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Abstract

Predicting human trajectories is an important compo-

nent of autonomous moving platforms, such as social robots

and self-driving cars. Human trajectories are affected by

both the physical features of the environment and social in-

teractions with other humans. Despite recent surge of stud-

ies on human path prediction, most works focus on static

scene information, therefore, cannot leverage the rich dy-

namic visual information of the scene. In this work, we pro-

pose Introvert, a model which predicts human path based on

his/her observed trajectory and the dynamic scene context,

captured via a conditional 3D visual attention mechanism

working on the input video. Introvert infers both environ-

ment constraints and social interactions through observing

the dynamic scene instead of communicating with other hu-

mans, hence, its computational cost is independent of how

crowded the surrounding of a target human is. In addition,

to focus on relevant interactions and constraints for each

human, Introvert conditions its 3D attention model on the

observed trajectory of the target human to extract and focus

on relevant spatio-temporal primitives. Our experiments on

five publicly available datasets show that the Introvert im-

proves the prediction errors of the state of the art.

1. Introduction

Predicting future trajectories of humans in dynamic en-

vironments, such as streets, airports, shopping malls and

sports fields, is an important task in computer vision with

applications in autonomous driving, human-robot interac-

tion, urban safety and advertising, among others [50, 11,

48, 21, 15]. Forecasting human motions, however, is an ex-

tremely difficult problem, due to physical, social and mental

factors that collectively influence people’s trajectories. In

particular, as we move in an environment, we avoid physical

constraints and obstacles, follow landmarks, yield right-of-

way to nearby people, follow social norms and change our

trajectory based on changes in the environment. This has

motivated a large body of works in recent years that aim to

model and incorporate various influencing factors for hu-

man trajectory prediction [1, 39, 23, 3, 13].

Prior Works and Challenges. Earlier works [14, 9, 10,

24, 25, 30, 36, 4, 49, 46, 51, 42, 53] have designed energy

functions to model human-human interactions, also referred

to as “social forces”. Despite their relative success, such

methods require careful feature and energy function design,

which often could capture only simple interactions but not

complex interactions in crowded environments. To mitigate

these limitations, more recent methods have proposed data-

driven approaches by leveraging advances in deep neural

networks. In particular, sequence prediction methods based

on recurrent neural networks (RNNs) model each person’s

trajectory by an RNN, whose latent states capture human

motion, followed by social pooling that allows recurrent

models of nearby trajectories to share their states [1, 13].

However, they cannot capture the influence of farther peo-

ple to a target trajectory, while giving the nearby trajecto-

ries the same importance weights. To overcome these lim-

itations, attention-based models have been integrated with

RNNs [39, 3] and spatio-temporal graphs [41, 40, 33, 20] to

weigh different trajectories by adjusting the importance of

neighbors to each target human. However, most approaches

discussed above rely on only kinematics data, which con-

tains information about only moving agents in the scene.

Given that videos contains rich information about phys-

ical configuration of the scene and navigation constraints,

several works have tried to use the visual context of the

scene in conjunction with kinematics data for more effective

predictions. This has been achieved by concatenating the

states of all RNNs with visual features of a current frame ex-

tracted via CNNs [40, 26, 41], which could be followed by

an attention model to select relevant features [39, 40]. How-

ever, existing works face multiple challenges. First, current

methods extract visual information that is often shared and

identical for all people moving in the environment. How-

ever, in practice, each person’s trajectory depends on the

region of the terrain where he/she is moving, physical con-

straints between the current position and the intended des-

tination, as well as other humans relevant to the path. In

other words, different parts of the scene and visual features

have different importance that depends on the target human.

Second, visual features obtained by encoding one frame at
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a time cannot capture the complex interactions and social

norms, which is why existing methods require to incorpo-

rate social interactions through pooling states of RNNs op-

erating on kinematics data.

More importantly, from a computational stand point,

during inference time, one needs to first run a human detec-

tion and tracking algorithm for all people in the scene and

then connect RNNs using nearest neighbors graphs or at-

tention to be able to predict the trajectory of a target human.

This prohibits existing methods from being run in real-time

at the inference time, especially in crowded environments

with many humans, but one or a few targets of interests.

Paper Contributions. In this paper, we develop an efficient

framework for human trajectory prediction using a condi-

tional 3D visual attention mechanism, which addresses the

aforementioned challenges. We argue that the video itself

(not an individual frame) contains all necessary informa-

tion about the motions and interactions of humans as well as

dynamic constraints, e.g., moving vehicles, and static con-

straints, e.g., buildings and sidewalks, of the environment.

This can be seen from the fact that kinematic trajectories

are extracted from videos, hence, cannot contain more in-

formation than the video itself. Thus, instead of modeling

human-human interactions by connecting nearby or all re-

current models of human trajectories in the scene, we lever-

age the video to extract 3D visual interaction information

(2 spatial and 1 temporal dimensions). This removes the

need for running a detection and tracking algorithm for ev-

ery human in the scene, hence, increases the efficiency at

test time, where only the video and tracking of the target

human would be needed.

We develop a sequence to sequence method that consists

of two parallel encoding streams, which gather 3D visual

and kinematics information relevant to a target human, and

one decoding stream that predicts the future trajectory of

the target human. To focus on relevant social interactions

and physical constraints for each human, our visual encoder

uses a conditional 3D attention mechanism that receives the

input video and conditioning on the observed trajectory of

the target human, extracts spatio-temporal primitives and

learns to attend to most informative primitives. These ex-

tracted primitives could be e.g., parts of a sidewalk, few

vehicles, distant landmarks as well as nearby or distant hu-

mans in the scene. By experiment on UCY [27] and ETH

[35] datasets, we show that out method significantly im-

proves the state of the art performance, reducing the average

prediction error on 5 datasets from 0.41 to 0.34.

2. Related Works

Existing works on predicting human trajectories can be

mainly divided into two categories: human-space interac-

tions and human-human interactions. While the first group

focuses on learning physical features of the environment,

which influence trajectories of humans, the second group

investigates the influence of humans on each other’s paths.

Human-Space Interaction. Physical scene information,

such as crosswalks and roads, has been exploited to ad-

dress the task of human trajectory prediction. To infer fea-

sible paths, [22] has proposed to leverage hidden Markov

decision processes. On the other hand, [26] has employed

static scene context to rank and refine the possible trajec-

tories generated by an RNN-CVAE based framework. [40]

extracts static scene information through a double attention

mechanism to predict the future path of a target pedestrian.

Also, [39] and [41] extract static scene information by con-

sidering the effect of neighboring pedestrians and multi-

modal output configuration through, respectively, attentive

GAN and Info-VAE frameworks. Our work is similar to

[40] in the sense that we also use a dual attention frame-

work, however, our method extracts both static and dynamic

scene features and it takes into account the interaction of a

target human to other humans in the scene.

Human-Human Interaction. Research on predicting

pedestrian behavior considers the interactions between

pedestrians either as a crowd or as an individual. Social-

force and its variants [14, 32, 2, 52, 38, 36] are the pioneer

models that assist a pedestrian to go toward his goal while

avoiding collisions. The main drawback of these methods

is using handcrafted kinetic forces and energy potentials,

which cannot capture complex interactions in crowded en-

vironments and cannot leverage data-driven approaches.

To predict the future trajectory of a human, recent works

use data-driven models, particularly, deep neural networks,

to encode the trajectory information and interactions be-

tween individuals. These interactions have been incorpo-

rated either through a pooling module [1, 13] or an at-

tention module [39, 3]. Another trend to capture social in-

teractions has been using graph representations, where the

nodes and edges correspond to humans and their interac-

tions [54, 23, 12, 55, 33, 20, 41]. On the other hand, our

work focuses on capturing social interactions through dy-

namic 3D scene information.

Sequence Prediction using RNNs. Recurrent Neural Net-

works have been widely used for sequence generation in

diverse range of natural language processing and computer

vision applications. Recent studies on human trajectory pre-

diction mostly employ RNNs to encode and decode kine-

matic trajectory information [1, 56, 16, 43, 45, 44, 6, 31,

34, 28, 29, 8, 37, 17, 47, 5]. However, as observed in

[13, 39], RNNs cannot capture the spatio-temporal inter-

actions among humans in the scene. One way to overcome

this problem is augmenting RNNs by a pooling or an at-

tention module to capture spatio-temporal interactions. Our

work tackles this problem by leveraging dynamic scene fea-

tures via a conditional 3D visual encoder based on attention

[19, 18], which captures complex interactions.
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Figure 1. (A) Introvert is a sequence to sequence model, which consists of i) kinematic encoder, ii) 3D visual encoder using conditional 3D

attention, iii) trajectory decoder. (B) Structure of the conditional 3D attention module.

3. Trajectory Prediction via Conditional 3D

Attention

In this section, we develop a sequence to sequence

framework for human trajectory prediction that leverages

video data directly to infer human-dependent interactions

using a conditional 3D attention mechanism.

3.1. Problem Settings

Trajectory prediction is the problem of estimating the po-

sitions of humans in the future, given their previous posi-

tions and the visual information of the scene. Assume we

have multiple training videos, each containing several hu-

man trajectories in tf frames. Similar to prior works, we

assume that each training video is preprocessed by a human

detection and tracking algorithm to obtain the spatial coor-

dinates of each person across the tf video frames (during

testing, our method only requires the trajectory of the target

human). We denote the 2D position of human p at frame t

by u
(p)
t = (x

(p)
t , y

(p)
t ) 2 R

2. Assume we observe trajec-

tories and the scene from frame 1 to to and the goal is to

predict the trajectories in frames to + 1 to tf .

For a person p, we denote the sequence of observed and

future positions, respectively, by

T (p)
o = (u

(p)
1 , . . . ,u

(p)
to

), T
(p)
f = (u

(p)
to+1, . . . ,u

(p)
tf

). (1)

We also denote the sequence of observed frames by Vo =
(I1, . . . , Ito), which correspond to top-view or angle-view

video frames of the scene.

3.2. Overview of Proposed Framework

To address the problem of human trajectory prediction,

we develop a new sequence to sequence model using an

encoder-decoder architecture. Our model consists of two

parallel encoders: a kinematic and a visual encoder, see

Figure 1. The kinematic encoder receives the observed tra-

jectory information, T
(p)
o , and produces a latent kinematic

trajectory Z
(p)
kin, which encodes the information of the ob-

served positions. The visual encoder, on the other hand,

receives the observed frames Vo and extracts conditional

spatio-temporal context, Z
(p)
vis , for each person, which cap-

tures the necessary physical constraints and social interac-

tions required for predicting the future trajectories. To ex-

tract the spatio-temporal context Z
(p)
vis , we use a 3D dual

attention mechanism, consisting of i) multiple spatial atten-

tion modules that learn to extract and focus on global de-

scriptors of the video, such as humans, crosswalks, cars and

alleys; ii) descriptor attentions that finds the importance of

each descriptor for each pixel in a frame. Given that the

salient visual information used for moving in the environ-

ment for each human is different than others, we condition

the dual attention mechanism on the latent kinematic trajec-

tory of the person, Z
(p)
kin, to capture human-specific visual

encodings. The decoder receives the encoded information

from kinematic and visual encoders and decodes them to

the distribution of future trajectories of the target, T
(p)
f .

Notice that, unlike prior works, the kinematics encoder

of different humans in our framework do not interact. In-

stead, the interaction is captured through the visual stream

by operating on the observed video as a whole, instead of

processing each frame individually, and by conditioning the

visual encoder on each person’s observed trajectory. This

allows our method to inherently capture the kinematic infor-

mation of relevant scene elements and to have the flexibility

of paying attention to physical constraints and humans that

could be far.

Next, we discuss each component of our framework in

details and then present our learning and inference strategy.

For simplicity of notation, we drop the superscript p from

variables, as it would be clear from the context.
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3.3. Kinematic Encoder

To obtain suitable representations of trajectories, the

kinematic encoder, Ek(·), receives the observed trajectory

of a target human as input of the form T δ
o = (u1,u2 �

u1,u3 � u2, . . .),

which consists of the coordinates of the start position and

the relative displacements of the human between consecu-

tive frames. We choose this format as it enables the model

to better capture similarities between almost identical tra-

jectories that may have different starting points. We trans-

form each input vector using a fully-connected network, Φ,

and pass it to a recurrent network (an LSTM) to capture

dependencies between different coordinates of an observed

trajectory. We denote sequence of outputs from the LSTM

units by Zkin, which captures the latent kinematic trajec-

tory.

3.4. Conditional 3D Visual Encoder

As discussed before, the observed video Vo contain in-

formation about physical and social constraints of all hu-

mans in the scene. Thus, we use a visual encoder, Ev(·),
to extract tailored visual information for each human in the

scene, which we denote by Zvis. Our encoder consists of

three consecutive conditional visual feature extraction and

attention blocks {Bi}
3
i=1 that learn to extract increasingly

complex and high-level features. Every block Bi is com-

posed of a 3D CNN layer (denoted by Θi) followed by a

conditional dual attention network (denoted by Ψi). While

each 3D CNN extracts spatio-temporal information from

the video, the conditional dual attention network focuses

on relevant spatio-temporal regions in the video to each hu-

man by using his/her latent kinematic trajectory informa-

tion, Zkin. In other words, the input to the visual encoder

has 3 dimensions (2 spatial dimensions + 1 temporal dimen-

sion), hence, it processes the video through 3D CNNs and

generate 3D attentions (2 spatial + 1 temporal dimension)

for each video input.

Conditional Dual Attention Network. Let Fi denote the

output features of the 3D CNN in the i-th visual feature ex-

traction block, Bi. We employ the double attention archi-

tecture proposed in [7] and modify it with kinematic con-

ditioning for three layers of 3D CNN. The conditional dual

attention network in each block i performs a two-step oper-

ation on Fi to produce its output, F 0

i . The first step extracts

global video descriptors conditioned on the kinematic infor-

mation of the person, which we denote by g(Fi|Zkin,u1).
These global descriptors would correspond to the scene ele-

ments, such as subsets of pedestrians, landmarks, obstacles

that are relevant to the trajectory of the target human. The

second step, on the other hand, finds the relevance of each

of these global descriptors to each pixel in each frame.

More specifically, the conditional dual attention network

in each block Bi consists of three three convolution layers,

{ρj}
3
j=1, with filter size equal to one. The first layer, ρ1,

refines the input Fi and expands the number of its channels

to m. The second layer, ρ2, learns n spatial attention mod-

ules conditioned on Zkin to build n global visual primitives,

each of size m, from the scene. Finally, ρ3 corresponds to

an attention vector on the usage of the global descriptors for

each pixel at each frame. We can write this as,

F 0

i = ρ1(Fi) g(Fi|Zkin,u1)
>σ

�

ρ3(Fi)
�

, (2)

σ denotes the softmax operation and g(Fi|Zkin,u1) de-

notes the global video descriptors conditioned on the kine-

matic information. We build g using the second later ρ2 as

g(Fi|Zkin,u1) = σ
�

ρ2(Fi)
�

� σ(µ([Zkin,u1])), (3)

where µ is a fully-connected layer and � denotes the

Hadamard (entry-wise) product between the output of µ and

each of n global attention map generated by ρ2. We build

the conditional visual feature vector, Zvis by passing F 0

3,

which is the output of the last block, to a fully-connected

layer. We will use Zvis in the decoder module to predict the

future trajectory of the target human.

3.5. Trajectory Decoder

After encoding the the kinematics and visual informa-

tion, we feed the fusion tensor

✓

Zkin Zkin × Zvis

1 Zvis

◆

to a

maxpool layer followed by a linear layer to capture infor-

mation from visual and kinematic streams for the decoder.

Next, the result is fed as a hidden vector to an LSTM in

the decoder module. The output of each LSTM unit repre-

senting a future time instant, t > to, is then connected to a

MLP, consisting of two fully-connected layers, that outputs

a multivariate Gaussian distribution for the displacement

δut , ut − ut−1 ∼ N (µt,Σt), Σt =

✓

σ
x
t 0
0 σ

y
t

◆

, (4)

where the two coordinates are. assumed to be independent.

Notice that predicting displacements instead of absolute po-

sitions, allows our model to better decode identical or simi-

lar trajectories with different start points.

Our method outputs trajectories in a stochastic

mode. More specifically, we sample C sequences
�

δuto+1, . . . , δutf

�

from the learned Gaussian distribu-

tions to obtain K plausible trajectories that the target human

may take in future.

The uncertainty in the predicted coordinates of each

sampled trajectory comes from the accumulation of the un-

certainty of the prediction in a specific time-step and its pre-

vious time-steps. These uncertainties allow the method to

handle multi-modal nature of human trajectories, where of-

ten there exist multiple plausible paths.
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3.6. Training Strategy

We train our network in an end-to-end fashion using the

following loss function,

L , Lmse + λ Lreg (5)

where Lmse denotes the mean squared error and Lreg is a

regularization term to predict consistent future trajectories

with respect to the observed ones. In particular, the regular-

ization is defined as the sum of Euclidean distances between

each step of the predicted trajectory, Tf , and a line fitted to

the observed trajectory, To.

We calculate Lmse by first sampling C future trajec-

tories, then picking the top N trajectories closest to the

ground-truth and finally computing the average of the mean

squared error between these N trajectories and the ground-

truth (in the experiments, we set C = 20 and N = 5). We

empirically observed that this strategy allows our network

to converge faster while having more accurate predictions.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate our proposed method on two pub-

licly available datasets of UCY [27] and ETH [35]. The

ETH dataset has two scenes, where each scene has 750

pedestrians and is split into two sets (ETH and Hotel). The

UCY dataset also has two scenes with 786 pedestrians and

is split into three sets (ZARA1, ZARA2 and UCY). These

datasets consist of videos from a static bird-eye view cam-

era and kinematic trajectories of pedestrians and contain di-

verse types of pedestrians activities such as individual and

group walking, crossing, group forming and scattering. We

evaluate our method on all 5 sets of data.

Evaluation Metrics. Similar to existing works [1, 3, 13,

39, 41, 54], we use the following error metrics:

• Average Displacement Error (ADE): Average L2 dis-

tance between ground-truth and predicted trajectories

over [to + 1, tf ].

• Final Displacement Error (FDE): The distance be-

tween the ground-truth and predicted position at tf .

Evaluation Method. We follow a similar evaluation

method as in prior works [1, 13, 39]. We use a leave-one-

out approach, where we train on 4 sets of data and test on

the remaining set. We observe each training trajectory for 8

times-steps (3.2 seconds) and measure the prediction errors

for 8 (3.2 seconds) and 12 (4.8 seconds) time-steps.

Baselines. We compare our method against several state of

the art. 1) Social-LSTM, [1], which employs two LSTMs

for encoding and decoding and social pooling to capture

Kinematic Encoder

embedding 2 → 64
3D Visual Encoder

Θ1 K = [3, 3, 3] , S = [3, 3, 3]
Θ2 2×K = [3, 3, 3] , S = [1, 3, 3]
Θ1 K = [3, 3, 3] , S = [1, 3, 3]

Ψ1,Ψ2,Ψ3 m = 16, n = 8
Ψ3(linear) 1563 → 256
ρ1, ρ2, ρ3 K = [1, 1, 1] , S = [1, 1, 1]
µ(linear) 258 → 16 → 16

Trajectory Decoder

embedding 2 → 64
decoder(linear) 2× 256 → 256 → 4

Table 1. Architecture details of our proposed sequence to sequence

model, which consists of a kinematic encoder, 3D conditional vi-

sual encoder and a trajectory decoder.

the effect of neighboring pedestrians on a target pedes-

trian’s trajectory. 2) Trajectron++ [41], which uses a spatio-

temporal graph input to encode the motion of agents based

on their type 2 {car, pedestrian} using LSTM. To gener-

ate the predicted trajectory, Trajectron++ gathers all the en-

coded information from the graph data and visual informa-

tion and decodes them using LSTM. 3) STAR [54], which

employs one temporal and one spatial transformer to learn

the crowd interactions.

4) Social GAN [13], which employs generative adversar-

ial networks and pools social information from neighboring

pedestrians. 5) SoPhie [39], which takes advantage of at-

tentive GAN networks and uses both kinematics and static

visual inputs. 6) Social ways [3], which employs info-GAN

and attention pooling to generate multi-modal trajectories

based on capturing information from both a target pedes-

trian and neighbors. 7) PECNET [31], which first predicts

the end point of the future trajectory and using the endpoint

generates the path. 8) BiGAT [23], which takes advantage

of a Bicycle-GAN framework and graph representation to

model social interactions.

Implementation Details. Table 1 shows the details of our

proposed deep architecture (K denotes the kernel size and

S denotes the stride size). Each sub-module element is

augmented by ReLU activation function. Similar to other

works, we employ two Vanilla LSTMs as the encoder and

decoder with hidden size 256. We embed each of To and Tf
through two linear layers and then pass it to the encoder and

the decoder, respectively. Also, the output of the decoder is

passed to an embedding layer, which generates mean and

variance of a Gaussian distribution in each time-step.

We train the entire network in an end-to-end fashion

using stochastic gradient descent optimizer using our pro-

posed loss function in (5) with λ = 0.5. For a faster con-

vergence, we initially applied the teacher force strategy to

the 70% of batches and decreased the percentage linearly to

0% during the training. As stated before, during training,

we sample the output trajectory 20 times (i.e. C = 20) and
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ADE/FDE tf − to University Zara 1 Zara 2 Hotel ETH AVG

Social LSTM* 12 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.79 / 1.76 1.09 / 2.35 0.72 / 1.54

Social GAN 12 0.60 / 1.26 0.34 / 0.69 0.42 / 0.84 0.72 / 1.61 0.81 / 1.52 0.58 / 1.18

SoPhie 12 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.76 / 1.67 0.70 / 1.43 0.54 / 1.15

BiGAT 12 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.49 / 1.01 0.69 / 1.29 0.48 / 1.00

Social Ways 12 0.55 / 1.31 0.44 / 0.64 0.51 / 0.92 0.39 / 0.66 0.39 / 0.64 0.46 / 0.83

PECNet 12 0.35 / 0.60 0.22 / 0.39 0.17 / 0.30 0.18 / 0.24 0.54 / 0.87 0.29 / 0.48

Star 12 0.31 / 0.62 0.26 / 0.55 0.22 / 0.46 0.17 / 0.36 0.36 / 0.65 0.26 / 0.53

Trajectron++ 12 0.22 / 0.43 0.17 / 0.32 0.12 / 0.25 0.12 / 0.19 0.43 / 0.86 0.21 / 0.41

Introvert (ours) 12 0.20 / 0.32 0.16 / 0.27 0.16 / 0.25 0.11 / 0.17 0.42 / 0.70 0.21 / 0.34

Social LSTM* 8 0.41 / 0.84 0.27 / 0.56 0.33 / 0.70 0.49 / 1.01 0.73 / 1.48 0.45 / 0.91

Social GAN 8 0.36 / 0.75 0.21 / 0.42 0.27 / 0.54 0.48 / 0.95 0.61 / 1.22 0.39 / 0.78

Introvert (ours) 8 0.16 / 0.24 0.12 / 0.19 0.14 / 0.19 0.09 / 0.12 0.32 / 0.49 0.17 / 0.25

Table 2. The average/final displacement error (ADE/FDE) of all methods across all datasets. Models with * have deterministic outputs.

Stochastic models sample 20 trajectories and report the best result. All models receive to = 8 observed time-steps and predict positions

for tf − to = 12/8 future time-steps.

use 5 samples with the lowest loss value to train the model.

Our proposed model is implemented in Pytorch on a

server running Ubuntu 18.04 with an Intel Xeon Gold CPU

and four NVIDIA Quadro RTX 6000 GPUs. Similar to all

existing works, we used leave-one-out strategy for training

and testing and trained our model over 200 epochs.

4.2. Experimental Results

4.2.1 Quantitative Analysis

Table 2 shows the average FDE and ADE results of different

methods for both tf�to 2 {8, 12} on all five datasets. From

the results, we make the following conclusions:

– On the FDE metric, our method significantly improves the

state of the art, where it outperforms existing algorithms

on 4 out of 5 datasets. In particular, our method achieves

0.34 FDE average error over all the datasets compared to

0.41 obtained by the second best method (Trajectron++). As

expected, the error for 12 time-step ahead is always larger

than 8 time-step prediction, due to higher uncertainties and

more drastic changes to trajectories.

– On the ADE metric, our method outperforms existing al-

gorithms on 3 out of 5 datasets and similar to Trajectron++

achieves the lowest average ADE error of 0.21 over the

datasets. Notice that ADE is in general an easier metric than

FDE as the immediate future predictions are often close to

position at to.

– Notice that most methods, including ours, have larger dis-

placement errors on the University and ETH datasets. The

larger errors on University is due to the higher crowd den-

sity in the dataset than others. In other words, as it involves

more human-human interactions, it causes more challeng-

ing prediction of the future trajectory. In addition, the high

density of the crowd forces a target pedestrian to choose

between different options such as overtaking or following

other pedestrians, making predictions more uncertain.

Notice, however, that our method achieves the lowest

FDE (0.32 by ours compared to 0.43 by Trajectron++) and

ADE (0.20 by ours compared to 0.22 by Trajectron++),

showing the effectiveness of Introvert in capturing the

multi-modal nature of future trajectories.

Also, the larger errors on ETH are due to lower fre-

quency of the video frames and kinematic data compared

to other datasets. Given that the trajectories would be for

longer time periods and models need to predict farther in

the future, the performances on ETH are generally lower

than on other datasets.

– In the Hotel dataset, there is a large number of pedestrians

who are waiting for train with limited motions. Therefore,

most methods, including ours, obtain relatively small dis-

placement errors due to successfully predicting small mo-

tions of the pedestrians. Our method also obtains the lowest

FDE and ADE errors on this dataset.

– The fact that for the majority of datasets our method ob-

tains lowest displacement errors, shows the effectiveness of

our proposed framework in capturing human-human inter-

actions using our 3D conditional visual encoder, without us-

ing kinematic data of neighboring pedestrians in the scene.

Fast Inference. One advantage of our method over existing

works is being computationally efficient during inference

(real-time). This comes from the fact that by using visual

information directly, we do not need to run a human detec-

tion and tracking algorithm for all people in the scene and

then connect RNNs using nearest neighbors graphs or at-

tention, which are costly. To better demonstrate this, Table

3 shows the average inference time of Social Ways, Social

GAN and our method (Introvert) on the datasets, where our

method achieves 0.12 second inference time compared to

0.42 sec. and 0.82 sec. by others.
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Figure 2. Qualitative examples of trajectory prediction by our method. Yellow, Red and Green dots correspond to observations, predictions

and ground-truth, respectively. For each dataset in each column, we show trajectories of two pedestrians in two rows. The first 5 columns

(A) demonstrate examples of successful predictions by our method, while the last two columns (B) show inaccurate predictions.

Method Social Ways Social GAN Introvert (ours)

Time 0.817s 0.419s 0.120s

Table 3. Comparison of inference times.

4.2.2 Qualitative Analysis

Figure 2 shows qualitative results of our method for tra-

jectory prediction on several videos from UCY and ETH

datasets. The two plots in each column show two different

pedestrians (two walking scenarios) in the same dataset. In

all cases, we show the first observed frame, denote the ob-

served trajectory by yellow dots and the ground-truth and

predictions by our method by green and red, respectively.

The part A of Figure 2 shows 10 different success examples

from the 5 datasets, where our method is able to accurately

predict the future positions of pedestrians in the scene. For

example, the top example from the University demonstrates

a scenario of human-human interaction, where the target

pedestrian slows down before reaching to a group of stand-

ing people, bypasses them from the left side and then speeds

up. Notice that in such a crowded scene, our method is able

to well capture interactions and predict the future positions.

Also, the bottom example in Zara 1 demonstrate a success

example of capturing human-space interaction in which our

model accurately predicts that the target pedestrian will go

through the door of the store in the left side of the scene.

Also, for the top example in Hotel, our method correctly

predicts that the target human who is entering the scene will

avoid a tree and will turn left.

There are also scenarios in which our model could not

predict the future positions accurately. The part B of Figure

2 shows four examples of such failures. The shared char-

acteristic of these scenarios is the sudden change in the tra-

jectory of the target human. Notice that even in these cases,

our model is able to capture some general properties of the

behavior of the target pedestrian, such as the walking ori-

entation and velocity, but it does not provide an accurate

prediction of the future positions. Although the predicted

trajectory does not completely match the ground-truth, our

method provides a feasible trajectory, which avoids moving

and stationary obstacles in the scene. We believe this inac-

curacy arises from the diverse multi-modal nature of future

pedestrian paths, and is an avenue of further investigation.

Figure 3 shows the qualitative analysis of Introvert

(ours), Social Ways [3], STAR [54] and SRLSTM [56],

demonstrating that our method can more accurately predict

future trajectories.

ObservationIntrovert Ground TruthSocial WaysSTAR SRLSTM

Figure 3. Trajectory prediction comparison between our method

(Introvert) and other algorithms.

Visualization of Conditional Attentions. Next, we

demonstrate the effectiveness of our conditional spatio-

temporal attention model for successfully predicting the fu-

ture trajectory of a target pedestrian. Figure 4 shows visual-

ization of the conditional attention, where for each module

(Ψ2 and Ψ3) we first calculate the element-wise product of

dual attention matrices, then average them over the n spa-

tial attention maps and plot the results. The figure includes

three sample videos (corresponding to the three rows in the

plot) from three different datasets. For each sample video in

a row, we show two pedestrians (pedestrian 1: correspond-

ing to the first three columns, pedestrian 2: corresponding

to the second three columns) walking at the same time, so

they share the same video input. We plot the original frame

and our prediction in the first column, while the attentions

generated by Ψ2 and Ψ3 modules have been shown in the

second and third columns, respectively.

As Figure 4 shows, each conditional attention module
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Figure 4. Visualization of conditional spatio-temporal attentions modules (Attention 1 = Ψ2 , Attention 2 = Ψ3) for the first observed frame.

Each row corresponds to a different video from a different dataset. In each row, for two different pedestrians moving at the same time (first

three columns for pedestrian 1 and second three columns for pedestrian 2), we show the observed/ground-truth/predicted trajectory in the

first column and the output of the first and second conditional attentions (Ψ2 and Ψ2) in the second and third columns, respectively.

captures different levels of visual abstractions. Attention

1 (corresponding to Ψ2) attends to the pedestrians and ob-

jects, while Attention 2 (corresponding to Ψ3) attends to

more distant visual primitives in the scene, such as loca-

tions in front of the target pedestrian, buildings and cars

in distance. Notice also that the attention maps for differ-

ent pedestrians in the same scene are completely different,

thanks to our conditional model. For example, in video 3,

for the first pedestrian who is moving from left to right, the

Attention 2 focuses on the car and distant humans in front

of the target pedestrian. On the other hand, for the second

pedestrian moving from right to left, the Attention 2 focuses

on the building and the humans in front of the target person.

4.2.3 Effect of Different Components

Number of Attention Maps. As mentioned before, the

conditional attention module, Ψi, has a dual attention mech-

anism with n spatial attention mappings and m channels

for each attention map. Figure 5 (left) shows the effect of

the number of spatial attentions n 2 {2, 4, 8, 16} for fixed

m = 8. Notice that our method performs robustly for dif-

ferent values of n.

Regularization Parameter. Our loss function in (5) is

composed of the mean-squared loss and a regularization

term, Lreg , which controls the smoothness of the fu-

ture trajectories compared to the observed ones. Figure

5 (right) shows the effect of the regularization parameter

λ 2 {0, 0.25, 0.50, 0.75, 1} on the ADE performance. Our

model obtains lower errors for λ 2 {0.5, 0.75} and the per-

formance generally degrades for larger values of λ. This

comes from the fact that larger regularization prevents the

Figure 5. Left: Effect of the number of spatial attention maps (n)

on the performance. Right: Effect of regularization parameter (λ).

model from capturing sudden changes in trajectory of target

pedestrians (we used λ = 0.5 for our main experiments).

5. Conclusions

We presented Introvert, a method for pedestrian trajec-

tory prediction using conditional 3D visual attention mech-

anism on dynamic scene context. We showed that Introvert

captures both human-space and human-human interactions

by generating distinctive spatio-temporal attentions for each

pedestrian. As we discussed, our computational cost is in-

dependent of the crowd density by taking advantage of gen-

erating flexible yet fixed-size visual primitives and their at-

tentions. We also benchmark the performance of Introvert

on ADE and FDE metrics across UCY and ETH datasets,

showing that it improves the state-of-the-art performance.
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