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Université Paul Sabatier

Thibaut Boissin

IRT Saint-Exupery

Jean-Michel Loubes
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Abstract

Adversarial examples have pointed out Deep Neural
Network’s vulnerability to small local noise. It has been
shown that constraining their Lipschitz constant should
enhance robustness, but make them harder to learn with
classical loss functions. We propose a new framework
for binary classification, based on optimal transport,
which integrates this Lipschitz constraint as a theo-
retical requirement. We propose to learn 1-Lipschitz
networks using a new loss that is an hinge regular-
ized version of the Kantorovich-Rubinstein dual for-
mulation for the Wasserstein distance estimation. This
loss function has a direct interpretation in terms of ad-
versarial robustness together with certifiable robustness
bound. We also prove that this hinge regularized ver-
sion is still the dual formulation of an optimal trans-
portation problem, and has a solution. We also estab-
lish several geometrical properties of this optimal solu-
tion, and extend the approach to multi-class problems.
Experiments show that the proposed approach provides
the expected guarantees in terms of robustness without
any significant accuracy drop. The adversarial exam-
ples, on the proposed models, visibly and meaningfully
change the input providing an explanation for the clas-
sification.

1. Introduction

The important progress in deep learning has led to a
massive interest for these approaches in industry. How-
ever, when applying machine learning to critical tasks
such has in the transportation or the medical domain,
empirical and theoretical guarantees are required. Un-
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fortunately, it has been shown that neural networks are
weak to adversarial attacks: a carefully chosen small
shift to the input, usually indistinguishable from noise,
can change the class prediction [30]. This sensitivity
to adversarial attacks is mainly due to the Lipschitz
constant of a neural network which can be arbitrarily
high when unconstrained. Most of white-box attacks
(where the full model is available) take advantage of
it to build adversarial examples by using gradient de-
scent with respect to the input variables. FGSM [13]
performs only one step of gradient descent when other
approaches such as PGD [20, 6] find the optimal ad-
versarial example iteratively. In black-box scenarios,
gradients or logits of the model are not available. In
such case, attacks start from large perturbations and
then reducing it step by step (see for instance, bound-
ary attacks [5] and pointwise attacks [28]).

There are three major types of strategy to address
the issue of adversarial attacks. Agnostic defenses are
independent of the model and consist of altering the
input or the prediction. For instance, Cohen et al.
obtain a provable certificate with respect to l2 norm
by using Gaussian random smoothing [8]. DEFENSE-
GAN [27] uses a GAN to transform the input into the
closest non-adversarial one at inference time. The sec-
ond group of strategies relies on saddle point optimiza-
tion by adding a penalty term measuring the empir-
ical weakness against adversarial example during the
learning process [20]. The last type of approaches fo-
cus on the Lipschitz constant of the network. It has
been proven that bounding the Lipschitz constant of
a neural network provides certifiable robustness guar-
antees against local adversarial attacks [15, 23], im-
proves generalizations [29] and the interpretability of
the model [31]. This constraint can be achieved layer
by layer by using spectral normalization [7] or non-
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expansive layer [24]. In [18], Li et al. go beyond the
Lipschitz constant bounding by requiring layers to be
gradient norm preserving. Combined with hinge loss,
it allows them to achieve stronger robustness certifica-
tion. However, the main limitation of this approach
relies in the link between the hinge margin parameter
and the robustness of the network.

In this paper we propose a new classification frame-
work based on optimal transport that integrates the
Lipschitz constant and the gradient norm preserving
constraint as a theoretical requirement. To the best
of our knowledge, very few researches investigate the
link between binary classification and optimal trans-
port (in [10], Frogner et al. use Wasserstein loss
to improve multilabel classification). In Wasserstein
GAN [2], the k-Lipschitz networks used to measure the
distance between two distributions act like a discrimi-
nator, in analogy with the initial GAN algorithm [12].
The Wasserstein distance is approximated using a loss
based on the Kantorovich-Rubinstein dual formulation
and a k-Lipschitz network constrained by weight clip-
ping. However, as we will demonstrate, a vanilla clas-
sifier based on the Kantorovich-Rubinstein loss is sub-
optimal, even on toy datasets.

We propose a binary classifier based on a regularized
version of Kantorovich-Rubinstein formulation using a
hinge loss term. We show that it remains the dual of
an optimal transport problem, and we prove that the
optimal solution of the problem exists and makes no
error when the classes are well separated. With this
new optimization problem, we guarantee to have an
accurate classifier with a loss that is defined on and
takes advantage of 1-Lipschitz function. As in [18], we
bound the Lipschitz constant of the linear layers by
Bj̈orck normalization and use norm preserving activa-
tion functions [1]. However, the optimal transport in-
terpretation of the problem makes the bridge between
these constraints and the loss function. When solving
this optimal transport problem, attacking a prediction
corresponds to travel along the transport plan up to the
decision frontier. The output of the optimal network is
linked to the length of this path, which is maximized
during the optimization process of the proposed loss.

The paper, and the contributions, are structured as
follows. In Section 2, we recall the definition of Wasser-
stein distance and the dual optimization problem asso-
ciated. We present the interesting properties of a clas-
sifier based on this approach, illustrate that it leads to
a suboptimal classifier even on a toy dataset. Section 3
describes the proposed binary classifier, based on a
regularized version of the Kantorovich-Rubinstein loss
with a hinge regularization. We show that the primal of
this classification problem is a new optimal transport

problem and we demonstrate different mathematical
properties of our approach. Section 4 is devoted to the
way of constraining the classifier to be 1-Lipschitz and
how to generalize the approach to multi classification
problems. Section 5 presents the results of experiments
on MNIST, Cifar10 and CelebA datasets, measuring
and comparing the results of different approaches in
terms of accuracy and robustness. Last, we demon-
strate that with our approach, building an adversarial
example requires explicitly changing the example to
an in-between two-classes image, which correspond to
a point halfway on the transport plan. Proofs, compu-
tations details and additional experiments are reported
in the appendix.

2. Wasserstein distance and

Kantorovich-Rubinstein classifier

In this paper we only consider the Wasserstein-1 dis-
tance, also called Earth-mover, and noted W for W1.
The 1-Wasserstein distance between two probability
distributions µ and ν in Ω, and its dual formulation
by Kantorovich-Rubinstein duality [32], is defined as
the solution of:

W(µ, ν) = inf
π∈Π(µ,ν)

E
x,z∼π

‖ x− z ‖ (1a)

= sup
f∈Lip1(Ω)

E
x∼µ

[f(x)]− E
x∼ν

[f(x)] (1b)

where Π(µ, ν) is the set of all probability measures
on Ω×Ω with marginals µ and ν and Lip1(Ω) denotes
the space of 1-Lipschitz functions over Ω. Although,
the infimum in Eq. (1a) is not tractable in general, the
dual problem can be estimated through the optimiza-
tion of a regularized neural network. This approach
has been introduced in WGAN [2] where Lip1(Ω) is ap-
proximated by the set of neural networks with bounded
weights (better approximations of Lip1(Ω) will be dis-
cussed in Section 4).

We consider a binary classification problem on
feature vector space X ⊂ Ω and labels Y = {−1, 1}.
We name P+ = P(X|Y = 1) and P− = P(X|Y = −1),
the conditional distributions with respect to Y. We
note p = P (Y = 1) and 1 − p = P (Y = −1) the
apriori class distribution. The classification problem
is balanced when p = 1

2 .

In WGAN, [2] proposed to use the learned neural

network (denoted f̂ in the following), by maximizing
the Eq. (1b), as a discriminator between fake and real
images, in analogy with GAN [12]. To build a classifier

based on f̂ , one can simply note that if f∗ is an optimal
solution of Eq. (1b), then f∗+C,C ∈ R, is also optimal.
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Centering the function f∗ (resp. f̂), Eq. (2), enables

classification according to the sign of f∗c (x) (resp.f̂c for
the empirical solution).

f∗c (x) = f∗(x)−
1

2

(

E
z∼P+

[f∗(z)] + E
z∼P−

[f∗(z)]

)

. (2)

Such a classifier would exhibit good properties in
terms of robustness for two main reasons: First, it has
been shown in [32] that the function f∗ is directly re-
lated to the cost of transportation between two points
linked by the transportation plan as follows:

Px,z∼π∗(f∗(x)− f∗(z) = ||x− z||) = 1. (3)

Second, it was shown in [14, 1], that this optimal solu-
tion also induces a property stronger than 1-Lipschitz:

||∇f∗|| = 1 almost surely on the support of π∗. (4)

However, applying this vanilla classifier (Eq. (2)) to
a toy dataset such as the two-moons problem, leads to
a poor accuracy. Indeed, Figures 1a and 1b present
respectively the distribution of the values of f̂c(x) con-

ditionally to the classes and the level map of f̂c. We
can observe that, even if the classes are easily separa-
ble, the distributions of the values of f̂c conditionally
to the class overlap. Thus, the 0-level threshold on f̂c
does not correspond to the optimal separator (even if it

is better than random). Intuitively, f̂c maximizes the
difference of the expectancy of the image of the two
distributions but do not try to minimize their overlap
(Fig. 1a).

3. Hinge regularized Kantorovich-

Rubinstein classifier

3.1. Definitions and primal transportation problem

In order to improve the classification abilities of the
classifier based on Wasserstein distance, we propose a
Kantorovich-Rubinstein optimization problem regular-
ized by an hinge loss :

sup
f∈Lip1(Ω)

− LhKR
λ (f) =

inf
f∈Lip1(Ω)

E
x∼P−

[f(x)]− E
x∼P+

[f(x)]

+ λE
x

(1− Y f(x))+

(5)

where (1 − yf(x))+ stands for the hinge loss
max(0, 1 − yf(x)) and λ >= 0. We name LhKR

λ the
hinge-KR loss. The goal is then to minimize this loss
with an 1-Lipschitz neural network. When λ = 0, this

corresponds to the Kantorovich-Rubinstein dual opti-
mization problem. Intuitively, the 1-Lipschitz function
f∗ optimal with respect to Eq. (5) is the one that both
separates the examples with a margin and spreads as
much as possible the image of the distributions. When
using only an hinge loss (as in [18] for instance), the
examples outside the margin are no more taken into
consideration. If the margin is increased to cover all
the examples and if the class are equally distributed,
the hinge loss becomes equivalent to the Kantorovich
Rubinstein loss and then leads to a weak classifier.

In the following, we introduce Theorems that prove
the existence of such an optimal function f∗ and im-
portant properties of this function. Demonstrations of
these theorems are in Appendix B.

Theorem 1 (Solution existence). For each λ > 0 there
exists at least a solution f∗ to the problem

f∗ := f∗λ ∈ argminf∈Lip1(Ω)L
hKR
λ (f).

Moreover, let ψ be an optimal transport potential
for the transport problem from P+ to P−, f

∗ satisfies
that

||f∗||∞ ≤M := 1 + diam(Ω) +
L1(ψ)

inf(p, 1− p)
. (6)

The next theorem establishes that the Kantorovich-
Rubinstein optimization problem with hinge regular-
ization is still a transportation problem with relaxed
constraints on the joint measure (which is no longer a
joint probability measure).

Theorem 2 (Duality). Set P+, P− ∈ P(Ω) and λ > 0,
then the following equality holds

sup
f∈Lip1(Ω)

−LhKR
λ (f) = inf

π∈Πp
λ(P+,P−)

∫

Ω×Ω

|x− z|dπ

+ πx(Ω) + πz(Ω)− 1

(7)

Where Πp
λ(P+, P−) is the set consisting of positive mea-

sures π ∈ M+(Ω × Ω) which are absolutely continu-
ous with respect to the joint measure dP+ × dP− and
dπx

dP+
∈ [p, p(1 + λ)], dπz

dP−

∈ [1− p, (1− p)(1 + λ)].

3.2. Classification and geometrical properties

We note f̂ the solution obtained by minimizing
LhKR
λ on a set of labeled examples and f∗ the solu-

tion of Eq. (5). We don’t assume that the solution

found is optimal (i.e. f̂ 6= f∗) but we assume that f̂ is
1-Lipschitz. Given a function f , a classifier based on
sign(f) and an example x, an adversarial example is
defined as follows:

adv(f,x) = argmin
z∈Ω|sign(f(z))=−sign(f(x))

‖ x− z ‖ . (8)
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(a) Distribution of f̂c conditionally to the classes (b) Level map of f̂c

Figure 1: Wasserstein classification (Eq. (2)) on the two moons.

(a) Distribution of f̂ conditionally to the classes. (b) Level map of f̂

Figure 2: Hinge regularized Kantorovich-Rubinstein (hinge-KR) classification on the two moons problem

According to the 1-Lipschitz property of f̂ we have

|f̂(x)| ≤ |f̂(x)− f̂(adv(f̂ ,x))| ≤‖ x−adv(f̂ ,x) ‖ . (9)

So |f̂(x)| is a lower bound of the distance of x to the

separating boundary defined by f̂ and thus a lower
bound to the robustness to l2 adversarial attacks.
Thus, by minimizing E ((1− yf(x))+), we maximize
the accuracy of the classifier and by maximizing the
discrepancy of the image of P+ and P− with respect to
f we maximize the robustness with respect to adversar-
ial attack. The proposition below establishes that the
gradient of the optimal function with respect to Eq. (5)
has norm 1 almost surely, as for the unregularized case
(Eq. (4)).

Proposition 1. Let π be the optimal measure of the
dual version (7) of the hinge regularized optimal trans-
port problem. Suppose that it is absolutely continuous
with respect to Lebesgue measure. Then there exists at
least a solution f∗ of (7) such that ||∇f∗|| = 1 almost
surely.

Furthermore, empirical results suggest that given x,
the image trf∗(x) of x by transport plan and adv(x)
are in the same direction with respect to x and the
direction is −∇xf

∗(x). Combining this direction with
the Eq. (9), we will show empirically (sect. 5) that

adv(x) ≈ x− cx ∗ f∗(x) ∗ ∇xf
∗(x)

and
trf∗(x) ≈ x− c′x ∗ f∗(x) ∗ ∇xf

∗(x)

with 1 ≤ cx ≤ c′x ∈ R. It turns out that this corre-
sponds to the definition of FGSM attacks [13]. This
suggests that in our frameworks, adversarial attacks
amount to travel along the transportation path from
the example to its transportation image.

The next proposition shows that, if the classes are
well separated, maximizing the hinge-KR loss leads to
a perfect classifier.

Proposition 2 (Separable classes). Set P+, P− ∈
P(Ω) such that P (Y = +1) = P (Y = −1) and λ ≥ 0
and suppose that there exists ǫ > 0 such that

|x− z| > 2ǫ dP+ × dP− almost surely (10)
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Then for each

fλ ∈ arg supf∈Lip1/ǫ(Ω)

∫

Ω

f(dP+ − dP−)−

λ

(
∫

Ω

(1− f)+dP+ +

∫

Ω

(1 + f)+dP−

)

,

it is satisfied that L1(fλ) = 0. Furthermore if ǫ ≥ 1
then fλ is an optimal transport potential from P+ to
P− for the cost |x− z|.

We show in Fig. 2, on the two moons problem, that
in contrast to the vanilla classifier based on Wasserstein
(Eq. (2)), the proposed approach enables non over-

lapping distributions of f̂ conditionally to the classes
(Fig. 2a). In the same way, the 0-level cut of f̂ (Fig. 2b)
is a nearly optimal classification boundary. Moreover,
the level cut of f̂ , on the support of the distributions,
is close to the distance to this classification boundary.

4. Architecture

4.1. 1Lipschitz gradient norm preserving network

In order to build a deep learning classifier based on
the hinge-KR optimization problem (Eq. (5)), we have
to constrain the Lipschitz constant of the neural net-
work to be equal to 1. It is known that evaluating it
exactly is a NP-hard problem [33]. The simplest way to
constraint a network to be 1-Lipschitz is to impose this
1-Lipschitz property to each layer. For dense layers,
the initial version of WGAN [2] consisted of clipping
the weights of the layers. However, this is a very crude
way to upper-bound Lipschitz constant. Normalizing
by the Frobenius norm has also been proposed in [26].
In this paper, we use spectral normalization as pro-
posed in [21], since the spectral norm is equal to the
Lipschitz constant of the layer. At the inference step,
we normalize the weights of each layer by the spectral
norm of the matrix. This spectral norm is computed
by iteratively evaluating the largest singular value with
the power iteration algorithm [11]. This is done dur-
ing the forward step and taken into account for the
gradient computation. In the case of 2D-convolutional
layers, normalizing by the spectral norm of convolution
kernels is not enough and a supplementary multiplica-
tive constant Λ is required (the regularization is then
done by dividing W by Λ||W ||). We propose, for zero
padding, a tighter estimation of Λ than the one pro-
posed in [7], computing the average duplication factor
of non zero padded values in the feature map:

Λ =

√

(k.w − k̄.(k̄ + 1)).(k.h− k̄.(k̄ + 1))

h.w
(11)

for a kernel size equals to k = 2 ∗ k̄ + 1. Even if this
constant doesn’t provide a strict upper bound of the
Lipschitz constant (for instance, when the higher val-
ues are located in the center of the picture), it behaves
very well empirically. Convolution with stride, pooling
layers, detailed explanations and demonstrations are
discussed in Appendix C.3.

As shown in Property 1, the optimal function f∗

with respect to Eq. (5), verifies ||∇f∗|| = 1 al-
most surely (gradient norm preserving (GNP) archi-
tecture [1] ). We apply the approach described in [1],
based on the use of specific activation functions and a
process of normalization of the weights. Two norm pre-
serving activation functions are proposed: i) Group-

Sort2 : sorting the vector by pairs, ii) FullSort : sort-
ing the full vector. These functions are vector-wise
rather than element-wise. We also use the P-norm
pooling [4], with P = 2 which is a norm-preserving
average pooling. Concerning linear functions, a weight
matrix W is gradient norm preserving if and only if
all the singular values of W are equals to 1. In [1],
the authors propose to use the Björck orthonormaliza-
tion algorithm [3]. This algorithm is fully differential
and, as for spectral normalization, is applied during
the forward inference, and taken into account for back-
propagation (see Appendix C.4 for details). We don’t
consider BCOP [18], which performs slightly better
that Björck for convolution but at an higher compu-
tation cost. We developed a full tensorflow [9] imple-
mentation in an opensource library, called DEEL.LIP1

, that enables training of k-Lipschitz neural networks,
and exporting them as standard layers for inference.

4.2. Multiclass hingeKR classifier

To adapt our approach to the multi-class case, we
propose to use q binary one-vs-all classifiers, where
q is the number of classes. The set of labels is now
Y = {C1, . . . , Cq}. We name Pk = P(X|Y = Ck) and
¬Pk = P(X|Y 6= Ck) the conditional distributions with
respect to Y . We obtain the following optimization
problem :

sup
f1,...,fq∈Lip1(Ω)

− LhKR
λ (f1, . . . , fq)

where

LhKR
λ (f1, . . . , fq) =

q
∑

k=1

[

E
x∼¬Pk

[fk(x)]− E
x∼Pk

[fk(x)]

+λE
x

(

m− (2 ∗ ✶
y=Ck

− 1).fk(x)

)

+

]

.

(12)

1https://github.com/deel-ai/deel-lip
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The global architecture is the same as the binary one
except that the last layer has q outputs. For this last
layer, each weight corresponding to each output neuron
are normalized independently creating q 1-Lipschitz
functions with gradient norm preserving properties.
With this architecture, the optimal transport interpre-
tation is still valid. The class predicted corresponds to
the argmax of the classifier functions. With this ap-
proach, the provable robustness lower-bound is a half
of the difference between the max and the second max
values of {f1(x), . . . , fq(x)}.

In [18], Li et al. use classical multi-class hinge loss
based on un-centered margin and apply constraint on
the entire last layers rather than doing it indepen-
dently. It allows to a lower provable adversarial robust-
ness bound than ours. However, the f1, . . . , fq obtained
in this setting are no more 1-Lipschitz one by one, mak-
ing the adversarial robustness bounds not comparable
directly (see Appendix C.5).

5. Experiments

In the experiment, we compare five approaches: i)
Adv for Adversarial learning as in [20] , ii) 1LIPlog

for log-entropy classifier with Björck orthonormaliza-
tion and ReLU activation functions similar to Parseval
networks [7], iii) GNPm

hin for gradient norm preserv-
ing classifiers based on hinge loss with margin m as
done in [18] iv) GNPlog for gradient norm preserving
classifiers based on log entropy loss and v) hKRm

α for
gradient norm preserving classifiers based on the pro-
posed hinge-KR with marginm and coefficient α. Note
that, to the best of our knowledge, the GNPlog hasn’t
been applied yet for adversarial defenses. To have a fair
comparison, all the classifiers share the same dense or
convolutional architectures except for the weight nor-
malization and the activation functions. We set α to
50 and margin m to 1 except for MNIST where we also
consider m = 2.12 to be comparable with the experi-
ments in [18]. For the GNP classifiers, we apply Björck
orthonormalization (15 steps with p=1) after the spec-
tral normalization (this improves the convergence of
the Björck algorithm). We use fullsort activation func-
tion for dense layers, and GroupSort2 for the convolu-
tional ones. Appendix D.1 provides the full description
of the architecture and the optimization process.

We consider three classification problems, two multi-
class problems (MNIST [17] and CIFAR-10 [16]) and a
binary one (eyeglasses detection in Celeba-A dataset
[19]). For MNIST and CIFAR-10, we use standard
configurations with 10 classes and no data augmen-
tation, 50000 examples in the training set and 10000
examples in the test set. In the binary problem, we
consider the separation between people with or with-

out eyeglasses on the CelebA dataset with 128x128x3
centered images. This is an unbalanced classification
problem with 16914 examples in the training set (38%
with eyeglasses) and 16914 examples in the test set
(38% with eyeglasses).

Figure 3 presents the robustness against l2 attacks
with DeepFool attack [22] on the different datasets. We
use this type of attack since none of the tested ap-
proaches is specifically built to resist to it. We can
observe that the hKRm

α approach is at the top of
robustness on all the dataset and systematically bet-
ter than GNPlog on all datasets and GNPm

hin on the
multiclass problem for the same value of m. On the
CelebA dataset, GNPm

hin and the adversarial approach
Adv start with a better accuracy, but don’t resist to
large attacks. GNPlog and 1LIP have good perfor-
mances on MNIST and CIFAR but their performances
decrease when the models are deeper as for CelebA
dataset (1LIP was unable to converge on CelebA). To
compare the different defense methods, we also apply a
combination of the state-of-the art attacks FGSM [13],
PGD (l2PGD) [20] and Carlini and Wagner (l2CW )
[6] on 500 images of the test set. All attacks are per-
formed with the foolbox library [25]. For each value of
ǫ, we run all the attacks and consider it as a success if
at least one of them has succeeded. The results are pre-
sented in Figure 4 and Table 1 details the robustness
values for CelebA. The results confirm and amplify the
ones obtained with deepfool attacks. hKRm

α obtain the
highest level of robustness in all the situations for low
and high values of ǫ. Adv has the highest robustness
w.r.t. FGSM attacks, since it was designed against to,
but is a bit less resistant w.r.t. l2PGD and weak w.r.t.
l2CW . hKRm

α is especially strong w.r.t. Carlini and
Wagner attack even with high values of ǫ. The discrep-
ancy between the robustness of the approaches increase
when models become deeper. On the CelebA dataset,
GNPlog have difficulties to resist to higher noise. As
expected, hKRm

α seems to take most advantage of the
gradient norm preserving architecture and obtains ro-
bustness against large attacks with an acceptable de-
crease of accuracy without noise.

Moreover, Table 1 shows that, for the proposed so-
lution, accuracies w.r.t. ǫ are similar regardless the
attacks. This suggests that optimal attacks are the
same, and they are in the direction of the gradient of
the classifier. This confirms the intuition pointed out
in section 3.2 that optimal attack consists on travel-
ing along the optimal transport map. In Figure 5, we
compare adversarial images obtained with l2 deepfool
for the different models. The first row corresponds to
the initial image. The following rows except the last
one, are pictures obtained after attacks for the differ-
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(a) MNIST dense (b) MNIST CNN (c) CIFAR (d) CelebA

Figure 3: Accuracy (Y-axis) w.r.t. of l2 norm of fooling noise with deepfool attack (X-axis) on 2000 images of the
test set

ent models. We design the attacks to push the image
just beyond the classification boundary (50/50). For
the Madry et al. approach (Adv) the noise is barely
detectable. The noise is more visible with the gradi-
ent preserving approaches GNPlog and GNPm

hin but it
is still hard to interpret and sometimes meaningless.
In contrast to the other approaches, the noise required
to change the output class for the hKR classifier is
highly structured, and interpretable. For people with-
out glasses, the attack adds noise around the eyes and
at the top of the nose. For people with eyeglasses, the
attack tends to erase the glasses around the eyes and
at the top of the nose.

The last row corresponds to the scheme proposed in
Section 3.2 att(f̂ ,x) ≈ x−2∗ f̂(x)∗∇xf̂(x) where f̂ is

the hKR1
50 model. Indeed, if ∇xf̂(x) = 1 and f̂(x) is

the distance between the x and its image with respect
to the transport, we expect to have att(f̂ ,x) = tr(f̂ ,x).
The shifts are similar to the attacks and even more
meaningful. This confirms that attacks against hKR
can be interpreted as a transportation from a class to
the other one and then requires to explicitly change
the transport image in the opposite class. This sug-
gests that attacks can explain classification for the
hKR model. Moreover, the gradient of this model al-
lows to build this explanation without relying on time-
consuming algorithms.

6. Conclusion and future works

This paper presents a novel classification framework
and the associated deep learning process. Besides the
interpretation of the classification task as a regularized
optimal transport problem, we demonstrate that this
new formalization has some valuable properties about
error bounds and structural robustness regarding ad-
versarial attacks. We also propose a systematic ap-
proach to ensure the 1-Lipschitz constraint of a neural

ǫ Adv GNPhin GNPlog hKR50

Base 0 98.04 97.2 94.51 96.07

FGSM
2 90.52 86.79 81.40 87.44

5 82.96 37.70 43.90 64.01

l2GPD
2 81.98 88.65 84.17 88.75

5 61.35 34.90 48.02 69.79

l2CW
2 32.14 80.80 79.02 88.62

5 13.17 29.46 32.81 56.44

Table 1: Robustness w.r.t. various attacks on CelebA
dataset

network. This includes a state-of-the-art regulariza-
tion algorithm and more precise constant evaluation
for convolutional and pooling layers. Even if this reg-
ularization process can increase the computation time
during learning (up to three times slower), it doesn’t
impact inference. We developed an open source python
library based on tensorflow for 1-Lipschitz layers and
gradient preserving activation and pooling functions.
This makes the approach very easy to implement and
to use.

The experiment emphasizes the theoretical results
and confirms that the classifier has good and pre-
dictable robustness to adversarial attacks with an ac-
ceptable cost on accuracy. We also show that our clas-
sifier forces adversarial attacks to explicitly modify the
input. This suggest that our models can use adversar-
ial attacks for explaining a prediction as it is done with
counterfactual explanation in logic [34].

In conclusion, we believe that this classification
framework based on optimal transport is of great inter-
est for critical problems since it provides both empirical
and theoretical guarantees.
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(a) MNIST dense (b) MNIST CNN (c) CIFAR (d) CelebA

Figure 4: Accuracy (Y-axis) w.r.t. of l2 norm of FGSM , l2PGD, deepfool and l2 Carlini and Wagner combined
attacks on 500 images of the test set

Figure 5: Adversarial examples on CelebA dataset. The first row is the input image.
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