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Abstract

We present a novel LSTM cell architecture capable

of learning both intra- and inter-perspective relationships

available in visual sequences captured from multiple per-

spectives. Our architecture adopts a novel recurrent joint

learning strategy that uses additional gates and memories

at the cell level. We demonstrate that by using the pro-

posed cell to create a network, more effective and richer

visual representations are learned for recognition tasks.

We validate the performance of our proposed architecture

in the context of two multi-perspective visual recognition

tasks namely lip reading and face recognition. Three rele-

vant datasets are considered and the results are compared

against fusion strategies, other existing multi-input LSTM

architectures, and alternative recognition solutions. The ex-

periments show the superior performance of our solution

over the considered benchmarks, both in terms of recogni-

tion accuracy and complexity. We make our code publicly

available at https://github.com/arsm/MPLSTM.

1. Introduction

Today, images and videos captured from multiple vi-

sual perspectives (multi-perspective) or view-points are ex-

tensively available thanks to the wide-spread adoption of

consumer-level cameras, notably in smartphones, able to

capture visual scenes simultaneously from multiple an-

gles [30]. Multi-perspective sequences can be recorded by

i) several video cameras positioned at different angles, si-

multaneously acquiring the sequences, each of which in-

cluding multiple samples/instances along time; and/or ii)

multi-view cameras such as Light Field (LF) cameras [17],

from which all samples/instances of all sequences are ac-

quired at a single time instant, e.g., with changing hori-

zontal and vertical perspectives. We call these two types

of multi-perspective sequences multi-perspective sequences

over time and multi-perspective sequences over space, re-

spectively. When either of these sequences are used for vi-

sual recognition tasks, it is possible to exploit both the intra-
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Figure 1. Sequences captured from multiple perspectives include

intra- and inter-perspective relationships that need to be effectively

learned for robust visual recognition. We propose a novel LSTM

cell capable of jointly learning incoming visual representations

from various perspectives.

perspective relationships (within each input/view sequence)

and the inter-perspective relationships (between the differ-

ent input/view sequences), as illustrated in Figure 1.

Recurrent neural networks (RNN) [18] such as long

short-term memory (LSTM) [13], have been widely used

for learning sequential data. Nonetheless, conventional or

vanilla LSTM networks, hereafter referred to only as LSTM

networks [13, 7], learn from a single sequence, as each

cell only accepts an instance of one particular sequence.

In this context, in order to learn from multiple sequences

(e.g., multi-perspective sequences), a separate LSTM net-

work needs to be learned for each input sequence. As a re-

sult, inter-sequence relationships such as inter-perspective

information are typically not learned. To aggregate the in-

formation learned by individual LSTM networks, fusion

strategies have often been adopted [8, 32, 6, 29]. Score-

level fusion, also known as late fusion, can be employed to

combine the classification scores using different strategies

such as a [weighted] sum rule or voting. This approach im-

plies that the overall learning strategy is unable to learn the

inter-sequence relationships and only relies on the aggrega-

tion of the class probabilities for the final decision. To avoid

this problem, feature-level fusion, also known as early fu-

sion, can be used by concatenating the input sequences and

feeding them consecutively to a single network. Nonethe-
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less, in this approach, the input representation is treated

as a whole and not as different simultaneous perspectives

captured from the same event, whereas in reality, different

parts of this representation convey overlapping or compli-

mentary information about the scene. Hence the parameters

of the network are learned irrespective of the relationships

between the available sequences, which are located in dif-

ferent parts of the concatenated representation.

In this paper, we propose a novel Multi-Perspective

LSTM (MP-LSTM) cell architecture to jointly learn the

intra-perspective and inter-perspective relationships avail-

able in multi-perspective sequences. To this end, we mod-

ify the conventional LSTM cell architecture, by incorporat-

ing additional gates and cell memories to adopt a novel re-

current joint learning strategy. These modifications enable

our novel LSTM architecture to jointly update the long-

term shared cell memory with respect to the information

associated to several input perspective sequences simulta-

neously. This leads to more effective learning of the avail-

able inter-perspective relationships by identifying the com-

plimentary or contradicting information across the perspec-

tive sequences when creating the output feature representa-

tions. Our experiments show that the proposed MP-LSTM

networks can learn richer representations to achieve better

performance as exemplified for our experiments on two dif-

ferent visual recognition tasks.

The main contributions can be summarized as follows:

(1) We propose the novel MP-LSTM cell architecture capa-

ble of jointly learning the intra- and inter-perspective rela-

tionships available in multi-perspective sequences; (2) we

integrate our MP-LSTM network into two visual recogni-

tion solutions, for lip reading and face recognition tasks,

covering two different types of multi-perspective sequences

over time and over space; (3) our solutions achieve supe-

rior results over the state-of-the-art, with considerable per-

formance gains of up to 5% when multi-perspective infor-

mation is jointly learned using our proposed model com-

pared to other joint-learning or fusion strategies; and (4) we

make our implementation publicly available1 to enable re-

producibility and future comparisons.

2. Related Work

2.1. Background

LSTM networks are generally used to effectively learn

long-term dependencies within a sequence [11]. The LSTM

cell architecture with peephole connections [9] has been

widely used for several learning tasks using sequential

data [11]. An LSTM network is composed of multiple

LSTM cells, with a shared memory, called cell state, to keep

track of long-term dependencies over the network. This

shared memory is controlled by an input and a forget gate,

1https://github.com/arsm/MPLSTM

allowing the network to update the long-term memory con-

sidering the new incoming information. The updated cell

state, along with an output gate, then produce the output of

the LSTM cell, known as the hidden state. The networks

created using these LSTM cells are often designed to take

only one sequence as input.

Conventional approaches for dealing with multiple input

sequences by LSTM networks use fusion strategies to ei-

ther concatenate the input sequences and feed them consec-

utively to a single network (feature-level fusion) or com-

bine the output scores obtained from independent LSTM

networks applied to each input sequence (score-level fu-

sion). Recently, there have been a few LSTM variants

proposed to deal with multiple input sequences at the cell

level [24, 19, 31, 27]. In this context, novel architec-

tures have been designed by adding, removing, modifying,

or coupling gates, memory cells, or the connections be-

tween them, inside the LSTM cell. These novel architec-

tures have been designed to allow each cell to jointly learn

the intra-sequence (e.g., intra-perspective) along with inter-

sequence (e.g., inter-perspective) dependencies across the

input space.

2.2. Multi­Input LSTM Cell Architectures

Since this paper’s contribution is to propose a novel

LSTM cell architecture for multi-perspective visual rep-

resentation learning, we review the available multi-input

LSTM cell architectures in the following. Multi-View

LSTM (MV-LSMT) [24] uses independent gates and cell

states for each input sequence. The cell states correspond-

ing to each input are first updated and are then concatenated

to obtain the fused cell state. The fused cell state along with

output gates form individual hidden states which are finally

concatenated to produce the output and feed the next LSTM

cell. It is worth mentioning that the “Multi-View” term

used in [24] does not imply different visual perspectives,

as used in our paper. Instead, the term “view” is defined

in generic terms, relating to the particular way of observing

a phenomenon. This cell architecture was designed to fuse

images and their text captions for image captioning tasks.

The Spatio-Temporal LSTM (ST-LSTM) [19] cell architec-

ture uses independent gates (except the output gate) for each

of the two input sequences, independently updating the cell

state for each input. A fused cell state, controlled by the out-

put gate corresponding to the first input sequence, then pro-

duces the cell output. This cell architecture was designed

to fuse RGB and human skeleton information for activity

recognition. The Dual-Sequence LSTM (DS-LSTM) [31]

cell architecture concatenates samples from two input se-

quences at a given instant to calculate the gates. Its gating

functions are similar to the conventional LSTM, the differ-

ence being the way in which the candidate vectors are cal-

culated. In this architecture, each input sequence indepen-
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dently contributes a candidate vector to be added to the cell

state when updating the cell memory. This cell architecture

was designed to simultaneously learn from two spectrogram

sequences for speech recognition. The Gate-Level Fusion

LSTM (GLF-LSTM) [27] cell architecture considers a fu-

sion scheme at the gate-level using independent forget, in-

put, and output gates for each input sequence. The outputs

of these gates are added to compute the fused values, thus

determining the cell and hidden states. This cell architecture

was designed for face recognition. The State-Level Fusion

LSTM (SLF-LSTM) [27] cell architecture considers fusion

at the state-level, to learn the independent cell and hidden

memory states from two simultaneous inputs for face recog-

nition. These memory states are then added to produce the

jointly learned outputs of the cell.

Given that the cell state incorporates learnable parame-

ters of the input and forget gates, and controls the output of

the cell, this state can be a key component for jointly learn-

ing the inter-perspective relationships available in multi-

perspective sequences. Nonetheless, a review of the re-

lated work (discussed above) indicates that in these works,

the cell states are learned independently for each input se-

quence and are subsequently fused. This prevents the cell

from identifying the complimentary or contradicting infor-

mation between the multi-perspective sequences when pro-

ducing the outputs. In our work, we address this shortcom-

ing by introducing a new strategy to jointly learn the cell

state. It should be noted that all the above-mentioned multi-

input cell architectures will be considered for benchmarking

when evaluating the proposed cell architecture and network.

3. Proposed Method

This section presents our novel MP-LSTM cell and net-

work architectures to be used for representation learning.

3.1. Model Overview

Given multi-perspective sequences S
p
i : p ∈

{1, 2, . . . ,m}, i ∈ {1, 2, . . . , n}, where m is the number

of simultaneously acquired perspectives and n is the num-

ber of perspective instances, the MP-LSTM network G can

be formulated as:

Hi = G(Sp
i ), ∀ p ∈ (1, ...,m), ∀ i ∈ (1, ..., n), (1)

where Hi is the hidden state output by the ith cell. We use

the term “instance” to be general enough to cover both i)

a moment in a multi-perspective sequence in time and ii) a

spatial location in a multi-perspective sequence in space.

It is a common practice in many visual recognition tasks

to first extract spatial features from a given sequence S
p
i

prior to learning the sequential information through an

RNN [7]. In this context, S
p
i can be used as input to a fea-

ture extractor X such as a CNN, in order to first extract
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Figure 2. Proposed MP-LSTM cell architecture.

spatial features E
p
i , as formulated in Equation 2. S

p
i can

then be substituted by E
p
i in Equation 1.

E
p
i = X (Sp

i ), ∀ p ∈ (1, ...,m), ∀ i ∈ (1, ..., n). (2)

3.2. Cell Architecture

Unlike the existing multi-input LSTM cell architectures,

our proposed MP-LSTM cell jointly updates the cell state

using the multi-perspective input sequences. To do so, ad-

ditional gates and cell memories are incorporated into the

cell architecture and a novel recurrent joint learning strat-

egy is proposed that will be discussed in the following.

The proposed cell architecture with peephole connec-

tions [9] is illustrated in Figure 2. First, the input gates

I
p
i , for the ith instance of the pth perspective sequence, are

computed according to Equation 3, thus controlling the new

information to be added to the shared cell state. The input

gate inputs are the present sequence instance S
p
i , previous

hidden state Hi−1, and previous cell state Ci−1:

I
p
i = σ(W p

IsS
p
i +W

p
IhHi−1 +W

p
IcCi−1 + b

p
I),

∀ p ∈ (1, ...,m),
(3)

where W
p
Is, W

p
Ih, and W

p
Ic are the input gate weights and b

p
I

is the input gate bias for the ith instance of the pth perspec-

tive sequence. σ denotes the sigmoid activation, ensuring

that the input value is bounded in the range [0,1].

The vector of candidate values C̃
p
i , for the ith instance

of the pth perspective sequence, is computed according to:

C̃
p
i = tanh(W p

C̃s
S
p
i +W

p

C̃h
Hi−1 +W

p

C̃c
Ci−1 + b

p

C̃
),

∀ p ∈ (1, ...,m),
(4)

where W
p

C̃s
, W

p

C̃h
, and W

p

C̃c
are the weights and b

p

C̃
is the

bias for the vector of candidate values. The tanh activation
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Figure 3. The bi-directional MP-LSTM network architecture composed by our MP-LSTM cells where n and m are, respectively, the

number of perspectives and associated instances.

function is used to generate the output in the [-1,1] range

while allowing for non-linearities to occur in the network.

The vector of candidate values measured above holds the

weights that can later be fully/partly added to the shared

cell state with respect to the input gate.

In order to control how to forget perspective information

from the shared cell state, the forget gate, F
p
i , for the ith

instance of the pth perspective sequence, is computed:

F
p
i = σ(W p

FsS
p
i +W

p
FhHi−1 +W

p
FcCi−1 + b

p
F ),

∀ p ∈ (1, ...,m),
(5)

where W
p
Fs, W

p
Fh, and W

p
Fc are the forget gate weights and

b
p
I is the forget gate bias.

Next, the cell state of the first sequence, c1i , is updated

according to Equation 6. This means that c1i keeps the in-

formation coming from the previous cell, and the first per-

spective sequence observed at the current instance i.

c1i = F 1

i ⊙ Ci−1 + I1i ⊙ C̃1

i , (6)

The subsequent cell states of the other sequences, c
p
i :

∀ p ∈ (2, ...,m), are then updated using Equation 7. The

cell state c
p
i for the pth sequence is updated with respect

to the jointly learnt cell state, c
p−1

i . This equation al-

lows the cell to establish a relationship between the multi-

perspective sequences, thus identifying complimentary or

contradicting information to be learned or ignored.

c
p
i = F

p
i ⊙ c

p−1

i + I
p
i ⊙ C̃

p
i ; ∀ p ∈ (2, ...,m), (7)

The cell state that is updated using the last perspective

sequence, cmi , is the new joint cell state, Ci, which includes

the jointly learned information coming from all perspective

sequences after the ith instance, formulated as Ci = cmi .

The jointly learned cell state can then be used to produce

the output of the cell. To control how to update the hidden

states of the perspective sequences, the output gates, O
p
i ,

are computed according to:

O
p
i = σ(W p

OsS
p
i +W

p
OhHi−1 +W

p
OcCi−1 + b

p
O),

∀ p ∈ (1, ...,m),
(8)

where W
p
Os, W

p
Oh, and W

p
Oc are the output gate weights and

b
p
O is the output gate bias.

Each perspective sequence’s hidden state, h
p
i , is com-

puted based on the jointly learnt cell state, Ci, and the out-

put gates, according to:

h
p
i = O

p
i ⊙ tanhCi; ∀ p ∈ (1, ...,m), (9)

Finally, the output of the cell, Hi, across all perspec-

tives, after the ith instance, is computed by adding the hid-

den states of each perspective as:

Hi =

m∑

p=1

h
p
i . (10)

3.3. Network Architecture

The MP-LSTM cells can be connected to create a net-

work capable of learning effective and richer representa-

tions for multi-perspective sequences. In this context, the

output of the ith cell, Hi, as well as the jointly learned cell

state, Ci, corresponding to ith input instances of all per-

spective sequences, are fed to the (i+ 1)th cell, respec-

tively as short and long-term memories. The (i+ 1)
th

cell additionally receives the (i+ 1)
th

instances from all

perspective sequences. This creates the network, as illus-

trated in Figure 3 (considering lip reading samples as ex-

ample). The architecture presented in Figure 3 shows a bi-

directional network, as both forward and backward joint re-

lationships are considered [10] to form two feature vectors

that are subsequently concatenated. Naturally, the proposed

cell architecture can also be adopted in the context of other

LSTM network architectures [11]. In the experiments (Sec-

tion 2.7), we will compare the performance of bi-directional

and uni-directional network architectures.

The number of cells in the network is equal to the num-

ber of instances available in each perspective sequence.

The output of each cell takes into account the joint short-

and long-term relationships observed up to that cell’s input.

It should be noted that the network requires synchronized

multi-perspective sequences to be received, with the same

length (number of instances), as illustrated in Figure 3. The

network initializes the hidden and cell states to zero for the

first cell. Depending on the learning task, other initializa-

tion mechanisms can be adopted for improving the learning

performance or accelerating the training process [21].
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4. Experiments and Performance Assessment

In this section, we describe the recognition solutions and

the experiments designed to demonstrate the effectiveness

of the proposed MP-LSTM network.

4.1. Experiment Setup

We evaluate the applicability of the proposed network to

visual representation learning on three public datasets for

two different tasks, covering two different types of multi-

perspective sequences: multi-perspective sequences over

time (Experiment 1) and over space (Experiment 2).

Experiment 1 (Lip Reading): In this experiment, we con-

sider temporal sequences (videos) recorded from multiple

perspectives using several video cameras capturing differ-

ent angles over the scene. The MP-LSTM network is used

to explore the inter-perspective dynamics over time for lip

reading, also known as visual speech recognition.

Experiment 2 (LF-Based Face Recognition): In this ex-

periment, we consider the usage of LF images, obtained by

an LF camera, which simultaneously captures the intensity

of light rays coming from multiple directions in space at

a single time instant [17]. LF cameras can provide multi-

perspective sequences, for instance corresponding to the

perspectives in the horizontal and vertical directions. In

this experiment, the used LF images have been captured

from 15×15 different perspectives horizontally and verti-

cally [29]. The goal of this experiment is to evaluate the

performance of the MP-LSTM network by exploiting the re-

lationships between these two spatial perspective sequences

for the face recognition task.

4.2. Recognition Solutions

For both lip reading and face recognition experi-

ments, we design solutions using our proposed MP-LSTM

cell architecture. These solutions first use the ResNet-

50 CNN [12], pretrained on the large-scale VGG-Face2

dataset [3], to extract representations from the each of the

input sequences/perspectives. We additionally employ the

4-layer CNN proposed in [22], pretrained on the OuluVS2

dataset [2], for lip reading. The extracted features are then

fed to a bi-directional MP-LSTM network, as discussed in

Section 3.3, followed by a soft-attention mechanism [25]

for selectively focusing on the most salient jointly learned

states. A softmax classifier is finally used to perform the

classification.

4.3. Datasets and Test Protocols

Here we describe the three datasets used in our experi-

ments as well as the protocols used for evaluation purposes.

Lip Reading Dataset: The OuluVS2 dataset [2] consists

of 52 speakers uttering the same 10 phrases and 10 pre-

determined digit sequences. The videos have been simulta-

neously recorded from five different viewing angles, span-

ning between the frontal and profile perspectives, as illus-

trated in Figure 4. In our experiments, we follow the test

protocol proposed in [2], conducting a speaker-independent

experiment with 12 specified subjects for testing, 12 sub-

jects for validation, and the remaining ones for training. We

additionally employ the test protocol used in [22, 10], using

only 10 phrases (output classes) for training and testing.

Figure 4. Illustration of OuluVS2 samples from three different

subjects captured from five different angles [2].

LF Face Datasets: The LF Faces in the Wild (LFFW) and

LF Face Constrained (LFFC) datasets [28] have been used

in Experiment 2. LFFW includes 1908 LF face images, cor-

responding to 429,300 2D images, captured from 53 sub-

jects under several unconstrained acquisition variations, in

both indoor and outdoor environments. These LF images

have been captured at different locations and from differ-

ent distances, as illustrated in Figure 5. On the other hand,

LFFC contains 1060 LF images, corresponding to 238,500

2D images, captured from the same 53 subjects used in the

LFFW, but in a controlled acquisition setup. LFFC has been

acquired between 1 day and 3 years prior to LFFW. The

available images have different facial variations, including

facial emotions, actions, poses, illuminations, and occlu-

sions, as illustrated in Figure 5. For comprehensive evalua-

tion, a cross-dataset test protocol between these two datasets

has been considered.

Figure 5. Variations of a specific subject in the LFFW and LFFC

datasets [28].

4.4. Benchmarks

We compare our MP-LSTM -based solutions to a num-

ber of relevant benchmarks for each experiment. The se-

lected benchmarks can be classified into three categories.
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i) We replace the MP-LSTM cells in our solutions with

conventional LSTM cells and instead use feature-level and

score-level fusion strategies to obtain a single output given

the different perspectives. ii) We replace the MP-LSTM

cell in our solutions with multi-input LSTMs [24, 19, 31,

27] reviewed in Section 2. This eliminates the need

for a fusion step after learning from each perspective se-

quence. iii) We also consider other alternative recogni-

tion solutions available in the literature for each experi-

ment. For lip reading, we include PCA+LSTM+HMM [33],

CNN+LSTM [16], 4-layer CNN+Hierarchical LSTM [22],

and VGG-M+Attentive Bi-LSTM [26], as they use LSTM

networks in combination with different spatial feature ex-

tractors and classifiers. 3DCNN [16] has also been con-

sidered as it has shown to be an effective alternative to

CNN + LSTM architectures. It is worth noting that there

are some lip reading solutions that use other pre-processing

or post-processing steps, particularly using both audio and

visual information [15], to boost the recognition perfor-

mance. These solutions have not been included here in or-

der to perform a fair comparison, as the main goal here is to

show the effectiveness of our MP-LSTM proposal, notably

in comparison with other fusion strategies and the existing

multi-input LSTM learning architectures. For face recog-

nition, two high performance CNNs including ResNet-50

and squeeze-and-excitation (SE) ResNet-50 pretrained on

the large-scale VGG-Face2 dataset [3], as well as the state-

of-the-art VGG-16 + LSTM [29] solution are selected. Nat-

urally, the proposed MP-LSTM cell can be adopted as part

of other multi-perspective visual recognition solutions that

include an LSTM module while considering other solutions

for face recognition and lip reading [23].

4.5. Implementation Details

The optimal parameters for achieving the best perfor-

mance results for the face recognition and lip reading exper-

iments are summarized in Table 1. This table includes the

best hyperparameter values, empirically obtained for each

of the sub-networks, notably the CNN feature extractor, the

MP-LSTM network, and the attention mechanism, along

with the parameters used to train the end-to-end network

as a whole. The metadata available with the three datasets

was used to crop the face and mouth regions from the orig-

inal images for the face recognition and lip reading exper-

iments, respectively. The implementation was done using

Keras [5] with TensorFlow backend [1], and the training

used an Nvidia GeForce GTX 1080 Ti GPU.

4.6. Training

The training losses for our MP-LSTM network are plot-

ted in Figure 6 for the lip reading and face recognition

experiments, along with results for the other multi-input

LSTMs discussed in Section 2. It can be observed that train-

Table 1. Best parameter values empirically obtained for the face

recognition and lip reading solutions.
Sub-Net. Parameter Face Rec. Lip Reading

CNN Architecture ResNet-50 ResNet-50 & 4-Layer CNN

Feature Pretrained VGG-Face2 VGG-Face2 & OuluVS2

Extractor # of Inputs 15 × 2 200 × # of Seq.

Embedding Layer Avg. Pooling Avg. Pooling & Last Layer

Feature Size 2048 2048 & 450

MP-LSTM # of Inputs 15 × 2 200 × # of Seq.

# of Outputs 15 200

Hidden Size 256 × 2 128 × 2

Dropout Rate 0.1 0.1

Network Arch. Bi-directional Bi-directional

Attention Activation Func. Softmax Softmax

Full Network Batch Size 53 120

Loss Function Cross-entropy Cross-entropy

Optimizer Rmsprop Rmsprop

Metric Accuracy Accuracy

# of Epochs 100 200

ing for face recognition is smoother and faster than for lip

reading; this may be associated to the smaller size of the

datasets, fewer number of perspectives, and narrower angu-

lar information. Nevertheless, the results clearly show that

our network converges faster than the other LSTM variants

for both tasks/experiments.

      (a)                                                                             (b)

Figure 6. Training losses for our proposed LSTM network and sev-

eral alternative multi-input LSTM variants for (a) lip reading; and

(b) face recognition experiments.

4.7. Performance

For the lip reading experiment, we selected three per-

spectives, including the frontal (0◦), half-profile (45◦), and

full-profile (90◦) perspectives, while the 30◦ and 60◦ per-

spectives have been omitted due to space constraints in our

paper. In this context, all 2-perspective combinations as

well as 3-perspective combination have been used as inputs

to our proposed network. For the LF-based face recognition

evaluation, horizontal and vertical perspective sequences

were selected as the two inputs to the proposed network.

Experiment 1 (Lip Reading): The lip reading performance

results obtained by ResNet-50 + LSTM applied to the indi-

vidual 0◦, 45◦, and 90◦ perspectives (single-perspective) are

respectively 74.86%, 72.63%, and 69.44%. Table 2 presents

the lip reading performance of our novel solution as well

as the benchmarks presented in Section 4.4 using all the

20 classes. For lip reading, our solution outperforms all

the other methods for all the viewing angle combinations

by a large margin. Concerning the 2-perspective combi-
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Table 2. Experiment 1: Comparison of MP-LSTM with alternative

multi-perspective lip reading solutions using all classes.
Solution Perspective Angle

0
◦-45◦ 0

◦-90◦ 45
◦-90◦ 0

◦-45◦-90◦

ResNet-50 + LSTM (Feat. Fusion) 79.58% 78.61% 76.11% 80.69%

ResNet-50 + LSTM (Sco. Fusion) 77.78% 78.19% 72.23% 81.11%

ResNet-50 + MV-LSTM [24] 78.61% 80.55% 77.78% 81.94%

ResNet-50 + ST-LSTM [19] 76.11% 80.27% 74.16% 78.47%

ResNet-50 + GLF-LSTM [27] 78.05% 79.44% 78.33% 79.16%

ResNet-50 + SLF-LSTM [27] 79.17% 79.86% 79.58% 82.22%

ResNet-50 + DS-LSTM [31] 77.50% 79.72% 76.11% 80.97%

PCA+LSTM+HMM [33] 73.90% 72.70% — —

3DCNN [16] — — — 76.10%

CNN+LSTM [16] — — — 80.00%

ResNet-50 + MP-LSTM (Ours) 83.74% 83.05% 82.36% 87.22%

Table 3. Experiment 1: Comparison of MP-LSTM with alternative

multi-perspective lip reading solutions using 10 classes.
Solution Perspective Angle

0
◦-45◦ 0

◦-90◦ 45
◦-90◦ 0

◦-45◦-90◦

VGG-M + Attentive Bi-LSTM [26] — — — 87.0%

4-Layer CNN + Hierarch. LSTM [22] 93.6% 94.8% 93.6% 95.6%

4-Layer CNN + MP-LSTM (Ours) 94.6% 95.6% 95.0% 96.8%

nations, the best performing benchmark, SLF-LSTM [27],

delivers the average performance results of 79.54%, while

MP-LSTM achieves an average additional gain of 3.51%.

This performance gain is increased to 5% when consider-

ing the combination of all three perspectives, showing the

superiority of our MP-LSTM network in the joint learn-

ing of inter-perspective relationships, while also converg-

ing faster than other multi-input LSTM variants (see Fig-

ure 6). Interestingly, some of the benchmarks such as ST-

LSTM [19] and GLF-LSTM [27] do not necessarily im-

prove the results when the number of perspectives is in-

creased from 2 to 3. However, a clear performance boost

is observed with our solution, showing the ability of the

MP-LSTM network in jointly learning from multiple per-

spectives. We additionally perform lip reading experiments

using 10 phrases similar to [22, 10]. To this end, we use the

same 4-layer CNN used in [22], thus solely comparing our

MP-LSTM network with the hierarchical LSTM network

proposed in [22]. The results show the superiority of our

MP-LSTM when compared to attentive Bi-LSTM [26] and

hierarchical LSTM [22].

Experiment 2 (LF-based Face Recognition): Table 4

presents the face recognition performance when, respec-

tively: i) LFFC is used for training and LFFW for test-

ing (Protocol 1); and ii) LFFW is used for training and

LFFC for testing (Protocol 2). These tables present re-

sults for our proposed recognition solution that adopts the

proposed MP-LSTM network, as well as for the bench-

marks listed in Section 4.4. The performance results clearly

show the added value of the fusion strategies for face recog-

nition, when compared to the individual results, i.e. us-

ing only horizontal or vertical sequences. The results for

the multi-input LSTMs benchmarks (rows 5-9) are gener-

ally better than the fusion-based solutions (rows 3 and 4),

due to the joint exploitation of multi-perspective sequences.

From the available multi-input LSTMs, ST-LSTM [19] and

SLF-LSTM [27] perform better than the other variants. Fi-

nally, the results show that MP-LSTM achieves better per-

formance than all of the available solutions, for most the test

variations considered.

Comparison to Gated Recurrent Unit (GRU): We also

adopt the same joint learning strategy for GRU [4] com-

pared to MP-LSTM. The results demonstrate a slight supe-

riority for MP-LSTM over the multi-perspective version of

GRU, respectively by achieving performance gains of 0.7%

and 0.9% for lip reading and face recognition.

Uni-Directional Vs. Bi-Directional MP-LSTM: Table

5 presents the recognition performance for uni-directional

and bi-directional networks adopting our proposed cell ar-

chitecture. The results show that a bi-directional network

always achieves superior performance for both lip reading

and face recognition tasks since both forward and backward

relationships are considered. The performance gain is more

evident for the most challenging case of lip reading, as it

involves the combination of all possible perspectives.

Impact of Camera Baseline on Performance: The results

in Tables 2 and 4 indicate that the performance gains ob-

tained by adopting MP-LSTM are more significant for the

lip reading experiment. This is likely due to the fact that the

camera baseline (distance between the lenses/cameras) for

the used LF camera, Lytro Illum [14], is very narrow. In this

context, the perspective images are rendered for very close

horizontal and vertical positions, i.e. a short baseline, im-

plying there is less angular information to be learned from

the LF images. In contrast, the lip reading videos are cap-

tured from (0◦), (45◦), and (90◦) angles, providing the MP-

LSTM network with much wider angular information, i.e.

a larger baseline, thus allowing it to learn richer joint repre-

sentations and achieve better performance.

4.8. Feature Space Exploration

We visualize the discriminative behaviour of the pro-

posed MP-LSTM network using Uniform Manifold Ap-

proximation and Projection (UMAP) [20]. Figure 7 plots

the feature spaces produced by several lip reading solutions

in a two dimensional space using UMAP. Figure 7 includes

the UMAP plots when using the ResNet50+LSTM solution

applied to the individual 0◦ (Figure 7-a), 45◦ (Figure 7-b),

and 90◦ (Figure 7-c) perspective sequences. The Figure 7-d

includes the UMAP plot when combining these three se-

quences, using our MP-LSTM network. This visualisation

is performed for the first 10 classes available in OuluVS2

dataset. A better representation should create denser clus-

ters with less data points distributed far from their respective

cluster’s centroid to facilitate more accurate discrimination

between the various classes. As Figure 7 shows, our pro-

posed MP-LSTM clearly results in more separable classes
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Table 4. Experiment 2: Comparison of MP-LSTM with alternative multi-perspective lip reading solutions.
Solution Protocol 1 (Train: LFFC, Test: LFFW) Protocol 2 (Train: LFFW, Test: LFFC) Avg.

Neutral Exp. H-Prof. F-Prof. Occl. Act. Neutral Exp. Act. Pose Illum. Occl.

ResNet-50 + LSTM (Hor. seq.) 92.14% 88.99% 80.82% 58.18% 80.50% 71.70% 96.23% 95.60% 94.34% 91.51% 96.23% 83.33% 84.43%

ResNet-50 + LSTM (Ver. seq.) 92.14% 88.99% 80.19% 59.75% 80.82% 71.38% 96.23% 94.97% 93.40% 92.45% 97.17% 82.39% 84.72%

ResNet-50 + LSTM (Feat. Fus.) 92.45% 90.57% 80.50% 60.69% 82.08% 73.90% 96.23% 95.60% 93.40% 93.40% 96.23% 83.01% 85.53%

ResNet-50 + LSTM (Sco. Fus.) 92.77% 90.88% 80.19% 61.01% 82.70% 72.33% 96.23% 96.23% 93.40% 92.77% 97.17% 83.33% 85.55%

ResNet-50 + MV-LSTM [24] 92.45% 90.25% 83.02% 61.64% 80.19% 72.64% 96.23% 96.23% 93.40% 94.34% 98.11% 83.33% 85.86%

ResNet-50 + ST-LSTM [19] 93.39% 90.57% 81.76% 61.64% 82.07% 73.90% 98.11% 96.23% 92.45% 94.65% 97.17% 82.28% 86.27%

ResNet-50 + GLF-LSTM [27] 93.08% 90.25% 82.08% 60.06% 82.08% 73.58% 96.23% 96.23% 92.45% 93.08% 97.17% 85.53% 85.99%

ResNet-50 + SLF-LSTM [27] 93.08% 89.31% 82.70% 60.69% 83.02% 73.27% 98.11% 97.48% 93.40% 94.03% 98.11% 83.65% 86.16%

ResNet-50 + DS-LSTM [31] 92.76% 89.62% 79.87% 60.37% 80.81% 73.58% 96.27% 96.86% 93.40% 93.71% 97.17% 82.70% 85.51%

SE-ResNet-50 [3] 78.30% 77.35% 69.18% 51.88% 66.03% 58.80% 83.01% 79.87% 77.35% 81.76% 85.84% 69.81% 72.42%

ResNet-50 [3] 87.73% 86.16% 77.67% 52.51% 73.27% 67.29% 96.22% 94.96% 92.45% 86.62% 96.22% 82.38% 81.81%

VGG-16 + LSTM [29] 90.57% 86.16% 71.07% 34.48% 72.01% 60.69% 92.45% 89.94% 90.57% 76.10% 88.68% 73.27% 75.17%

ResNet-50 + MP-LSTM (Ours) 94.34% 91.19% 82.39% 61.01% 83.64% 75.47% 100.00% 96.86% 93.40% 96.54% 98.11% 84.59% 87.18%

Table 5. Recognition performance for uni-directional and bi-

directional MP-LSTM networks.
Experiment Lip Reading Face Rec.

Protocol 0
◦-45◦ 0

◦-90◦ 45
◦-90◦ 0

◦-45◦-90◦ Prot. 1 Prot. 2

Uni-Direc. 82.92% 80.42% 80.56% 82.49% 77.94% 90.00%

Bi-Direc. 83.74% 83.05% 82.36% 87.22% 81.34% 93.02%

(a)                                      (b)                                       (c)                                      (d)

Figure 7. UMAP visualization of the lip reading feature spaces

produced by individual a) 0◦; b) 45◦; and c) 90◦ perspectives, and

when these three sequences are jointly learned by d) our solution.

The colors denote the first 10 classes available in the OuluVS2

dataset.

versus the other solutions.

4.9. Ablation and Configuration

We perform ablation experiments to understand how

each part of our method contributes to the performance. We

design these experiments using all the three perspectives for

the lip reading task using the 4-layer CNN to extract repre-

sentations. We create three variants of the MP-LSTM cell,

named Models A, B, and C. In Model A we remove the pre-

vious cell state, Ci−1, when computing the new cell state in

Equation 6. In Model B we update the cell state in Equa-

tion 7 with c
p
i−1

(the same perspective from the previous

instance) instead of c
p−1

i (the previous perspective from the

same instance). In Model C we remove the long-term mem-

ory coming from the previous cell. Finally, the complete

model is referred to as Full Model. The results presented in

Table 6 demonstrate the superiority of the complete model

when compared to the various reduced models.

4.10. Time Analysis

Finally, we study the computational time for our LSTM

network along with the other multi-input LSTM vari-

ants. This analysis has been done by measuring the train-

Table 6. Ablation study for the lip reading experiments.
Configuration Model A Model B Model C Full Model

Performance 93.1% 94.8% 90.9% 96.8%

Table 7. Average lip reading training time for our proposed and

alternative multi-input LSTM networks (in seconds).
Method MV [24] ST [19] GLF [27] SLF [27] DS [31] MP (Ours)

Time 2.31 1.54 1.92 2.19 2.64 1.24

ing/testing times on a 64-bit Intel PC with a 3.20 GHz

Core i7 processor, 48 GB RAM, and an Nvidia GeForce

GTX 1080 Ti GPU, running TensorFlow with Keras back-

end. Table 7 shows the training times (in seconds) for each

sequence when considering a combination of all the three

perspectives for the lip reading. It should be noted that these

times are only presented for the LSTM components of the

entire model and do not include the time needed for training

the CNN component. It can be observed from Table 7 that

the required training time for our MP-LSTM network is less

than that for the other LSTM variants, due to the faster con-

vergence of our method (see Figure 6). Concerning testing,

we observe that the time is very similar for all the methods,

notably around 0.05 ± 0.01 seconds per sequence.

5. Conclusion

In this paper, we propose the Multi-Perspective LSTM

(MP-LSTM) cell architecture for effectively learning multi-

perspective sequences. Our approach exploits both the

intra-perspective relationships within each view, as well as

the inter-perspective dynamics over time or over space, by

including additional gates and cell memories with respect

to the conventional LSTM cell architecture to adopt a novel

recurrent joint learning strategy. The performance of the

MP-LSTM network is assessed in the context of two multi-

perspective visual recognition tasks, namely lip reading and

face recognition. The performance results clearly show the

superior performance of our novel solutions over a large

number of relevant benchmarks. The improvements are

more evident when dealing with lip reading data, since the

multiple sequences result from a larger camera baselines.
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