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Think of a really tasty thing.

It will likely be flat again.

It makes it feel healthier. 

Now slip that nut back on and screw it down.

It's going to take about five minutes.

…Transcript: I'm going to go ahead and slip that into place and I'm going to make note 

of which way the arrow is going in relation to the arrow on our guard. They both need

to be going the same direction next.

Prediction

Next utterance candidatesInput Video

✔

Figure 1: Visually Contextualised Future Utterance Prediction. Given an instructional video with paired text and video data, we

predict the next utterance in the video using a Co-attentional Multimodal Video Transformer. Our model trained on this task also

achieves state-of-the-art performance on downstream VideoQA benchmarks.

Abstract

While most conversational AI systems focus on textual

dialogue only, conditioning utterances on visual context (when it’s

available) can lead to more realistic conversations. Unfortunately,

a major challenge for incorporating visual context into

conversational dialogue is the lack of large-scale labeled datasets.

We provide a solution in the form of a new visually conditioned

Future Utterance Prediction task. Our task involves predicting

the next utterance in a video, using both visual frames and

transcribed speech as context. By exploiting the large number of

instructional videos online, we train a model to solve this task at

scale, without the need for manual annotations. Leveraging recent

advances in multimodal learning, our model consists of a novel

co-attentional multimodal video transformer, and when trained

on both textual and visual context, outperforms baselines that

use textual inputs alone. Further, we demonstrate that our model

trained for this task on unlabelled videos achieves state-of-the-art

performance on a number of downstream VideoQA benchmarks

such as MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA.

1. Introduction

Imagine that you are cooking an elaborate meal, but forget the

next step in the recipe – or fixing your car and uncertain about

which tool to pick up next. Developing an intelligent dialogue

system1 that not only emulates human conversation, but also

predicts and suggests future actions – not to mention is able to

answer questions on complex tasks and topics – has long been

a moonshot goal for the AI community. Conversational AI allows

1often used interchangeably with the term ‘conversational AI’

humans to interact with systems in free-form natural language,

in the same way that we would communicate with one another.

This has led to an outpouring of research in NLP focused on

conversational agents, ranging from goal-oriented systems for

helping with reservations [6, 82] to chit-chat models [46, 69, 87],

both of which are found in modern virtual assistants such as

Alexa, Google Assistant and Siri.

Such works, however, are limited to linguistic interactions only.

In contrast, human interaction in the physical world is facilitated

through multiple modalities (e.g. verbal, visual, haptic), each

modality often complementing the other seamlessly. While doing

a task, it is often easier to show another person your progress,

than to describe it verbally. Hence we argue that a truly intelligent

dialogue system would have knowledge of both visual and textual

contexts before making its next utterance. Unfortunately, a major

challenge for incorporating visual context is a lack of suitable

data. Most traditional conversational datasets [6, 10, 31, 71]

are solely text based, and notoriously difficult to collect, relying

on narrowly constructed ontologies [31, 55] and highly specific

domains [6, 10]. More importantly, they do not contain visual

information of the surrounding physical environment.

In an attempt to incorporate visual context to dialogue systems,

the task of visual dialog [15] was proposed, which requires an

AI agent to hold a meaningful dialog with humans given an

image [15] or a video [38]. In these works, a dialog history and

question are artificially created for each image/video in a dataset,

and the goal is then to infer context from history and answer the

question accurately. Such datasets, while valuable, are created

at great manual effort and contain artificially contrived scenarios,

where the dialog history is not naturally present in video. Such

datasets are also limited in size.

Unlike such works [15, 38], we propose to use online videos
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to learn from naturally co-occurring vision and dialogue in a

scalable manner. We note that certain video domains such as

narrated instructional videos [54, 79] and lifestyle vlogs [21, 34]

are available in huge numbers (e.g. online on video sharing

platforms) and are likely to contain narration explicitly linked

to the visual content. Given the availability of high quality ASR,

this gives us a large amount of readily available paired visual

and textual data. We begin by proposing a future prediction task,

where the goal is to predict the next utterance in an instructional

video, given both visual and textual contexts (Figure 1). The

labels for such a task are freely available from the video itself.

As we show in this work, solving such a task requires

knowledge of both visual and textual contexts. Leveraging recent

advances in multimodal learning, we do so with a two-stream

co-attentional transformer based model, each stream encoding a

different modality. Our co-attentional model effectively attends to

features within each modality, as well as across modalities through

lateral self-attention blocks. We demonstrate that using both visual

and textual information leads to a large performance gain over

using text alone, and additionally, our two-stream co-attentional

model outperforms single stream multimodal models. In addition,

we show that our model, trained for this future prediction task,

can be transferred to other conversational tasks, achieving

state-of-the-art performance on various VideoQA benchmarks.

Concretely, we make the following four contributions: (i) We

formulate a future utterance prediction (FUP) task which uses

both dialogue and vision; (ii) We re-purpose freely available

online instructional video datasets to create training and testing

benchmarks for this task (HowToFUP); (iii) We propose a new

two-stream multimodal video transformer based architecture

(CoMVT) which effectively attends jointly over words in text

and visual objects and scenes to learn visual-dialogue context;

and finally (iv) We show that our model trained on unlabelled

instructional videos is also, perhaps surprisingly, able to achieve

state-of-the-art performance on a number of downstream

vision-language QA datasets, including MSRVTT-QA [85],

MSVD-QA [85], ActivityNet-QA [88], and How2QA [47].

2. Related Work

Future Utterance Prediction. Predicting future utterances from

textual data alone has been widely explored in the NLP commu-

nity for conversational AI systems. Approaches include hand-

crafted rules [17, 80], example-based agents [39, 44] and modern

neural networks [70, 72], and aim to generate realistic responses

for goal-oriented dialog systems or chatbots. Future prediction

has also been used as an unsupervised pretraining objective for

text corpora, e.g. next sentence prediction in BERT [19]. Unlike

these works, we focus on jointly learning from visual context as

well as text. Related to our work is the task of scene-aware dialog

prediction [2, 33], where the goal is to answer questions grounded

to a video clip input, given a manually created dialog history. A

number of works show promising results on this task [14, 32, 42,

45, 48], however they rely on manually created VQA datasets.

Vision and Language Tasks. Popular vision and language tasks

include visual question answering [4, 5, 22, 28, 58, 61], visual

dialog [15, 16, 36, 40, 67], visual captioning [56, 59, 68, 73, 86],

visual grounding [18, 22, 57, 83] and video-text retrieval [7, 25,

49, 53, 63]. There have also been attempts to use transcribed

speech in videos as a source of weak supervision [52, 60, 76, 77],

where the goal is to learn a good visual encoder, and consequently

such works are largely evaluated only on downstream tasks that

involve unimodal video frame inputs. In contrast, we learn an en-

coder that can effectively learn to co-attend to both vision and text,

and is useful for downstream tasks that involve both modalities.

Multimodal Vision-Text Architectures. A large number of

multimodal architectures focus on late fusion of modalities, with

popular choices being summation, concatenation and canonical

correlation analysis [9, 74, 78]. [47] encodes multimodal inputs

in a hierarchical structure, where the local context of a video

frame is captured by a Cross-modal Transformer via multimodal

fusion, and global video context is captured by a Temporal Trans-

former. Here cross-modal interactions are limited to a single

segment only (where the input modalities are aligned), covering

a short timespan. This does not allow multimodal interactions

between non-aligned inputs - and we note that the content of hu-

man speech is not always precisely aligned with its corresponding

visual contexts in time [52]. In contrast, our method allows global

cross-modal interactions, unconstrained by temporal alignment.

More recent works [25, 48] explore deeper interactions between

video frame features and features from other modalities, by fusing

modalities earlier, at the input level itself. In these works, however,

inputs from multiple modalities are fed into a single transformer,

with ‘modality specific’ encodings to distinguish between the

modalities. In contrast, our two stream transformer decouples

within-modality interactions in individual modality streams and al-

lows cross-modality interactions with lateral self-attention blocks.

Another differentiater is the fact that all these works operate on

scene-level features, while we focus on objects. Thanks to off-the-

shelf high-quality object detection [30, 64] and simple bounding

box representations, object-centric features have been widely used

in a number of image and language problems [4, 51]. In particular,

ViLBERT [50] feeds object features and language inputs to a

co-attentional transformer. Extending such methods to video,

however, is non-trivial, given the number of frames in a video.

While object detectors work well on single frames, obtaining

reliable tracklet based video features is still an open problem.

3. Future Utterance Prediction

We begin by proposing a new future utterance prediction

task. The goal is to predict the next utterance in a video,

given the previous multimodal context (Figure 1). While

next utterance prediction can be evaluated as a generative

task [15, 26, 45], we simplify the problem to be selection among

pre-collected candidates. Precisely speaking, given a video clip

V=(F,W) where F ={fi}
Nf

i=1 is a sequence of video frames

and W={wi}
Nw

i=1 is a sequence of transcribed words, our goal

is to select the true next utterance uT from a set of candidates

U={ui}
M

i=1 where T is the index of the true element in U and

we set M = 100 (Figure 1). Performance is then assessed by

ranking the candidates and using popular retrieval metrics.
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Figure 2: Co-attentional Multimodal Video Transformer: Visual depiction of our multimodal training network with L=3 object fea-

tures per frame. Our model consists of 2 streams, a visual stream which operates on spatiotemporal features, and a text steam which ingests

word level features. Our model is trained using two losses, a future utterance prediction ranking loss and a masked language modelling loss.

Our reasons for opting for ranking rather than generation

are two fold: (i) Metrics for evaluating language generation

(e.g. BLEU [62], METEOR [8]) are focused on local matches

(n-grams, longest matching sequences, etc). By definition, such

metrics are limited to local contexts, and struggle to account for

complex sentence structures and word semantics. It is therefore

widely accepted that these metrics do not align well with human

ratings [68]; and (ii) The output distribution in sentence generation

is multimodal, i.e. the same information can be paraphrased in

multiple ways, leading to many correct answers. There is also

inherent ambiguity in the future – given the observation of the

present, multiple predictions about the future are possible [23]. In

language generation tasks, this is handled by collecting multiple

ground truth answers, a strategy which is expensive and difficult

to scale. In contrast, popular ranking metrics such as recall@k

are better able to assess model performance in tasks with a

multimodal output distribution [15, 41].

We note here that unlabelled videos can be used to generate

data for our task in a scalable manner. A list of future candidate

utterances can be created automatically, with the positive sample

being the next utterance in the video, and making the assumption

that randomly sampled utterances from different video clips are

likely to be negatives [76].

In this work, we use the videos from the HowTo100M

dataset [54], as this is a large dataset of 1.2M instructional videos

where the speech is usually explicitly linked to the visual content

in the video. Examples of future prediction candidates for this

dataset can be seen in Figure 3. We use 90% of the videos in

HowTo100M for training, and reserve 5% each for validation

and test respectively. We name this benchmark How2FUP (more

details are provided in Section 5.1).

4. Model

Our goal is to effectively learn from both vision and text

in a video. We propose a Co-attentional Multimodal Video

Transformer (CoMVT), which given a video clip V, extracts con-

textualized word embeddings and visual features from transcribed

words and video frames respectively, and fuses the extracted

features to form a multimodal video feature using a co-attentional

transformer. We first describe our network architecture, and then

the losses used to train this model to solve the task described

above (both network and losses are visually depicted in Figure 2).

4.1. Network Architecture

4.1.1 Text Input Features

Given a sequence of transcribed words2 W , we extractNw= |W |
contextualized word embeddings ei using BERT [19].

4.1.2 Visual Input Features

We extract two types of visual features – multi-frame scene level

features, and object level features extracted per frame.

Scene-level: We first extract N ′
f multi-frame features mi by

feeding F ={fi}
Nf

i=1 frames into S3D [84], a 3D CNN model

which has been used in previous approaches in multimodal

representation learning [76, 77]. Note that N ′
f(≤ Nf) is the

number of extracted multi-frame features (determined by the

stride and temporal downsampling rate of S3D). Similarly

to [77], for every non-overlapping 1-second-long segment of

the video, we sample 30 frames and obtain a single feature

vector by applying global average-pooling spatiotemporally to

the feature activations before the final classifier. This gives us

one multi-frame feature mi per second.

Object-level: While multi-frame features are effective at

capturing spatiotemporal dynamics, they limit access to individual

concepts or objects by squeezing information into a single

vector. To overcome this, we also extract object-level features

corresponding to single visual objects in each frame. We first

2We use WordPiece tokenization from the BERT vocabulary.
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subsample N ′
f frames building F ′ = {f ′

i}
N′

f

i=1 where each

frame f ′
i is temporally aligned with a multi-frame feature mi.

Single-frame object features are then extracted from top-scoring

bounding box proposals in each f ′
i . Following [11], bounding

boxes are proposed by a region proposal network (RPN) in

[65] and featurized using Graph-Regularized Image Semantic

Embeddings (Graph-RISE) [37]. That is, the single-frame object

features {oij}
L

j=1 are extracted from each frame f ′
i by

Bi=RPN(f ′
i) (1)

oij=Graph-RISE(bij;f
′
i), bij∈Bi (2)

where Bi = {bij}
L

j=1 is a set of top L bounding box in f ′
i

proposed by RPN.

Note that oij is object-specific but lacks temporal informa-

tion whereas mi encodes temporal dynamics without allowing

object-specific access. Therefore, we construct combined spa-

tiotemporal visual features that provide both temporal information

and object-specific access by merging these two types of features:

vstij=gcomb([oij;mi])+pos(oij) (3)

where [;] and gcomb are a vector concatenation operation and a

two-layer perceptron, respectively, and pos(oij) is a positional

encoding. The positional encoding pos(oij) captures the

spatiotemporal location of an object oij and is computed by the

sum of sinusoidal encoding of temporal location [81] and linear

projection of bounding box coordinates3.

Compact feature set extraction: Since the set of combined

visual features {vstij} is extracted from the entire spatiotemporal

space of a video, this leads to a large number of features (often

redudant as the same object is detected in multiple frames), which

significantly increases complexity of the transformer (see Table

2). Therefore, we construct a more compact set of visual features

by aggregating redundant features through an attention process.

We select a temporal anchor point t where the object features vsttj
in frame f ′

t are used as queries. We then attend to the remaining

features as follows: Vtarget=
{

vstij′|i 6=t
}

. This way, the model

retrieves features relevant to the query (learned during training).

Formally, our model computes a scalar attention score αj(v) for

each element v ∈Otarget from a jth query object, and obtains

an attended visual feature vattj by

αj(v)=
gquery(v

st
tj)·gkey(v)

∑

v′∈Vtarget
gquery(vsttj)·gkey(v

′)
(4)

vattj =goutput





∑

v′∈Vtarget

αj(v
′)gvalue(v

′)



 (5)

where gquery, gkey, gvalue and goutput are all linear projection

functions, and · is a scaled dot product proposed in [81]. The final

visual feature v
compact
j is then computed from the sum of the

anchor object features vsttj and the attended object features vattj :

v
compact
j =gproj(v

st
tj+vattj ) (6)

3We use the normalized coordinates of top-left and bottom-right corners of
bounding boxes.

where gproj is a projection function implemented by a two-layer

perceptron.

4.1.3 Co-attentional Transformers

Features from text wi and vision v
compact
j are then fused

using an architecture similar to the co-attentional transformer

(CoTRM) proposed in [50]. A CoTRM block is composed

of four transformer (TRM) blocks that compute attention

distributions over values by computing a scaled dot product

between queries and keys, and obtaining a set of output vectors

from weight-averaged values [81].

A CoTRM block consists of two streams, each built by

stacking two TRM blocks. The first TRM block in each stream

takes two multimodal inputs sets: one for queries and the other

for keys and values alternating their roles in each stream. The

second TRM block is independant within a modality stream.

Formally, given two sets of input features V (s) and E(s), the

visual features in V (s) at sth CoTRM block are contextualized by

V̂ (s)=TRM(V (s),E(s)) (7)

V (s+1)=TRM(V̂ (s),V̂ (s)) (8)

where TRM(Q, K) is a TRM block with query inputs Q

and key-value inputs K. Note that the first TRM block, i.e.

equation (7), performs inter-modality contextualization by adding

related word features to each visual feature whereas the second

block, i.e. equation (8), performs intra-modality contextualization

through the regular self-attention mechanism. Similarly, the word

embeddings E(s) are contextualized by

Ê(s)=TRM(E(s),V (s)) (9)

E(s+1)=TRM(Ê(s),Ê(s)). (10)

We repeat this process S times and set the initial inputs

V (0)=
{

v
compact
i

}L

i=1
and E(0)={ei}

Nw

i=1.

The two stream nature of CoTRMs inherently treats each

modality separately allowing modality-specific operations and

representations through different parameterizations of TRMs in

the streams.

4.2. Training Objectives

We train our model with the following two losses:

1) Next Utterance Prediction Loss: Here we treat the textual

modality as the main modality and treat e
(S)
1 as the embedding of

all multimodal inputs. Note that e
(S)
1 corresponds to the contextu-

alized embedding of the special ‘[CLS]’ token added to the input.

Since our goal is to choose the true next utterance uT from a set

of candidate utterances U={ui}
M

i=1, we first embed each candi-

date utterance using an additional BERT encoder and predict the

probability of ui being the true next utterance P(ui|e
(S)
1 ,U) by

P(ui|e
(S)
1 ,U)=

exp
(

e
(S)
1 ·gcand(ui)

)

∑

u′∈Uexp
(

e
(S)
1 ·gcand(u′)

) (11)
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where gcand is the candidate embedding function for which we

use a BERT encoder. Note that this candidate utterance encoder

is also fine-tuned during training and has different parameters

from those in the input text encoder. We train the network by

minimizing the negative log-likelihood of the true next utterance

−logP(uT |e
(S)
1 ,U) where U is constructed by collecting all

ground-truth next utterances of examples within each batch

during training.

2) Masked Language Modelling: In addition to our next

utterance prediction loss, we implement the masking scheme

and loss function introduced in [19] and mask out some of

input words. We apply this loss on downstream evaluations

as well. This appears to have a regularisation effect, similar to

dropout [75]. We additionally explored visual input masking as

in [76], but found little changes in performance.

Implementation details. We use the BERT base model for the

contextualized word embedding extraction and test the proposed

networks with S∈{1,2,4}. RPN [65], GRAPH-Rise [37] and

S3D [84] are initialized and fixed with pretrained weights; all the

other parameters are updated during training in all experiments.

We set the maximum lengths for the transcribed words Nw and

the downsampled video frames N ′
f to 128 and 30, respectively,

and truncate longer sequences keeping the last elements.

5. Experiments

We first train our model for Future Utterance Prediction and

show results on two datasets, HowToFUP and Coin-FUP. We

then take the model pretrained on this task and demonstrate that

it generalises well to VideoQA datasets, achieving state-of-the-art

results. The input/output configurations for these tasks are de-

scribed in Appendix B. The next section describes all the datasets

used in this work, and then delves into experimental details.

5.1. Datasets

5.1.1 Future Utterance Prediction

HowToFUP: We repurpose HowTo100M [54], a large-scale

dataset of 1.2M instructional videos for the task of Future

Utterance Prediction. Transcripts are obtained using the YouTube

ASR API [1], however these are noisy (Figure B in the Appendix

shows an example). Videos that have been taken down from

YouTube are not used. We then divide these videos into shorter

segments, henceforth referred to as video clips. The duration

of video clips is determined as follows: we start with a single

ASR sentence and then iteratively expand the length of the video

clip backwards by adding previous sentences until the segment

is longer than 5 seconds. Each video clip therefore contains

full sentences in the ASR (no sentences are cut-off mid way).

This process results in 35M training examples and 2M examples

each in the validation and test splits. In order to create diverse

validation and test sets, we then further reduce the number of clips

in each by randomly subsampling 6% of the clips (as many clips

contain redundant input contexts). The final validation and test

splits consist of 120K clips, and are used for testing all models.

For each video clip, we then create a list of M=100 future

utterance candidates through random sampling. M−1 negative

candidates are sampled from the entire answer pool to build U

for the test and validation splits.

We note that this dataset is an order of magnitude larger in num-

ber of datapoints than existing video captioning datasets, as well

as Conceptual Captions [73], the largest publicly released image

captioning dataset widely used for pretraining vision-text models

in the image domain [12, 50], however is noisier due to (i) errors

caused by imperfect ASR and (ii) given the ASR is generated from

continuous narration, it often consists of incomplete sentences that

lack punctuation. A further analysis in provided in Appendix D.

COIN-FUP: We also repurpose COIN [79], another dataset of

instructional videos to evalute the task of future utterance predic-

tion. This dataset is smaller, with 12K videos. We follow the

same clip generation pipeline used for HowToFUP4 to create

COIN-FUP, resulting in 78K, 5K and 4K examples in the train,

validation and test splits respectively.

5.1.2 Next Step Prediction

COIN-NSP: Unlike HowTo100M, COIN [79] also contains addi-

tional manually annotated categorical steps labelled for each video.

Hence we also investigate the performance of a related, albeit

slightly different task on this dataset – next step prediction (NSP).

Unlike FUP, where the goal is to select from a list of utterances

in free form natural language, NSP focuses on predicting the next

step from a list of pre-defined action categories. Similarly to FUP

example generation, we automatically construct COIN-NSP by

iterating over each step annotation and extract its precedent mul-

timodal video segment generating 18K training examples and 1K

examples for both validation and test splits with 735 step classes

(24.5 examples per class on average in the entire dataset). Note

that COIN-NSP is smaller than COIN-FUP in the number of exam-

ples since there are fewer manual step annotations than total num-

ber of utterances. At inference time, we simply replace the candi-

date selection component in our model with a softmax classifier.

CrossTask-NSP: CrossTask [90] is another dataset that con-

tains manual annotations of steps for instructional videos of 18

pre-selected tasks. We create CrossTask-NSP following the COIN-

NSP construction process resulting in 14K training examples and

2K validation/test examples with 105 target classes.

5.1.3 Downstream VideoQA Benchmarks

MSRVTT-QA and MSVD-QA: MSRVTT-QA and MSVD-

QA are popular video question answering benchmarks introduced

in [85]. We use publicly available features and follow the standard

train, val and test splits used in [85]: 158K, 12K and 73K QA pairs

for MSRVTT-QA and 31K, 6K and 13K pairs for MSVD-QA.

ActivityNet-QA: ActivityNet-QA [88] contains 58K open-ended

QA annotations where the train, val and test splits have 32K, 18K

and 8K QA pairs, respectively.

How2QA: How2QA [47] consists of QA annotations for the

HowTo100M dataset. It contains 35K train and 3K publicly

available val samples. Each question has three negative answers

and one correct answer.

4However we do not subsample in the validation and test sets, to maintain
a reliable number of samples for evaluation.
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Inputs (video frames and utterances) Prediction (future utterance)

Transcript: It was completely rotten on the inside rotten. Yeah, because I had you waited till a because

I thought it’s gonna keep getting bigger, but it was just because I didn’t have a green thumb.

It’s grown.

Now do we have a finished product?

That was my

watermelon had completely ripened weeks ago.

I don’t think

I would drive a bit long enough to get in there.

···

Transcript: And here’s another one that might be close, but I just don’t think they’re quite ready yet,

but it’s always nice to check so they need a little bit more growth time. All right.

We like to eat with bone like quit bone.

You need to see what these things are.

So here are the carrots.

They’re looking fabulous.

···

Transcript: They just shake it up and pretty much the exact same thing as spraying you all should

be familiar with heavy scraping.

That’s bad.

But so basically I just

spray the folder and then I just paste this down

and I try to get them in all the exact same position.

It doesn’t take much time at all.

We need to mount this on our a/c condenser.

···

Transcript: This skin should come right off just like that. Okay, and there we go.

So underneath that is some really really nice meat.

It is nice to write down a date on the jar.

I guess the skin anyway, so it’s ready.

Don’t click it.

···

Figure 3: Qualitative results on HowToFUP. On the right, we show the results of the baseline model that uses text inputs only

(highlighted in red ) and our multimodal model (highlighted in green ). The GT utterance has a X next to it. Note how the transcript

often contains phrases with subtle indications to visual content, such as ‘here’s another one’ (second row) and ‘should come off right

like that’ (fourth row). In many of these cases, the correct future utterance refers to an object which can only be known from the visual

context (highlighted in bold). The text only model often selects generics utterances, or those which are referred to specifically in previous

dialogue (fourth row, selected candidate has the word ‘skin’). Further examples are provided in Appendix C.

5.2. Baselines

We compare our model to a number of single and multiple

modality baselines.

S3D - visual only: We use the S3D [84] model pretrained on

Kinetics applied to video frames.

Text only Baseline: For the text only baseline, we use

BERT [19], which is the winning model in the Eighth Dialog

System Technology Challenge for response prediction in text

only dialog benchmarks [29].

Single-Stream Multimodal Baseline: We also implement a

single stream transformer operating on a single multimodal input

stream, which is the most widely used framework for video

encoding with multimodal inputs [25, 42, 48, 77]. We adopt the

architecture used in [48] and train the network using the same

next utterance prediction loss for FUP. Note that this architecture

is slightly different from that of BERT, and hence we cannot use

pre-trained BERT weights.

In addition to our full model, we also show results without

the object level features referred to as ‘CoMVT (Scene feats

only)’ in Table 1, as this is more similar to previous multimodal

models [25, 42, 48, 77], as well as show the effects without

BERT pretraining for the text stream and the MLM loss. For each

model including the baselines, we perform grid search on learning

rates and report the test performance of the best models in the

validation set. On HowToFUP, every network is trained for 2M

with a batch size of 512. The learning rate is warmed up for 10K

iterations and is continuously decayed per every 30K iterations

by the factor of 0.95. On the other datasets, due to the small sizes

of the datasets, the models are trained for 20K iterations with

a 50 iteration warm-up period and 1K decay length.

5.3. Results

5.3.1 Future Utterance Prediction

Table 1 shows the recall at k∈{1,5} (R@k) on HowToFUP. All

multimodal models outperform text only baselines showing the

value of visual inputs for this task. Our best model results in an
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Table 1: Recall at k∈{1,5} on HowToFUP. BERT PT: Input

text and candidate encoders initialised using BERT pretrained

weights. MLM: Masked Language Modelling loss. †Multimodal

Single-stream baseline used in a number of works [48, 76, 77].

S=2 by default for all rows except the last one where S=4.

Model BERT PT MLM S=4 R@1 R@5

S3D (Vision only) 5.85 18.24

Baseline (Text only)
59.21 81.31

X 60.90 82.59

Multimodal Baseline† 62.73 84.78

CoMVT

(Scene feats only)

63.35 85.22

X 65.64 86.67

X X 67.13 87.42

CoMVT

(Combined feats)

X 66.82 87.38

X X 67.79 88.00

X X X 68.34 88.28

Table 2: Flops and R@ks with and without compact feature set

extraction on HowToFUP. All models trained with MLM. Note

we cannot train with S=4 without compact feature set extraction

due to memory constraints.

Model S Gflops R@1 R@5

w/o compact 2 8.5 67.83 88.05

feature set extraction 4 12.7 N/A N/A

w/ compact 2 6.8 (-20.2%) 67.79 88.00

feature set extraction 4 7.7 (-39.3%) 68.34 88.28

8% improvement in R@1. The gain due to visual input is also

demonstrated by the examples in Figure 3 and Appendix C.

We next ablate various aspects of our model and training setup.

Architecture Components: Table 1 shows the incremental

value of different components in our architecture. Our two stream

model surpasses the single stream multimodal baseline model

while using the same scene-level features. It is also interesting

that both BERT pretraining and the masked language modeling

loss improve performance even though we train on a large-scale

dataset with more than 35M training examples. Finally, the use of

the combined features in our full model and additional CoTRM

blocks show additional gains.

Efficiency: We also analyze the efficiency gains of our compact

feature set extraction module (see Table 2 for flops5 and R@k

results). Using our compact feature set module significantly

reduces flops by 20.2% and 39.3% with S=2 and 4, respectively,

while maintaining performance with S=2. For S=4, we are

unable to obtain R@ks without compact feature set extraction on

our TPU configurations due to significant memory consumption

during training.

Effect of Training Data: We also perform an ablation study

analysing the effect of training data size on performance. We train

on different fractions of the HowToFUP training set (results in

Figure 4), and show steep performance drops when the size of the

training set is reduced. We also note that the trend points towards

5Flops are measured per sample by profiling evaluation steps on TPUs.

Figure 4: Effects of training data size on HowToFUP performance,

reported as R@1.

Table 3: Results on COIN-FUP. S=1 by default. HowTo PT:

Entire model is pretrained on HowToFUP with S=4.

Model BERT PT MLM R@1 R@5

S3D (Vision only) 2.97 10.44

Baseline (Text only)
19.82 43.19

X 35.68 64.42

Multimodal Baseline 21.02 45.82

CoMVT

22.40 47.25

X 37.08 66.90

X X 39.11 68.22

CoMVT (HowTo PT) X 70.92 93.52

linear improvements in R@1 as the training set size is doubled.

Given that the performance does not seem to be saturated yet,

we hypothesise that further performance gains are possible by

scaling up with instructional video data beyond HowTo100M.

Future Utterance Prediction results for COIN are shown in

Table 3. Similar trends hold, however we also note that pretraining

on HowToFUP provides a massive boost in performance (over

30% value increase in R@1). This significant gain can be

explained by the relatively small size of COIN-FUP.

5.3.2 Next Step Prediction

The results for Next Step Prediction (a classification task)

on COIN-NSP and CrossTask-NSP are provided in Table 4.

Interestingly, using visual inputs shows more of an improvement

over the text only baseline for this task compared to FUP. Note

that NSP contains more examples of humans activities (while

FUP has a more diverse set of utterances). In addition to the

baselines described in Section 5.2, we also compare to two

state-of-the-art vision-only models for next step prediction,

RULSTM [24] and TAR [66]6

Pretraining on BERT and using the MLM loss particularly

help prevent our multimodal model from overfitting on this small

dataset. The largest gain comes from pretraining on HowToFUP,

which also allows us to increase the value of S in the model with-

out suffering from overfitting. We also show results of our model

6We reimplemented these models to use our extracted features to provide
a fair comparison.
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Inputs (video frames and utterances) Prediction (next step class)

Transcript: The process is simply reversed insert the new dead light into the hole at the end of the door.

install new door knob

boil water or coffee

install bulb and light housing

close switch

drive car forward

··· 730 more step classes ···

Figure 5: Qualitative results on COIN-NSP. On the right, we show the predicted class (out of 735 classes) by the text only baseline

( red ) and the correct class identified by our multimodal model ( green ). Note that an ASR error (highlighted by underline, ‘dead

light’ should be ‘deadlatch’) causes the text only baseline to make a mistake (prediction about light), which is corrected by access

to visual inputs in our model.

Table 4: Results on COIN-NSP and CrossTask-NSP. *fixed

dummy text is fed to utilize visual inputs only.

COIN CrossTask

Model
HowTo

PT
BERT

PT MLM R@1 R@5 R@1 R@5

S3D (Vision only) 29.20 69.99 29.34 72.38

RULSTM (Vision only) 26.38 56.70 28.39 67.90

TAR (Vision only) 18.13 33.64 17.64 46.03

Baseline (Text only)
16.31 42.80 17.77 50.59

X 20.54 47.13 20.29 58.83

Multimodal Baseline 24.97 65.26 30.73 74.09

CoMVT

28.20 67.37 30.66 70.51

X 30.31 73.01 31.77 75.59

X X 33.33 74.52 33.73 78.21

X X 37.46 76.64 42.12 81.45

CoMVT (Vision only*) X X 33.84 68.78 39.19 81.26

Table 5: Comparison to state-of-the-art on MSVD-QA and

MSRVTT-QA. We report top 1 accuracy [%]. We show results

of our model with and without pretraining on HowToFUP.

Methods MSVD-QA MSRVTT-QA

ST-VQA [35] 31.3 30.9

Co-Mem [27] 31.7 32.0

AMU [85] 32.0 32.5

HMEMA [20] 33.7 33.0

HRA [13] 34.4 35.1

SSML [3] 35.1 35.1

HCRN [43] 36.1 35.6

CoMVT (scratch) 35.7 37.3

CoMVT (pretrained) 42.6 39.5

using visual inputs only (with pretrained weights), and find that we

obtain decent results (this is achieved by feeding in a dummy text

input with an empty sentence, i.e., a sequence containing a [CLS]

token and a [SEP] token). A qualitative result is shown in Figure 5.

Table 6: Comparison to state-of-the-art on ActivityNet-QA.

Model Accuracy

E-VQA [88] 25.10

E-MN [88] 27.10

E-SA [88] 31.80

MAR-VQA [89] 34.60

CoMVT (scratch) 36.63

CoMVT (pretrained) 38.75

Table 7: Comparison to state-of-the-art on the How2QA

validation set.

Model Accuracy

HERO [47] 74.10

CoMVT (scratch) 78.04

CoMVT (pretrained) 82.29

5.3.3 Transfer Learning to Video QA

We additionally show results of our model pretrained on HowTo-

FUP and then fine-tuned on 4 popular video QA benchmarks,

in Table 5 for MSRVTT-QA and MSVD-QA, Table 6 for

ActivityNet-QA, and Table 7 for How2QA. For all datasets, our

network architecture trained from scratch already outperforms

or performs comparably to the existing state of the art; and

finetuning from pretrained weights on HowToFUP provides a

further boost. We note that our model is pretrained without any

QA supervision at all, and generalises well to video QA.

6. Conclusion

We propose a new visually conditioned Future Utterance

Prediction (FUP) learning task, where the goal is to predict

the next utterance in an instructional video using both visual

frames and transcribed speech. We set benchmarks on both

the HowTo100M and COIN datasets, and show state-of-the-art

results on downstream video QA benchmarks. We hope that

this work will increase interest in the exciting field of visually

contextualized dialogue systems.

16884



References

[1] YouTube Data API. https://developers.google.

com/youtube/v3/docs/captions. 5

[2] Huda Alamri, Vincent Cartillier, Abhishek Das, Jue Wang, Anoop

Cherian, Irfan Essa, Dhruv Batra, Tim K Marks, Chiori Hori, Peter

Anderson, et al. Audio visual scene-aware dialog. In CVPR, 2019. 2

[3] Elad Amrani, Rami Ben-Ari, Daniel Rotman, and Alex Bronstein.

Noise estimation using density estimation for self-supervised

multimodal learning. arXiv preprint arXiv:2003.03186, 2020. 8

[4] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,

Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-up and

top-down attention for image captioning and visual question

answering. In CVPR, 2018. 2

[5] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,

Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. VQA: Visual

question answering. In ICCV, 2015. 2

[6] Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer,

Justin Harris, Emery Fine, Rahul Mehrotra, and Kaheer Suleman.

Frames: A corpus for adding memory to goal-oriented dialogue

systems. arXiv preprint arXiv:1704.00057, 2017. 1

[7] Max Bain, Arsha Nagrani, Andrew Brown, and Andrew Zisserman.

Condensed movies: Story based retrieval with contextual

embeddings. ACCV, 2020. 2

[8] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic

metric for mt evaluation with improved correlation with human

judgments. In Proceedings of the ACL workshop on intrinsic

and extrinsic evaluation measures for machine translation and/or

summarization, 2005. 3

[9] Olfa Ben-Ahmed and Benoit Huet. Deep multimodal features for

movie genre and interestingness prediction. In International Con-

ference on Content-Based Multimedia Indexing (CBMI), 2018. 2

[10] Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng,

Inigo Casanueva, Stefan Ultes, Osman Ramadan, and Milica
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