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Abstract

Most existing nighttime visibility enhancement methods

focus on low light. Night images, however, do not only suf-

fer from low light, but also from man-made light effects

such as glow, glare, floodlight, etc. Hence, when the ex-

isting nighttime visibility enhancement methods are applied

to these images, they intensify the effects, degrading the vis-

ibility even further. High dynamic range (HDR) imaging

methods can address the low light and over-exposed re-

gions, however they cannot remove the light effects, and

thus cannot enhance the visibility in the affected regions.

In this paper, given a single nighttime image as input, our

goal is to enhance its visibility by increasing the dynamic

range of the intensity, and thus can boost the intensity of the

low light regions, and at the same time, suppress the light

effects (glow, glare) simultaneously. First, we use a net-

work to estimate the camera response function (CRF) from

the input image to linearise the image. Second, we decom-

pose the linearised image into low-frequency (LF) and high-

frequency (HF) feature maps that are processed separately

through two networks for light effects suppression and noise

removal respectively. Third, we use a network to increase

the dynamic range of the processed LF feature maps, which

are then combined with the processed HF feature maps to

generate the final output that has increased dynamic range

and suppressed light effects. Our experiments show the ef-

fectiveness of our method in comparison with the state-of-

the-art nighttime visibility enhancement methods.

1. Introduction

Due to varying illumination and multiple man-made

light sources, night images not only contains low-light

regions but also glow, glare, floodlight, etc., which can

severely degrade the visibility of the images. This degra-

dation poses challenges for many vision algorithms when

applied to nighttime conditions. Hence, enhancing the visi-
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Figure 1. For the input nighttime image with glow/glare light ef-

fects, existing visibility enhancement [13] and HDR [19] imaging

methods cannot handle the light effects and incorrectly intensify

them. In contrast, our method suppresses the light effects and gen-

erates better visibility enhancement results.

bility of night images by boosting the intensity of low light

regions, yet at the same time suppressing the night light ef-

fects (glow, glare) is an important task.

Existing nighttime visibility enhancement methods [11,

3, 13, 26, 10] assume that the input image is under-exposed

and has low-light regions. Hence, to improve the visibil-

ity, these methods perform intensity boosting and denois-

ing. Night images, however, also suffer from over-exposed

regions as well as glow, glare, etc. which get intensified

upon intensity boosting, and this further degrades the vis-

ibility. Fig. 1 shows an example. As can be observed, the

existing visibility enhancement method EnlightenGAN [13]

incorrectly intensifies the glow/glare light effects.

HDR imaging methods [19, 6], to some extent, can im-

prove the visibility of night images. They take a single
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image as input and generates an output image that has a

higher dynamic range, which provides better visibility for

the under-exposed and over-exposed regions of the image.

Unfortunately, these methods also cannot suppress glow,

glare and floodlight, and thus cannot enhance the visibility

of the scenes behind these light effects (see Fig. 1).

In this paper, given a single night image as input, our

goal is to improve its visibility by simultaneously increasing

the dynamic range (to deal with low-light and over-exposed

region) and suppressing the light effects (glow, glare, etc.).

To achieve the goal, we propose a semi-supervised network.

We use paired images (with HDR ground-truths) to train

our network to increase the dynamic range, and unpaired

images (without ground-truths) to train our network to sup-

press the light effects. We first estimate the inverse CRF of

the input night image using a linearisation network. Unlike

methods [16, 19], which use fully-supervised training based

on synthesized data, our method uses semi-supervised train-

ing using both synthesized (with CRF ground-truths) and

real data (without CRF ground-truths), which provides bet-

ter generalization capability to our method.

Having obtained the linearised image, we decompose

it into low-frequency (LF) and high-frequency (HF) fea-

ture maps. The LF feature maps are likely to contain the

glow/glare light effects (since they are smooth [17]), while

the HF feature maps will contain noise, textures, edges, etc.

The LF and HF feature maps are processed separately using

our two networks to suppress the light effects and remove

the noise respectively. The processed LF features maps that

contain suppressed light effects are passed to another net-

work to increase their dynamic range. The resulting LF

feature maps are then fused with the processed HF feature

maps to generate the output image that has both increased

dynamic range and suppressed light effects.

In summary, our contributions are as follows:

• We introduce a new method for single-image night-

time visibility enhancement such that the enhanced

output image has both increased dynamic range and

suppressed glow/glare light effects. To our knowledge,

our method is the first method to address this problem.

• We train our method using semi-supervised learning.

We use paired data for learning to increase the dynamic

range; and, unpaired data for learning the light effect

suppression. We use priors such as the smoothness

prior for the light effects (glow, glare, floodlight) in de-

signing our unsupervised losses. Our CRF estimation

is also semi-supervised, where the unsupervised losses

are designed based on the monotonicity constraint of

CRFs and the linearisation constraint obeyed by edge-

based pixels in the irradiance domain.

Our experiments show that our method outperforms the

state-of-the-art single-image nighttime visibility enhance-

ment and HDR imaging methods.

2. Related Work

Several methods are designed for single-image visibil-

ity enhancement [22, 2, 11, 3, 13, 26, 10]. The visibil-

ity enhancement is performed through intensity boosting

and denoising, where denoising is either part of the meth-

ods [3, 13, 2] or carried out as a post-processing step [11].

Some methods even ignore the presence of CRF or assume

it to be linear, as a result of which the physical properties

of the image are not preserved during enhancement and the

enhanced image have colour-distortions [11, 3, 13, 26, 10].

The method [2] designed for extreme low-light enhance-

ment can preserve the physical properties during enhance-

ment. However, it accepts a RAW image as input (not RGB

image) which limits its practicality since RAW images are

not available in many practical scenarios. All these meth-

ods are not well-suited for enhancing night images since

night images contain over-exposed regions and man-made

light effects (glow, glare, floodlight) which also get intensi-

fied upon intensity boosting degrading the visibility of the

images even further.

Another approach to visibility enhancement is to in-

crease the dynamic range of the intensity by using HDR

imaging methods. Most commonly, HDR images are cre-

ated by estimating the inverse CRF from a stack of aligned

bracketed exposure images. The images are linearised us-

ing the estimated inverse CRF and fused to create the HDR

image [5, 20]. Some recent methods have relaxed the re-

quirement of using aligned images [14, 28]. To improve

the practicality, several methods using a single image are

proposed [19, 6]. The methods use fully-supervised learn-

ing to directly learn a mapping from the input image to the

HDR output image. While the method [6] assumes a fixed

CRF which is not applicable for different camera images,

the method [19] propose to estimate the CRF in the HDR

imaging process. However, all these methods also cannot

handle the light effects, and thus cannot enhance the visibil-

ity in the affected regions.

In contrast to the aforementioned approaches, our

method is designed to handle the light effects problem and

increase the dynamic range simultaneously. Moreover, un-

like the existing methods such as [19] which use fully-

supervised training, our method uses semi-supervised train-

ing using both unlabelled and labelled data, which provides

better generalization capability to our method.

3. Proposed Method

Fig. 2 shows our pipeline. Given an input image, our

linearisation-Net estimates the CRF, which enables us to

linearise the input image. We decompose the linearised im-

age into low-frequency (LF) and high-frequency (HF) fea-

ture maps using the decomposition model [27]. The LF fea-

ture maps contain the light effects (glow, glare, floodlight)
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Figure 2. The overall architecture of our proposed method. From the input nighttime image, we estimate the inverse CRF using the

Linearisation network. The inverse CRF is used to linearise the image. The linearised image is decomposed into low-frequency (LF) and

high-frequency (HF) feature maps, which are processed through LF-DeLight and HF-Denoise networks for suppressing the light effects

and noise respectively. Finally, we pass the processed LF feature maps to the LF-HDR network to increase the dynamic range, and the

resulting feature maps are combined with the processed HF feature maps to generate the enhanced output nighttime image.

and the HF feature maps contain noise, textures, edges, etc.

We process the LF feature maps using a network we call as

LF-DeLight to suppress the light effects in the LF feature

maps. We process the HF features maps using a network

we call as HF-DeNoise to remove the noise from the HF

features maps. The processed LF features maps that have

suppressed light effects are passed to a network we call as

LF-HDR to increase their dynamic range. The resulting LF

feature maps are then combined with the processed HF fea-

ture maps to generate the output image that has increased

dynamic range and suppressed light effects.

We assume that we have M nighttime images repre-

sented by X = {X1, ...,XM} taken with varying exposure

levels, and also their corresponding HDR ground-truth im-

ages represented by X
gt = {Xgt

1
, ...,Xgt

M}. We further as-

sume that we have N nighttime images that do not have the

paired HDR ground-truths. We represent these images by

Y = {Y1, ...,YN}. The images in X have negligible light

effects, while the images in Y have prominent glow, glare,

or floodlight light effects.

For all the images in X ∪ Y, we do not have the corre-

sponding CRF ground-truths. Hence, we take another set

of P images (which include indoor, day and night images)

represented by Z = {Z1, ...,ZP }. Samples drawn from

the sets X,Xgt,Y,Z are represented by X,Xgt,Y,Z re-

spectively. While the images in X ∪ Y are RGB (JPEG)

images, the images in Z are RAW images which allows

us to synthesize our own RGB images with known CRF

ground-truths. Specifically, we take the 201 CRFs from the

Database of Response Functions (DoRF) provided by [9],

which we represent by F = {fgt
1
, ..., fgt

201
}; and, a CRF sam-

pled from F is represented by fgt. Using the camera imag-

ing pipeline presented in [15], we synthesize new RGB im-

ages by: Z′ = fgt(t(Z)), where t represents the color trans-

formation (e.g. white-balance) operator, which is read from

the RAW metadata of Z. We further add a small amount

of random Gaussian noise and JPEG compression to Z′ to

make it more closely represent a real night image.

Our linearisation-Net, LF-DeLight, HF-Denoise and LF-

HDR networks are represented by φLIN, φLF-DL. φHF-DN and

φLF-HDR respectively. We use the ResNet-18 [12] architec-

ture as the backbone of the φLIN network, while for all the

other networks, we adopt an encoder-decoder architecture

with skip connections [23]. We train our method in two

stages: (1) Main training, where we use paired data with

supervised losses to train our method, and (2) Test-time

training, where we use unsupervised losses to finetune our

method on the test image taken from unpaired data.

3.1. Supervised Training

Learning CRF Estimation For training the linearisation-

Net, φLIN, given Z′ as input and ggt = fgt
−1

as the ground-

truth inverse CRF, we use the following loss:

Lmse = ‖ĝ − ggt‖2, (1)

where ĝ = g0+
11
∑

i=1

hici is the predicted inverse CRF using

the basis-function model [9]. g0 and {h1, ...,h11} are the

base inverse CRF and set of 11 basis functions taken from

the model, respectively. {c1, ..., c11} are the 11 coefficients

of the basis functions generated by the network φLIN, i.e.

{c1, ..., c11} = φLIN(Z
′)). Since we also have the ground-

truth linearised image, ggt(Z′), we use the linearisation loss

to train the network φLIN:

Llin = ‖ĝ(Z′)− ggt(Z′)‖1. (2)

Increasing Dynamic Range For training the networks

φLF-HDR and φHF-HDR, we use the images in X and their cor-

responding HDR ground-truth images in X
gt. Given X as

input and Xgt as the HDR ground-truth, we first estimate

the inverse CRF from the image X using our linearisation-

Net φLIN, and then linearise the image.

Let the linearised image be represented by LX. Using
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the differentiable decomposition model [27], we obtain the

low-frequency and high-frequency feature maps from LX,

which we represent by LFX = {LFX1, ...,LFXK} and

HFX = {HFX1, ...,HFXK} respectively. K being the

total number of filters used for decomposition. We use the

following HDR loss function from [14]:

LHDR =

∥

∥

∥

∥

∥

log(1 + µX̂)

log(1 + µ)
−

log(1 + µXgt)

log(1 + µ)

∥

∥

∥

∥

∥

1

, (3)

where X̂ = 1

K

K
∑

k=1

(

HrLFXk + DnHFXk

)

is the pre-

dicted HDR image; HrLFXk is the output of the φLF-HDR

network, i.e., HrLFXk = φLF-HDR(LFXk) and DnLFXk

is the output of the φHF-DN network, i.e., DnHFXk =
φHF-DN(HFXk). µ is a constant parameter set to 10. Note

that, the loss LHDR also back-propagates to φLIN and jointly

trains φLIN, φLF-HDR and φHF-DN networks.

3.2. Unsupervised TestTime Training

In this stage, we fine-tune our method using unsuper-

vised losses. In the main supervised training stage, the net-

work φLIN was trained using synthesized data, hence, it is

important to fine-tune it on real data. The networks φLF-HDR

and φHD-DN, however, were trained on real data and are not

needed to adapt any further. For this reason, we keep them

frozen in this stage, and only fine-tune the networks φLIN

and φLF-DL. Also, different from the main supervised train-

ing stage where we use all the images in X and Z data sets,

in this stage, we perform the unsupervised fine-tuning on

the test input image Y sampled from the data set Y.

Fine-tuning CRF Estimation Since the image Y has no

CRF ground-truth available, we use unsupervised losses to

fine-tune our linearisation-Net φLIN on the image Y.

CRFs are known to be monotonically increasing [9],

hence we use the monotonicity loss [25]:

Lmon =
1
∑

t=0

H

(

−
∂ĝ(t)

∂t

)

, (4)

where we impose that the derivative of predicted inverse

CRF ĝ, ∂ĝ/∂t, to be positive. H(·) is the Heaviside step

function: H(x) = 1 when x ≥ 0, and 0 otherwise, and t is

a variable of 1024 equally spaced values in [0, 1].
We also use an unsupervised loss based on the property

that edge-based pixels in the irradiance (or linearised) im-

age form linear distributions in the 3D RGB space [18].

Specifically, from the image Y, we extract non-overlapping

edge-patches represented by {pY1, ...,pYE}. E is the

number of patches. Each patch is of resolution S×S. From

each patch, we obtain S pixel distributions either horizon-

tally or vertically. Fig. 3 shows an example.

The entire set of pixel distributions obtained from all the

(a) Image (b) Patches (c) Pixel Distributions

Figure 3. Demonstration of our selection of pixel distributions

from edge-based patches. (a) Sample image. (b) Edge-based

patches extracted from the image. The coloured lines in the mid-

dle of the patches show the direction of the pixel distributions. (c)

Pixel distributions taken from the midline in the patches plotted in

the RGB space, which are non-linear due to the CRF. Note that,

we select the distributions in the direction of maximum variance.

patches is represented by {dY11, ... ,dYS1, ... ,dYE1, ...
,dYES}. For each pixel distribution dYes where e ∈ [1, E]
and s ∈ [1, S], we first linearise it using the predicted in-

verse CRF ĝ, and then normalize it to have the range [0,

1]. The normalisation operation is important in order to

avoid trivial solutions [24]. Representing the linearised-

and-normalized distribution by nYes, and its minimum and

maximum values by nmin
Yes and nmax

Yes respectively, we define

our linearisation loss for pixel distributions as:

Les=

S
∑

i=1

(

|nmin
Yes − nmax

Yes| × |nmin
Yes − ni

Yes|

|nmin
Yes − nmax

Yes|

)

, (5)

Ldistlin =
E
∑

e=1

(

S
∑

s=1

(Les)

)

, (6)

where ni
Yes is a pixel on the distribution nYes.

Suppressing Light Effects To suppress the light effects

(glow, glare, floodlight), as there are no ground-truths to

learn from, we use unsupervised losses to train our method.

Following the same steps as mentioned before, we ob-

tain the low-frequency feature maps of the input image Y,

which are represented by LFY = {LFY1, ...,LFYK}. For

each feature map LFYk, the network φLF-DL generates a

map GYk which contains the light effects, i.e. GYk =
φLF-DL(LFYk). Subtracting GYk from LFYk, we obtain

the LF feature map that has suppressed light effects.

We represent this feature map by DeLFYk. Since this

feature map only differs from the input feature map in the

regions containing the light affects, we add a reconstruction

loss to ensure that the two are not very different:

Lrecon = ‖DeLFYk − LFYk‖1. (7)

Also, since light effects are smooth [17], we use a smooth-

ness loss to ensure GYk is smooth:

Lsmooth =
∥

∥

∥

∣

∣∂2

x(GYk)
∣

∣+
∣

∣∂2

y(GYk)
∣

∣

∥

∥

∥

1

, (8)
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(a) Input (b) LF Map (c) Light Effects (l. e.) (d) LF Map (w/o l. e.) (e) Output (w/o l. e.)

Figure 4. Examples showing the suppression of light effects from our method. (a) Input image. (b) Sample LF feature map obtained from

the image. (c) Generated map showing glow/glare/floodlight light effects. (d) Sample LF feature map after subtracting the light effects

map. (e) Output image with suppressed light effects. Note that, the output images shown are not with increased dynamic range.

(a) Input (b) Glow (prev) (c) Output (prev) (d) Glow (new) (e) Output (new)

Figure 5. (a) Input image with white glow. (b) Glow layer. (c) Output from our method. (d) Output from [19]. (e) Glow layer (new). (f)

Output from our method (new). The results shown in (e) and (f) are obtained after adding an additional gradient exclusion constraint [8, 29]

to better handle white glow/glare suppression.

where the functions ∂2

x and ∂2

y compute the 2nd order hori-

zontal and vertical gradients respectively.

An additional constraint comes from the gray world as-

sumption [1, 17], which encourages the range of the inten-

sity values for the three color channels in DeLFYk to be

balanced. We define this loss by:

Lgray =
(

‖DeLFYk(r)−DeLFYk(g)‖1
)

+
(

‖DeLFYk(r)−DeLFYk(b)‖1
)

+
(

‖DeLFYk(g)−DeLFYk(b)‖1
)

, (9)

where DeLFYk(r), DeLFYk(g) and DeLFYk(b) repre-

sent the red, green and blue colour channels of DeLFYk,

respectively. Fig. 4 shows some examples of light effects

suppression obtained from our method. Having obtained

DeLFYk, we increase their dynamic range by passing it to

the network φLF-HDR. This gives us the HrLFYk, which we

fuse with the denoised HF feature map, DnHFYk to ob-

tain the final output image Ŷ, i.e. Ŷ = 1

K

K
∑

k=1

(

HrLFYk+

DnHFYk

)

, which has both increased dynamic range and

suppressed light effects.

4. Discussion

The results shown in Fig. 4 show that our unsupervised

losses are effective in suppressing glow/glare light effects.

However, for white glow/glare (or achormatic glow/glare),

our light effects suppression can be improper since input

night images with white glow/glare already satisfy con-

straints such as the gray-world assumption [1, 17]. Fig. 5

shows an example where we can observe that for the night
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Input HDRCNN [6] SingleHDR [19] Our Method Ground-Truth

Figure 6. Qualitative results on the nighttime images from the HDR-Real [19] dataset. We can observe the better performance of our

method compared to the baseline methods.

Table 1. Quantitative results on the nighttime images from the

HDR-Real [19] dataset. The performance numbers are reported

for 394 test images. ’Masked’ denotes the evaluation where we

do not evaluate for the uninformative pixels, i.e. pixels under dark

noise (intensity < 10) and near saturation (intensity > 240).

PSNR SSIM

HDRCNN [6] 19.01 0.8037

SingleHDR [19] 23.01 0.8540

Our Method 23.51 0.8622

HDRCNN (Masked) [6] 19.36 0.8289

SingleHDR (Masked) [19] 24.19 0.8786

Our Method (Masked) 24.66 0.8816

image with white glow/glare (see Fig. 5a), our light effect

suppression is not proper (see Figs. 5b and 5c).

To address the problem, we can add additional con-

straints in our method. From [17], we know that the gra-

dient histogram of glow/glare images (irrespective of the

glow/glare color) have a short-tail distribution with most

values near zero. Hence, from [8, 29], we can add a gradi-

ent exclusion constraint that tries to maximize the distance

between the output image and the glow layer in the gradient

domain. In addition, we can also also constrain the gradi-

ents of the output image to be greater than the gradients of

the input image. As shown in Fig. 5, adding these new con-

straints allows us to better deal with white glow/glare (see

Figs. 5d and 5e). While the gradient exclusion constraint

works properly to deal with achromatic glow/glare, we have

not deeply investigated the effects of this constraint, partic-

ularly in the correlations with the other constraints. This

investigation will be part of our future work.

5. Experiments

For training and evaluation of our dynamic range im-

provement, we use the HDR-Real dataset [19]. For training

our CRF estimation using synthesized data, we take RAW

images from the Color-Constancy [4] and SID (long expo-

sure) [2] datasets. For qualitative evaluation of our method

on nighttime images with light effects, we collect our own

data with glow/glare/floodlight light effects. For all the re-

sults shown in the paper, the default weights of supervised
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Input Our Method Zero-DCE [10] EnlightenGAN [13] SingleHDR [19]

Figure 7. Qualitative results on the nighttime images with glow/glare/floodlight light effects. We can observe the better performance of

our method compared to the baseline methods. Our result not only have the light effects suppressed but also increased dynamic range (e.g.,

better visibility in the low-light regions) which shows the effectiveness of our method for nighttime visibility enhancement.

losses, {Lmse, Llin, LHDR}, and unsupervised losses, {Lmon,

Ldistlin, Lrecon, Lsmooth, Lgray}, are set {10.0, 1.0, 1.0} and

{1.0, 0.1, 1.0, 0.5, 1.0} respectively.

5.1. Evaluation of Dynamic Range Improvement

For the baseline methods for evaluating dynamic range

improvement, we take the state-of-the-art single-image

HDR imaging methods: SingleHDR [19] and HDR-

CNN [6]. Since the outputs of all the methods (includ-

ing ours) and ground-truths are in HDR, we use tone-

mapping [21] to convert them into LDR images for eval-

uation and visualisation. The qualitative results are shown

in Fig. 6 and the quantitative results are shown in Table 1.

From the results, we can observe that our method per-

forms better than the baseline methods, both quantitatively

and qualitatively. The results from SingleHDR [19] appear

to be washed-out, while the results from HDRCNN [6] are

not properly exposed in many regions which could be be-

cause of its assumption of a constant CRF for every image.

5.2. Evaluation of Light Effects Suppression

Since we have no ground-truths to quantitatively evalu-

ate our light effects suppression performance, we use qual-

itative comparisons. For the baseline methods, we take the

state-of-the-art single-image visibility enhancement meth-

ods Zero-DCE [10] and EnlightenGAN [13]; and, Sin-
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Table 2. Comparison of CRF estimation performance. The num-

bers represents Root Mean Square Error (RMSE) computed be-

tween the method’s predicted CRFs and the ground-truth CRFs.

Mean Min Max

HDRCNN [6] 0.1761 0.1461 0.1995

CRFNet [16] 0.1471 0.0177 0.2522

SingleHDR [19] 0.0628 0.0128 0.1369

Our Method 0.0582 0.0107 0.1299

gleHDR [19], which is the state of the art HDR imaging

method. Our results are generated following the test-time

training optimisation scheme presented in Sec. 3.2. The re-

sults are shown in Fig. 7.

From the qualitative results shown in Fig. 7, we can ob-

serve that compared to all the baseline visibility enhance-

ment methods, our method performs visibility enhancement

that suppresses the light effects and increases the dynamic

range of the intensity at the same time. We can see that the

low-light regions in the images are better exposed and the

glow/glare light effects are suppressed. While the baseline

methods also can achieve intensity boosting in the low-light

regions, they wrongly intensify the glow/glare light effects,

which degrade the visibility of the images even further in

the affected regions of the input night images.

6. Ablation Study

Unsupervised CRF estimation To evaluate our CRF

estimation performance on real images, we collect 50

nighttime images taken from Sonyα7S III, NikonD40 and

NikonD80 cameras. We additionally take 50 well-exposed

nighttime images from the long-exposure set of the SID [2]

dataset which is created using Sonyα7S II and Fujifilm X-

T2 cameras, giving us a total of 100 test images. To get

the ground-truth CRFs, we use images containing Macbeth

Colour-Checker [18, 9, 25]; and, we further validate the ob-

tained CRFs using the RAW-JPEG pairs which are avail-

able for all the test images. We compare our CRF estima-

tion performance with HDRCNN [6], SingleHDR [19] and

CRFNet [16]. HDRCNN [6] assumes a constant inverse

CRF: g(Y) = Y2, while SingleHDR [19] and CRFNet [16]

use fully-supervised training using synthesized data for

learning CRF estimation. In comparison, our method uses

semi-supervised training using both supervised synthesized

data and unsupervised real data for learning CRF estima-

tion. The results are shown in Table 2. Since the baseline

methods SingleHDR [19] and CRFNet [16] are trained on

synthesized data, their performance is not optimum when

tested on real data due to the domain gap that exists between

synthesized and real data. In contrast, our method shows

better results since our method gets finetuned on real im-

ages using unsupervised losses (Sec. 3.2), which provides

(a) Input (b) Output (c) w/o Lrecon (d) w/o Lgray

Figure 8. (a) Input image. (b) Output image with suppressed light

effects. (c) Output image without using the reconstruction loss

(Lrecon. Eq. (7)). (d) Output image without using the gray world

loss (Lgray, Eq. (9)). We can observe that all the unsupervised

losses are important for suppressing the light effects properly.

better generalization capability to our method.

Unsupervised Light Effects Suppression To suppress

the light effects (glow, glare, floodlight), as there are no

ground-truths to learn from, we use unsupervised losses to

train our method (Sec. 3.2 in the main paper). Fig. 8 shows

the importance of each unsupervised loss. For the input

nighttime images shown in Fig. 8a, the output images us-

ing all our unsupervised losses for light effects suppression

are shown in Fig. 8b. Fig. 8c shows the output images ob-

tained without using the reconstruction loss (i.e. without

Lrecon. Eq. (7)). While the images do have suppressed light

effects, the colours in the images are not properly recovered

and the images appear grayscale. Fig. 8d shows the output

images without using the gray world loss (i.e. without Lgray.

Eq. (9)). As we can observe, without the gray world loss,

the light effects suppression is not proper. Hence, all our

unsupervised losses are important for suppressing the light

effects effectively as shown in Fig. 8b.

7. Conclusion

We have introduced a single-image nighttime visibility

enhancement method. Our idea is to increase the dynamic

range of the intensity, and thus can boost the intensity of

the low-light regions, and at the same time, suppress the

light effects (glow, glare, floodlight). To our knowledge, our

method is the first method to have addressed this problem.

Our method is based on semi-supervised learning and uses

paired data (with ground-truths) and unpaired data (with-

out ground-truths) for learning dynamic range improvement

and light effects suppression respectively. Our experiments

have confirmed that our method outperforms the state-of-

the-art methods qualitatively and quantitatively.
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