [44]. Model-based approaches

[19, 57, 38, 41, 48, 10, 12] predict the parameters of a 3D

body model [33, 39, 2, 18], which provides a useful prior

over human body shape. Several methods [19, 28, 12, 54]

overcome the scarcity of in-the-wild 3D-labelled training

data by incorporating weak supervision with datasets of la-

belled 2D keypoints. [27] extends this further by integrating

optimisation into the model training loop to lift 2D keypoint

labels to self-improving 3D pose and shape labels. Such

approaches predict impressive 3D poses but fail to predict

accurate body shapes (particularly for non-average humans)

since 2D keypoints do not densely inform shape. Recently,

[45] used random synthetic training data to overcome data

scarcity and demonstrated improved shape predictions.

Video shape and pose estimation methods may be

classified similarly to their single-image counterparts.

Optimisation-based video methods [3, 16, 1] extend single-

image optimisation over time, while learning-based video

methods [20, 26, 47, 49, 40] modify single-image predictors

to take sequences of frames as inputs. However, video in-

puts allow these methods to enforce consistent body shapes

and smooth motions across frames, e.g. using motion dis-

criminators [11], optical flow [1, 49], or texture consistency

[40]. Learning-based video methods also overcome 3D data

scarcity by incorporating weak 2D supervision [26, 20], or

with self-supervision enforcing visual consistency between

frames [49, 40, 1]. Nevertheless, current methods are un-

able to predict accurate body shapes, particularly for non-

average humans.

Multi-view shape and pose estimation. [32] extends the
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Figure 2: Overview of our shape and pose distribution prediction network. Each image In in the input group is converted

into a silhouette and joint proxy representation Xn, which is passed through a distribution prediction network to obtain mul-

tivariate distributions over SMPL [33] shape and pose parameters, β and θn, conditioned on the input. Shape distributions

from each individual input are probabilistically combined to form a multi-input shape distribution. The encoder and distri-

bution MLP are trained using randomly-generated synthetic data [45]. The per-vertex uncertainty visualisations (in cm) are

obtained by sampling SMPL parameters from the predicted distributions, computing the SMPL vertex mesh for each sample

and determining the average Euclidean distance from the mean for each vertex. Black dots indicate left hands.

iterative regressor of [19] to predict body model parame-

ters from multiple input images of the same subject in a

fixed pose, captured from varying camera angles. They use

synthetic data to overcome data scarcity, resulting in more

accurate body shape estimates, particularly under clothing.

[46] uses synthetic data to learn to predict body model pa-

rameters from A-pose silhouettes.

Contrary to the above approaches, our method estimates

shape and pose from a group of images without any tem-

poral or absolute constraints on the subject’s pose, camera

viewpoint or background between images.

Shape and pose distribution estimation. While substan-

tial progress has been made in predicting probability distri-

butions using neural networks [4, 37, 6, 22, 43, 42, 31, 35],

prediction of distributions over 3D human shape and pose

is still under-explored. Recently, [36] used lixel-based 1D

heatmaps to quantify uncertainty in predicted 3D human

mesh vertex locations. [5] predicted a categorical distribu-

tion over multiple SMPL hypotheses given an ambiguous

image. In contrast, we aim to explicitly output separable

uncertainties per predicted pose and shape parameter, since

the shape uncertainties, specifically, are used for shape pre-

diction from multiple unconstrained images.

3. Method

This section provides a brief overview of the SMPL para-

metric human body model [33], presents our three-stage

method for probabilistic body shape and pose estimation

from a group of unconstrained images of the same human

subject (illustrated in Figure 2) and finally discusses the

synthetic training framework and loss functions used.

3.1. SMPL model

SMPL [33] provides a differentiable function

M(θ,β,γ) which takes pose parameters θ, global

rotation γ and identity-dependent body shape parameters β

as inputs and outputs a vertex mesh V ∈ R
6890×3. θ ∈ R

69

and γ ∈ R
3 represent axis-angle rotation vectors for 23

SMPL body joints and the root joint respectively. β ∈ R
10

represents coefficients of a PCA body shape basis. Given

the vertex mesh V, 3D joint locations may be obtained

using a linear regressor, J3D = JV where J ∈ R
L×6890

is a regression matrix for L joints of interest.

3.2. Proxy representation computation

Given a group of N RGB input images {In}
N
n=1 of

the same subject, we first compute proxy representations

{Xn}
N
n=1. DensePose [13] is used to obtain body part seg-

mentations, which are converted into silhouettes. Keypoint-

RCNN from Detectron2 [14, 53] is used to obtain 2D joint

locations, which are converted into Gaussian heatmaps, and

associated confidence scores. Heatmaps corresponding to

joint detections with confidence scores less than a thresh-

old t = 0.025 are set to 0. Thresholding is essential for

modelling uncertainty in 3D pose predictions as it typically

removes invisible 2D joints from the input representations.

The predicted silhouette and joint heatmaps from each im-

age are stacked along the channel dimension to form each

proxy representation Xn ∈ R
H×W×(L+1).

The use of silhouette and joint heatmap representations
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as inputs instead of RGB images is inspired by [41, 45] and

allows us to train our distribution prediction network us-

ing a simple synthetic training framework (see Section 3.5),

overcoming the lack of shape diversity in current datasets.

We follow [45] and use simple silhouettes and 2D joint

heatmaps as our proxy representation, instead of more com-

plex alternatives (e.g. part segmentations or IUV maps),

since this leads to a smaller synthetic-to-real domain gap

which is more readily bridged by data augmentation [45].

3.3. Body shape and pose distribution prediction

We aim to estimate probability distributions [37] over

SMPL pose parameters {θn}
N
n=1 (which are free to change

between inputs) and the subject’s identity-dependent shape

β, both conditional upon {Xn}
N
n=1. We assume simple

multivariate Gaussian distributions

p(θn|Xn) = N (θn;µθ(Xn),Σθ(Xn))

p(β|Xn) = N (β;µβ(Xn),Σβ(Xn)).
(1)

Covariance matrices are constrained to be diagonal, i.e.

Σθ(Xn) = diag(σ2
θ(Xn)) and Σβ(Xn) = diag(σ2

β(Xn)).

Formally, σ2
θ(Xn) and σ2

β(Xn) represent estimates of the

heteroscedastic aleatoric uncertainty [9, 22] in the SMPL

parameters explaining the input observations Xn, which

arises particularly due to occlusion.

We also predict deterministic estimates of the global ro-

tations {γn}
N
n=1 and weak-perspective camera parameters

{cn}
N
n=1, where cn = [sn, t

x
n, t

y
n] representing scale and xy

translation respectively. Global rotation and camera param-

eters are unconstrained across images.

Hence, we require a function mapping each input proxy

representation Xn to the desired set of outputs Y(Xn) =
{µθ,µβ ,σ

2
θ,σ

2
β ,γn, cn}. This function is represented us-

ing a deep neural network f with learnable weights W:

Y = f(Xn;W). (2)

f consists of a convolutional encoder for feature extraction

followed by a simple multi-layer perceptron that predicts

the set of outputs Y, as illustrated in Figure 2. The network

training procedure is detailed in Section 3.5.

3.4. Body shape combination

We combine the conditional body shape distributions

output by f given each individual input, p(β|Xn) for n =
1, ..., N , into a final distribution p(β|{Xn}

N
n=1) that aggre-

gates shape information across the input group. Formally,

p(β|{Xn}
N
n=1) ∝

N
∏

n=1

p(β|Xn) (3)

which follows from the conditional independence assump-

tion (Xi ⊥⊥ Xj)|β for i, j ∈ {1, ..., N} and i 6= j. This is

justifiable since we do not impose any relationship between

Figure 3: Clean and corrupted versions of an example group

of inputs from our synthetic evaluation dataset, and corre-

sponding (single-image) shape and pose distribution predic-

tions. Black dots indicate left hands.

the subject’s pose or camera viewpoint across inputs - only

the body shape is fixed. Further details are in the supp. ma-

terial. Since the product of Gaussians is an un-normalised

Gaussian, p(β|{Xn}
N
n=1) ∝ N (β;m,S) where

S =

( N
∑

n=1

Σ
−1
β (Xn)

)

−1

m = S

( N
∑

n=1

Σ
−1
β (Xn)µβ(Xn)

)

.

(4)

The combined mean m is a final point estimate of the sub-

ject’s body shape from the input group {Xn}
N
n=1.

3.5. Network training

Loss functions. While inference occurs using a group of in-

puts, the model is trained with a dataset of individual input-

label pairs, {Xk, {θk,βk,γk}}
K
k=1, with K i.i.d training

samples. The negative log-likelihood is given by

LNLL = −
K
∑

k=1

(

log p(θk|Xk) + log p(βk|Xk)

)

∝
K
∑

k=1

( 69
∑

i=1

log(2πσ2
θi
) +

(θki
− µθi)

2

σ2
θi

+
10
∑

j=1

log(2πσ2
βj
) +

(βkj
− µβj

)2

σ2
βj

)

(5)
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Figure 4: Predictions on single images from 3DPW [52].

3D locations of invisible parts are uncertain due to large

predicted variances for the corresponding pose parameters.

where µθi , µβi
, σ2

θi
and σ2

βi
represent elements of the

predicted SMPL mean and variance vectors µθ(Xk,W),
µβ(Xk,W), σ2

θ(Xk,W) and σ2
β(Xk,W), which are out-

put by the neural network f with weights W. We max-

imise the log-likelihood of the model w.r.t W by minimis-

ing the loss function LNLL. Intuitively, each squared error

term in Eqn. 5 is adaptively-weighted by the correspond-

ing predicted variance [22]. This mitigates the ill-posed

nature of a naive squared error loss on SMPL parameters

when training inputs are occluded, since the network learns

to predict large variances for the parameters corresponding

to invisible body parts, thus down-weighting the respec-

tive squared error terms. Furthermore, adaptive weighting

means that our network is able to train stably without ad-

ditional “global” losses on 3D vertices or 3D joints, as is

common in most other recent methods [45, 41, 27, 19, 57].

Our network also predicts deterministic estimates of the

global rotations γk. Predictions γ̂k are supervised by

Lglob =

K
∑

k=1

‖R(γk)−R(γ̂k)‖
2
F . (6)

Figure 5: Example predictions on groups of images from

SSP-3D [45]. Single-image predictions from SPIN [27],

STRAPS [45] and our method are visualised, along with

probabilistically combined body shapes from our method.

R(γ) ∈ SO(3) is the rotation matrix corresponding to γ.

Finally, our network estimates weak-perspective cam-

era parameters ck = [sk, t
x
k, t

y
k], which are supervised us-

ing a 2D joint reprojection loss. Target 2D joint coordi-

nates Jk ∈ R
L×2 are computed from {θk,βk,γk} during

synthetic data generation (see Section 3.5). Predicted 2D

joint coordinates are obtained by first differentiably sam-

pling θ̂
i

k ∼ p(θk|Xk) and β̂
i

k ∼ p(βk|Xk) using the re-

parameterisation trick [24], for i = 1, ..., B samples. These

are converted into 2D joint samples using the SMPL model

and weak-perspective projection

Ĵ
i
k = skΠ(JM(θ̂

i

k, β̂
i

k, γ̂k)) + [txk, t
y
k] (7)

where Π() represents an orthographic projection. A squared

error reprojection loss is imposed between the predicted 2D

joint samples and the target 2D joints

L2D =

K
∑

k=1

B
∑

i=1

‖ωk(Jk − Ĵ
i
k)‖

2
2 (8)

where ωk ∈ {0, 1}L denote the visibilities of the target

joints (1 if visible, 0 otherwise), which are computed dur-

ing synthetic data generation. We apply a reprojection loss
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on samples from the predicted body shape and pose distri-

butions, instead of only on the means of the distributions,

because any 3D body sampled from the distributions must

match the 2D joint locations present in the input Xk.

Our overall loss function is given by L = LNLL +
λglobLglob + λ2DL2D where λglob, λ2D are weighting terms.

Synthetic data generation. To train our distribution pre-

diction network using the proposed losses, we require train-

ing data consisting of input proxy representations paired

with target SMPL shape, pose and global rotation param-

eters, {Xk, {θk,βk,γk}}
K
k=1. We employ a similar syn-

thetic training data generation process as [45]. In short,

within each iteration of the training loop, θk and γk are

sampled from any suitable dataset with SMPL pose parame-

ters [17, 30, 34, 52], while βk are randomly sampled from a

suitably high-variance Gaussian distribution to ensure body

shape diversity. These are converted into synthetic silhou-

ette and joint heatmap representations Xk and target 2D

joint coordinates Jk using the SMPL model, a renderer

[21] and randomly sampled perspective camera parameters.

The clean synthetic inputs are corrupted to model the fail-

ure modes of the off-the-shelf detection and segmentation

CNNs used at test-time, such as noisy keypoint locations,

and occluded silhouettes. Examples are given in Figure 3.

We improve the data generation process of [45] in two

ways. First, we significantly increase the severity of the

occlusion and cropping augmentations to match the occlu-

sions seen in challenging test datasets such as 3DPW (illus-

trated in Figure 4, first row). Second, we explicitly com-

pute a joint visibility vector ωk (1 if visible, 0 otherwise)

for each Jk and set the heatmaps corresponding to invisible

joints to 0, unlike [45]. This is necessary for our distribu-

tion prediction network to learn to be uncertain about pose

parameters corresponding to invisible body parts.

4. Implementation Details

Network Architecture. We use a ResNet-18 [15] en-

coder followed by a multi-layer perceptron (MLP) to pre-

dict SMPL parameter distributions. The MLP is comprised

of one hidden layer with 512 neurons and ELU [8] activa-

tion and one output layer with 164 neurons, which predicts

the set of outputs Y. Predicted variances are forced to be

positive using an exponential activation function.

Training dataset. Synthetic training data is generated by

sampling SMPL pose parameters from the training sets of

UP-3D [30], 3DPW [52], and Human3.6M [17] (Subjects

1, 5, 6, 7, 8).

Training details. We use Adam [23] with a learning rate of

1e-4 and a batch size of 120, and train for 100 epochs, which

takes 1.5 days on a 2080Ti GPU. Inference runs at 4fps,

90% of which is silhouette and joint prediction [13, 53].

Evaluation datasets. We use the test set of 3DPW to evalu-

ate pose prediction accuracy. It consists of 35515 RGB im-

Input groups Method Synthetic Synthetic

Clean Corrupted

PVE-T-SC PVE-T-SC

Single-Input Ours 14.4 15.1

Quadruplets Front

+ L/R Side + Back Ours + Mean 13.1 13.3

Ours + PC 13.0 12.8

Pairs

Front + L Side or Ours + PC 13.5 13.4

Back + R Side

Pairs

Front + Back or Ours + PC 13.6 13.8

L + R Side

Table 1: PVE-T-SC (mm) results on synthetic data (see Fig-

ure 3) investigating: i) probabilistic shape combination (PC)

versus simple averaging (Mean), ii) effect of increasing in-

put group size from 1 to 2 (Pairs) to 4 (Quadruplets) and iii)

effect of global rotation variation within pairs of inputs.

Max. input

group size

Method SSP-3D

PVE-T-SC

1 Ours 15.2

2 Ours + PC 13.9

3 Ours + PC 13.6

4 Ours + PC 13.5

5 Ours + Mean 13.6

Ours + PC 13.3

Table 2: PVE-T-SC (mm) results on SSP-3D [45] compar-

ing i) probabilistic shape combination (PC) versus simple

averaging (Mean) and ii) effect of increasing input group

size from 1 to 5.

ages of 7 subjects with paired ground-truth SMPL parame-

ters. We report mean per joint position error after scale cor-

rection (MPJPE-SC) and after Procrustes analysis (MPJPE-

PA). We use the scale correction technique introduced in

[45] to combat the ambiguity between subject scale and

distance from camera. MPJPE-SC measures 3D joint er-

ror up to scale and MPJPE-PA measures 3D joint error up

to scale and global rotation. We also report scale-corrected

per-vertex Euclidean error in a T-pose (PVE-T-SC) on the

SSP-3D dataset [45] to evaluate identity-dependent shape

prediction accuracy. SSP-3D consists of 311 images of 62

subjects and pseudo-ground-truth SMPL parameters.

In addition, we evaluate body shape prediction accuracy

on a private dataset consisting of 6 subjects (4 male, 2 fe-

male) with 4 RGB images of each and ground-truth body

measurements obtained using a tape measure or full 3D

body scanning technology. The subjects’ body poses, cloth-

ing, surrounding environments and camera viewpoints vary

between images. Example images are in the supplementary

material.

Finally, we create a synthetic dataset for our experimen-
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Max. input

group size

Method SSP-3D

PVE-T-SC

HMR [19] 22.9

GraphCMR [28] 19.5

1 SPIN [27] 22.2

DaNet [57] 22.1

STRAPS [45] 15.9

Ours 15.2

HMR [19] + Mean 22.9

GraphCMR [28] + Mean 19.3

SPIN [27] + Mean 21.9

5 DaNet [57] + Mean 22.1

STRAPS [45] + Mean 14.4

Ours + Mean 13.6

Ours + PC 13.3

Video VIBE [26] 24.1

Table 3: Comparison with the state-of-the-art in terms of

PVE-T-SC (mm) on SSP-3D [45]. Our method surpasses

the state-of-the-art when using single-image inputs. Prob-

abilistic shape combination (PC) outperforms simple aver-

aging of predictions from other methods when using groups

of up to 5 images, as well as video predictions from [26].

Method 3DPW

MPJPE-SC MPJPE-PA

HMR [19] 102.8 71.5

GraphCMR [28] 102.0 70.2

SPIN [27] 89.4 59.2

I2L-MeshNet [36] - 57.7

Biggs et al. [5] - 55.6

DaNet [57] 82.4 54.8

HMR (unpaired) [19] 126.3 92.0

Kundu et al. [29] - 89.8

STRAPS [45] 99.0 66.8

Ours 90.9 61.0

Table 4: Comparison with the state-of-the-art in terms of

MPJPE-SC and MPJPE-PA (both mm) on 3DPW [52].

Methods in the top half require training images paired with

3D ground-truth, methods in the bottom half do not.

tal analysis. It consists of 1000 synthetic humans with ran-

domly sampled SMPL body shapes, each posed in 4 differ-

ent SMPL poses sampled from Human3.6M [17] subjects 9

and 11. Global orientations are set such that the camera is

facing the human’s front, back, left or right. A group of 4

clean synthetic inputs and 4 corrupted inputs is rendered for

each human, where the corruptions used are the same as the

data augmentations applied during training. Examples are

given in Figure 3.

5. Experimental Results

In this section, we present our ablation studies, where

we investigate uncertainty predictions, compare probabilis-

Figure 6: Comparison with other methods using sorted dis-

tributions of a) PVE-T-SC per SSP-3D evaluation sample

and b) MPJPE-PA per 3DPW evaluation sample.

tic shape combination with simple averaging and explore

the effects of varying input group sizes and global rotation

variation within groups. We also compare our method to

other approaches in terms of shape and pose accuracy.

5.1. Ablation studies

Pose and shape uncertainty. SMPL pose and shape pre-

diction uncertainties are represented by the predicted vari-

ances σ2
θ and σ2

β . Rows 2 and 5 of Figure 3 illustrate pose

prediction uncertainty on clean and corrupted synthetic in-

puts. Heavily-occluded inputs (e.g. the corrupted input in

column 4), result in large predicted variances for the pose

parameters corresponding to the occluded joints, while pre-

dicted variances are smaller for visible joints. This be-

haviour is replicated on real inputs from the 3DPW dataset,

as shown by Figure 4 where the network is uncertain about

the 3D locations of occluded and out-of-frame body parts.

Figure 3 also showcases shape parameter prediction un-

certainty on synthetic data, in rows 3 and 6. The network is

more uncertain about body shape when the subject is heav-

ily occluded and/or in a challenging pose, seen by compar-

ing the sitting pose in column 2 with the standing poses in

columns 1 and 3. This behaviour is also seen on real inputs

in Figure 5, e.g. by comparing the crouching pose in row 1

with the standing pose in row 2.

Body shape combination method. We compare proba-

bilistic body shape combination (from Section 3.4) with a

simpler heuristic combination, where we obtain combined

body shape estimates from a group of inputs {Xn}
N
n=1 by

simply averaging (i.e. taking the mean of) the shape dis-

tribution means {µβ(Xn)}
N
n=1. Rows 3-4 in Table 1 show

that better shape estimation metrics are attained using prob-

abilistic combination versus simple averaging on synthetic

input quadruplets (examples in Figure 3). This is replicated

on groups of real inputs from SSP-3D, as shown in Table 2,

row 5 versus row 6. Since probabilistic combination may

be interpreted as uncertainty-weighted averaging (Eqn. 4),

these experiments suggest that inaccurate mean body shape

predictions are generally accompanied by large prediction

uncertainty, and subsequently down-weighted during prob-

abilistic combination. This may explain why probabilistic

16100



Group

size

Method RMSE

C S H B F T

1

SPIN [27] 6.9 8.0 6.6 6.9 2.5 5.3

STRAPS [45] 6.7 5.3 4.3 3.9 1.8 3.7

Ours 4.9 4.7 5.5 4.2 1.8 3.9

4

SPIN [27] + Mean 6.5 8.1 6.4 6.7 2.4 5.1

STRAPS [45] + Mean 6.1 4.2 4.0 3.2 1.7 3.3

Ours + Mean 3.4 3.9 3.8 4.9 1.6 3.1

Ours + PC 3.1 3.8 2.7 5.0 1.7 2.8

Table 5: Comparison with the state-of-the-art in terms of

tape measurement RMSE (cm) on our private shape evalu-

ation dataset. Errors are reported for the chest (C), stomach

(S), hips (H), biceps (B), forearms (F) and thighs (T).

combination actually gives better shape metrics when evalu-

ating on corrupted synthetic inputs compared to clean inputs

in Table 1, since heavy input corruption results in inaccurate

but highly-uncertain shape estimates.

Input group size. Table 1 also investigates the effect of

the input group size, evaluated on our synthetic dataset, by

comparing single inputs (i.e. group size of 1) with body

shape combination applied to pairs and quadruplets (i.e. in-

put group sizes of 2 and 4). Body shape metrics are signif-

icantly improved when using pairs compared to single im-

ages, suggesting that probabilistic combination is success-

fully using shape information from the multiple inputs. A

smaller improvement is seen when using quadruplets ver-

sus pairs. Table 2 shows that increasing the input group size

on real data (from SSP-3D) also results in a consistent but

diminishing improvement in shape prediction metrics.

Global rotation variation. To investigate whether varia-

tion in global rotation of the subject between inputs is cor-

related with shape prediction accuracy, we split each group

of 4 inputs from our synthetic dataset into groups of 2 in

two ways: (front, left) + (back, right) and (front, back) +

(left, right). We expect the latter split to be less informa-

tive for shape prediction as the pairs contain more redun-

dant visual shape information. This is corroborated by the

experiments labelled “Pairs” in Table 1, where the former

split yields better shape metrics, particularly for corrupted

inputs where the amount of visual shape information in each

individual input is lower.

5.2. Comparison with the stateoftheart

Shape prediction. Our method surpasses the state-of-the-

art on SSP-3D in the single-input case (group size of 1), as

shown in Table 3 and Figure 5. The improvement over the

similar synthetic training method in STRAPS [45] is pri-

marily due to our improved training data augmentations.

When using groups of multiple images as inputs (with group

size = 5), probabilistic combination outperforms simple av-

eraging of predictions from all other methods. The dis-

tribution of errors per SSP-3D sample, shown in Figure

6, suggests that probabilistic combination particularly im-

proves errors for challenging samples, where the uncer-

tainty weighting is more meaningful.

Table 5 compares tape measurement errors computed us-

ing shape predictions from our method and competitors on

a private dataset. Probabilistic combination results in the

lowest measurement errors for large body parts, such as the

chest, stomach, waist and hips. However, it is less accurate

on smaller body parts (e.g. biceps and forearms), which are

significantly obscured by clothing. In general, our method

may over-estimate measurements for subjects with loose

clothing, since silhouette-based inputs don’t distinguish be-

tween clothing and the human body.

Pose prediction. While we focus on body shape estimation,

Table 4 shows that our method is competitive with the state-

of-the-art on 3DPW, and surpasses other methods that do

not require training images paired with 3D labels. Figure 6

demonstrates that our method does well on low-to-medium

difficulty samples, but struggles with the most challenging

ones, which typically exhibit very severe occlusions leading

to degraded proxy representations. Nevertheless, we out-

perform STRAPS [45] on these challenging samples due to

improved data augmentation and the adaptive loss weight-

ing discussed in Section 3.5, which results in a more stable

improvement of pose metrics during training.

6. Conclusion

In this paper, we have proposed the novel task of human

body shape estimation from a group of images of the same

subject, without imposing any constraints on body pose,

camera viewpoint or backgrounds. Our solution predicts

multivariate Gaussian distributions over SMPL [33] body

shape and pose parameters conditioned on the input im-

ages. We probabilistically combine predicted body shape

distributions from each image to obtain a final multi-image

shape prediction, and experimentally show that probabilisti-

cally combined estimates are more accurate than both indi-

vidual single-image predictions, as well as naively-averaged

single-image predictions, when evaluated on SSP-3D and a

private dataset of tape-measured humans. Furthermore, pre-

dicting distributions over SMPL parameters allows us to es-

timate the heteroscedastic aleatoric uncertainty associated

with pose predictions, which is useful when faced with in-

put images containing occluded or out-of-frame body parts.

Future work can consider using (i) clothed and textured

synthetic data to further close the synthetic-to-real domain

gap, and (ii) more expressive predicted distributions than

the simple Gaussians proposed in this paper.
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