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Abstract

Learning computational models of image aesthetics can

have a substantial impact on visual art and graphic de-

sign. Although automatic image aesthetics assessment is

a challenging topic by its subjective nature, psychological

studies have confirmed a strong correlation between im-

age layouts and perceived image quality. While previous

state-of-the-art methods attempt to learn holistic informa-

tion using deep Convolutional Neural Networks (CNNs),

our approach is motivated by the fact that Graph Convo-

lutional Network (GCN) architecture is conceivably more

suited for modeling complex relations among image regions

than vanilla convolutional layers. Specifically, we present a

Hierarchical Layout-Aware Graph Convolutional Network

(HLA-GCN) to capture layout information. It is a dedi-

cated double-subnet neural network consisting of two LA-

GCN modules. The first LA-GCN module constructs an

aesthetics-related graph in the coordinate space and per-

forms reasoning over spatial nodes. The second LA-GCN

module performs graph reasoning after aggregating signifi-

cant regions in a latent space. The model output is a hierar-

chical representation with layout-aware features from both

spatial and aggregated nodes for unified aesthetics assess-

ment. Extensive evaluations show that our proposed model

outperforms the state-of-the-art on the AVA and AADB

datasets across three different tasks. The code is available

at http://github.com/days1011/HLAGCN .

1. Introduction

Automatic image aesthetics assessment (IAA) has at-

tracted increasing attention in recent years due to its po-

tential applications, e.g., image retrieval, album photo rec-

ommendation, image enhancement [7,14,44], etc. Early ef-

forts focus on extracting elaborately designed hand-crafted

features according to the known photographic principles,

e.g., the rule-of-thirds [8], color harmony [35], and global
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Figure 1. To capture layout information over the whole input

space, we first partition an image into spatial nodes. Features from

the disjoint regions (denoted in colors) in the coordinate space are

then projected into the latent space for efficient graph reasoning.

image layout [16, 30]. With the advance of Convolution

Neural Networks (CNNs) [20], recent methods aim to map

image aesthetics to different types of formulations using

CNNs, i.e., binary classification labels [25, 40], aesthetic

scores [37] and their distributions [3, 10, 11]. Although sig-

nificant progress has been achieved, the performance of em-

ploying CNNs for IAA is often compromised due to the fol-

lowing two main inherent constraints.

First, general deep aesthetic models require additional

operations (e.g., cropping, warping, or padding) to gener-

ate the fixed-size input needed for mini-batch compatibil-

ity. However, the altered object aspect ratios or image lay-

outs often impair the image aesthetics and introduce label

noise for representation learning. Several methods try to

address such limitations by either feeding the original-sized

images [10, 29] or incorporating multiple patches [28, 41]

into the network, which slows down the training and infer-

ence process significantly. Second, the layout information

is crucial for assessing visual aesthetics since the appropri-

ate arrangement of visual elements in the photograph can

add balance and harmony [31, 46]. For example, Fig. 1 (a)

8475



shows an example from DPChallenge1, an on-line commu-

nity for photography amateurs. In this landscape scene, five

denoted elements including sky, sailboats, lake and reef, are

presented with a comfortable and balanced layout collec-

tively manifesting the high-level aesthetics, which won first

place with an average vote of 7.83. However, due to the

inherent limitation of the regular receptive field, the convo-

lution operations of CNNs are typically inefficient at captur-

ing relations among distant regions in the coordinate space.

To address these problems, we propose a double-

subnetwork framework based on the Graph Convolution

Networks (GCNs) [17], leveraging layout information for

assessing visual aesthetics. Specifically, we first use a

Fully Convolutional Network (FCN) to preserve the spa-

tial information of the convolutional feature maps, which

are viewed as representations of nodes throughout the en-

tire spatial grid. Based on the spatial nodes, we construct

an aesthetics graph by connecting every pair of nodes to

form edges, and embedding the information regarding con-

tent similarity and aspect ratio-embedded spatial relations

between nodes as edge weights. Then instead of relying

solely on standard convolutions to model aesthetic informa-

tion, the proposed 1st Layout-Aware Graph Convolutional

Network (LA-GCN) module performs graph convolutions

on the graph. To enable efficient global reasoning over dis-

joint regions, we further propose to aggregate nodes with

similar semantics in a latent space and perform graph rea-

soning via the 2nd LA-GCN module, as shown in Fig. 1 (b).

By fusing features from both spatial and aggregated nodes,

our Hierarchical LA-GCN empowers the GCN model with

the capacity of learning hierarchical representation for IAA.

Our contributions are summarized as follows: First, we

present a layout-aware graph convolution module to explic-

itly relate the aesthetic perception to the image layout at-

tributes in an end-to-end fashion; second, we propose the

HLA-GCN (Hierarchical LA-GCN) by extending the LA-

GCN module to a hierarchical architecture for learning vi-

sual representations from both coordinate and latent spaces.

Our proposed framework performs favorably against the

state-of-the-art methods on the AVA and AADB datasets

for unified aesthetics assessment, i.e., quality classification,

score regression, and distribution prediction.

2. Related Work

In this section, we provide a brief review of image

aesthetics assessment (IAA) methods [3, 7, 42, 47] espe-

cially those on preserving image layouts and composi-

tions as well as graph-based representation learning meth-

ods [4, 13, 17, 39] that are closely related to our work.

Image Aesthetics Assessment Conventional methods de-

sign image layouts by approximating simple photogra-

1https://www.dpchallenge.com/image.php?IMAGE_

ID=263833

phy composition guidelines, e.g., visual balance, rule of

thirds, and diagonal dominance [36, 46, 49], while recent

efforts focus on using CNN for learning aesthetic repre-

sentations [3, 7, 42]. As aesthetics can be influenced by

the transformations applied to the input, several existing

CNN methods try to overcome the limitations by design-

ing multi-column architectures that take multiple patches

as inputs and aggregate their contributions to the aesthet-

ics score [26–29]. Kao et al. [15] propose to learn aes-

thetic features by dividing the images into different cate-

gories and training associated networks capturing different

information in terms of scene, object, and texture. In ad-

dition, MNA-CNN [29] proposes to preserve compositions

by feeding the original image into the network once at a

time, which is not mini-batch compatible since images with

different aspect ratios cannot be concatenated into batches.

Ma et al. [28] propose A-Lamp to crop salient patches from

the original image without any transformation, and then

build an attribute relation graph over these regions to pre-

serve the spatial layout of the image. As A-Lamp requires

a manually designed aggregation structure, Liu et al. [25]

propose to use GCN to model the mutual dependencies of

the local regions. However, these methods do not explicitly

build aesthetics-related graph for modeling complex rela-

tions among image regions which is an important cue for

aesthetics assessment.

Graph-based Representation Learning Graph-based

methods have shown to be an efficient approach to relation

reasoning. Early efforts including CRFs (Conditional Ran-

dom Fields) [2] and random walk networks [1] are proposed

based on the graph model for effective image segmentation.

Recently, a great deal of research on generalizing convolu-

tion to graph-based data has emerged [5,17,24,34]. Among

these methods, the Graph Convolution Network (GCN) [17]

serves as a simplified model with a 1-st approximation of

the Chebyshev expansion, which restricts the convolution

to operating locally. Wang et al. [45] propose to capture

relations between regions detected by an object detector via

GCN, while Chen et al. [4] propose a generic trainable mod-

ule Global Reasoning unit for reasoning between disjoint

and distant regions. In this paper, we exploit the reason-

ing power of GCN to build an aesthetics-related graph for

relation reasoning in both coordinate and latent spaces.

3. Methodology

In this section, we first provide an overview of the pro-

posed hierarchical layout-aware graph convolutional net-

work. Then we present the core LA-GCN module and ex-

tend the proposed module to a hierarchical architecture for

learning aesthetic representations on both coordinate and la-

tent spaces. Finally, we give the problem formulation of

unified aesthetic assessment task and loss function.
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Figure 2. Illustration of the proposed HLA-GCN framework for unified aesthetics assessment. It takes a warped image associated with

its aspect ratio as input, which is passed through the fully convolutional layers of CNN. Each channel-wise vector of the obtained feature

maps is viewed as a node representation of the corresponding spatial region. The proposed 1st LA-GCN module is followed to construct

the aesthetics graph and perform graph reasoning over all the spatial locations. Then the spatial nodes are aggregated by projecting node

representations from the coordinate space to the latent space. Based on the aggregated nodes, the 2nd LA-GCN module constructs a fully-

connected graph and performs graph reasoning over significant regions. Finally, the features of both spatial and aggregated nodes are fused

as a hierarchical representation for aesthetics prediction.

3.1. Overview

Motivated by overcoming the inherent limitations of

convolution operations, the proposed HLA-GCN aims to

model a hierarchical image layout by performing graph rea-

soning on both coordinate and latent spaces. The architec-

ture of the proposed framework is shown in Fig. 2. Given

the input aesthetic image, we view the extracted feature

maps as representations of nodes throughout all spatial lo-

cations. The proposed framework performs graph reasoning

over all the spatial nodes and aggregated significant nodes

via two LA-GCN modules. Considering both content and

spatial relations, the 1st LA-GCN constructs an aesthetics-

related graph and applies graph convolution on all the spa-

tial nodes. By performing graph reasoning in the coordi-

nate space, the proposed framework can model the overall

image layout of different visual elements. Furthermore, we

propose a node aggregation strategy to aggregate significant

nodes in a latent space, where a set of disjoint regions with

similar semantics can be projected onto a single represen-

tation. The 2nd LA-GCN is employed to perform relation

reasoning over the graph constructed in the latent space. Fi-

nally, both spatial and aggregated nodes are fused as a hier-

archical representation for unified aesthetic assessment.

3.2. Layout­aware GCN Module

Given the aesthetic image, we first extract the FCN fea-

ture map of shape W ×H×C, where W , H , and C denote

the spatial size, i.e., width and height, and the channel-wise

dimension, respectively. As the spatial information is pre-

served after FCN, we can view the feature map as node rep-

resentations X = [x1,x2, · · · ,xL] ∈ R
L×C throughout

the entire spatial grid, where L = W ×H denotes the total

number of spatial locations. To model relations between re-

gions, we construct an aesthetics-related graph based on the

node representations. Then by performing graph convolu-

tion on the graph, feature maps can be refined by message

passing among nodes, resulting in layout-aware visual rep-

resentations.

Graph Building Considering L nodes associated with the

node representations X, we first construct an undirected

fully connected graph Gc = (Vc, Ec, Ac) in the coordinate

space. Here, Gc is constructed by its nodes Vc, the set of

edges connecting nodes Ec and adjacent matrix Ac describ-

ing the edge weights. The adjacent matrix is defined accord-

ing to two main types of pair-wise relations, i.e., content

similarity, and spatial relations, as follows:

Ac = Asim +Aspa (1)

Specifically, we first measure the content relations between

region nodes using cosine similarity as follows:

sim(xi,xj) =
< φ(xi), φ

′(xj) >

‖φ(xi)‖‖φ′(xj)‖
, (2)

where ‖ · ‖ represents the ℓ2-norm and < · , · > denotes

the inner product. Here, φ(xi) = ωxi and φ′(xj) = ω′xj
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are two linear transformations applied for increasing gener-

alization ability [25, 45], and ω, ω′ ∈ R
C×C are learnable

parameters that can be optimized via back propagation. Af-

ter computing the pairwise similarity matrix, we obtain the

affinity matrix Asim ∈ R
L×L and adopt the softmax func-

tion for normalization on each row of the matrix by:

Asim
ij =

exp (sim (xi,xj))∑L
k=1 exp (sim (xi,xk))

, (3)

where exp(·) is the exponential function. In addition to

visual contents, image aesthetics can also be affected by

the spatial composition of visual elements [28, 43]. As

stated in Sec. 1, common preprocessing operations (e.g.,

cropping, warping) alter image composition and may in-

troduce label noise for representation learning. To address

the problem, we adopt layout-preserving warping that pre-

serves the aspect ratio information of the original image,

as shown in Fig. 3 (a). As most current CNN models only

take square images as input (i.e., W = H), the aspect ra-

tio is computed by r = w
h . We embed the aspect ratio in-

formation by considering spatial relations between pairwise

nodes in the graph. To be specific, for the i-th node and j-

th node, we denote their coordinates in the original feature

maps as (sxi , s
y
i ) and (sxj , s

y
j ), where 1 6 sxi , s

x
j 6 W and

1 6 s
y
i , s

y
j 6 H . The spatial relation between region nodes

is then computed by the aspect-ratio-embedded distance:

dis(i, j) =





√
(∆sx · r)2 +∆s2y, if r < 1√
∆s2x + (

∆sy
r )2, if r > 1

(4)

where ∆sx = sxi − sxj and ∆sy = s
y
i − s

y
j . Similarly, the

affinity matrix Adis ∈ R
L×L can be obtained with softmax

normalization:

A
spa
ij =

exp (−dis (i, j))
∑L

k=1 exp (−dis (i, k))
. (5)

Intuitively, the spatial relation between nodes shares a simi-

lar idea as the receptive field where the features of neighbor-

ing nodes are utilized during convolution. Different from

convolution considering the receptive field with fixed size

(e.g., 3 × 3), our spatial relation provides a more flexible

way that incorporates ‘dynamic receptive field’ by adjust-

ing the weights of neighbors for images with different as-

pect ratios. Fig. 3 (b) shows the weights of adjacent matrix

by taking the node in the green box as the anchor. As can

be seen, the content similarity matrix enables the network

to exploit the semantically related regions, while the spa-

tial relation matrix considers a more flexible receptive field

according to the original image’s aspect ratio. Combining

these aesthetics-related attributes, we can obtain the graph

Ac in Eqn. (1).

h

w

Original Image Warped Input

h

Layout-Preserving 

Warping

C
o

n
te

n
t 

S
im

il
a
ri

ty
S

p
a
ti

a
l 

R
el

a
ti

o
n

Layout-aware Graph Reasoning

FCN features

Build Graph

( r = 1.411 )

Ratio

h

r =r =
h

w
r =

h

w

(a)

(b)

si
m

A
sp

a
A

gA

)x,
sim(x

j)
dis(i,

j
i

+

Figure 3. Illustration of layout-aware graph reasoning. For the

warped input, we preserve the image aspect ratio by encoding it

to the spatial relations, and capturing the semantic information

through content similarity. Then the aesthetic graph can be built

to guide message passing between the anchor node (denoted in the

green bounding box) and the neighbors. Best viewed in color.

Graph Reasoning After the aesthetics-related graph is con-

structed, we then perform reasoning on the graph via graph

convolutions. Compared with standard convolutions that

have the intrinsic limitation on a regular receptive field, the

graph convolutions are able to pass messages among neigh-

bors of each node based on defined relations [4, 45]. For-

mally, the proposed LA-GCN can be formulated as follows,

H(m+1)
c = σ

(
Ã(m)

c H(m)
c Θ(m)

c )
)
, (6)

where H
(m)
c is the activation in the m-th layer, and H

(0)
c =

X, Θ
(m)
c ∈ R

C×C is the trainable weight matrix of the m-th

layer. Note that we add a self-loop to each node in the graph

following [4, 23], thus the adjacency matrix of the graph is

Ã
(m)
c = A

(m)
c + I, where A

(m)
c is computed by Eqn. (1)

using the feature map of the current layer H
(m)
c . The iden-

tity matrix I serves as a shortcut connection alleviating the

vanishing gradient problem during training, which leads to

stable updating during graph message passing. After each

layer of graph convolution except for the last layer, we use

ReLU as the activation function σ(·) on the output.

3.3. Hierarchical Prediction Architecture

The proposed 1st LA-GCN incorporates the holistic lay-

out attributes via an aesthetics-related graph in the coordi-

nate space Ω. To describe image layouts effectively, we

further aggregate graph nodes to high-level attributes in the

latent space H, where each node is aggregated from a set

of disjoint regions in Ω. Specifically, given the input repre-

sentation X ∈ R
L×C we first project the original features
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to Z ∈ R
K×C , where K is the number of aggregated nodes

in the latent space. Similar to [4], we formulate the projec-

tion function as a linear combination (i.e., weighted global

pooling) of original features such that the new features can

aggregate information from multiple regions. In particular,

the feature zi ∈ R
1×C of the projected node can be de-

noted as: zi = biX =
∑L

j=1 bijxj , where the weights

B = [b1,b2, · · · ,bK ] ∈ R
K×L are learnable during end-

to-end training. We note that the above equation gives a

more generic formulation than existing methods [28, 41]

that require additional object bounding boxes.

Based on these K aggregated nodes, we further construct

the graph Gl = (Vl, El, Al) and perform the graph reason-

ing with the 2nd LA-GCN, denoted as:

H
(m+1)
l = σ

(
Ã

(m)
l H

(m)
l Θ

(m)
l

)
, (7)

where H
(m)
l is the refined representation in the m-th layer,

and the initial node representation H
(0)
l = Z. We denote

the trainable weights of LA-GCN as Θ
(m)
l ∈ R

C×C . Sim-

ilarly, Ã
(m)
l = A

(m)
l + I. Note that A

(m)
l only considers

the content similarity in Eqn. (3) due to the non-Euclidean

geometry of the latent space, which is also computed us-

ing the feature map of the current layer H
(m)
l . To make

the module compatible with the 1st LA-GCN module, we

map the output features back of the 2nd LA-GCN to the

original coordinate space using reverse projection without

sacrificing efficiency or effectiveness [4]. Assuming that

the output from the 2nd LA-GCN is Hl ∈ R
K×C , the

representations projected in the coordinate space can be

obtained by Ĥl = B⊤Hl ∈ R
L×C . Given the outputs

Hc and Ĥl from two modules, the global average pooling

and fully connected layers are added to each output, map-

ping the representations to score distributions p̂c, p̂l ∈ R
S .

Thus, the final predicted distributions can be denoted as:

p̂ = σ(p̂c)+σ(p̂l)
2 .

3.4. Problem Formulation

Generally, there are three kinds of aesthetic labels (i.e.,

the mean score, binary class, and distribution), which

are treated as different IAA problems in previous meth-

ods [27, 28, 41]. Following a recent trend [47], our objec-

tive is to learn a deep network that allows solving all three

IAA tasks using a single model trained for the distribution

prediction task, which can provide more supervisions about

image aesthetics.

Formally, assuming that we have N sample images, raw

annotations are first collected in the form of score his-

tograms and then ℓ1-normalized as the aesthetic score dis-

tributions. The ground truth distribution can be denoted

as p = [p(1), p(2), · · · , p(S)], where
∑S

s=1 p
(s) = 1. In

AVA [33], the total number of score bins S is 10, and thus

each vote ranges from 1 to 10. Following the previous

methods [3, 42], our framework is optimized to predict the

aesthetic score distribution by minimizing the EMD (Earth

Mover’s Distance) loss [42] with the ordered distribution

distance as follows:

L(p, p̂) =

(
1

S

S∑

k=1

|CDFp(k)− CDFp̂(k)|
r̂

)1/r̂

, (8)

where CDFp(k) =
∑k

i=1 p
(i) is the cumulative distribu-

tion function. During the inference phase, our framework

directly predicts the distribution p̂, and then aesthetic score

µ̂ and binary class ĉ can be inferred accordingly. Mean

aesthetic scores are formulated as the average rating scores

µ̂ =
∑S

s=1 s × p̂(s), and binary class labels ĉ ∈ {0, 1}
can be assigned by thresholding the average score with

ĉ = 1(µ̂ >
⌈
S
2

⌉
), where 1(·) the indicator function.

4. Experiments

In this section, we evaluate the proposed method against

state-of-the-art algorithms to demonstrate the effectiveness

of HLA-GCN for three IAA tasks.

4.1. Datasets

AVA dataset [33] is the largest publicly available bench-

mark in the research field of IAA, which contains more than

25k images collected from DPChallenge. Each image is

rated by an average of 210 users, and the ratings range from

1 to 10 with 10 being the highest aesthetic score. The ob-

tained score histogram is ℓ1-normalized to generate our tar-

get training and testing distributions. For the binary aes-

thetics task, images with average scores smaller than 5 are

labeled with low-level aesthetics, and the other images are

labeled as high-level aesthetics following the same routine

as [25, 29, 42]. We employ the training/test split provided

by [22] and randomly sample 2, 000 images from the train-

ing set for validation. Since some images are not available,

our experiments use a total of 235, 503 images for train-

ing/validation and 19, 997 images for testing.

AADB dataset includes 10,000 photographic images col-

lected from Flickr. Each image is annotated by, on av-

erage, five people with integer scores ranging from 1 to 5.

Following the previous work [18, 19, 21], we use the stan-

dard split with 8,500 images for training, 500 images from

validation, and 1,000 images for testing. We normalize the

score histogram to generate distributions and discard about

100 images that have only one rating following [47].

4.2. Experimental Setup

Training and Implementation We use ResNet-50 and

ResNet-101 [9] pretrained on ImageNet [6] as the back-

bone of our proposed framework. The entire model is op-

timized by minimizing the EMD loss with r̂ = 2 using
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Table 1. Comparison with the SOTA methods on AVA. Note that † and ‡ denote that multi-patches and additional annotations are used for

aesthetics assessment, respectively. We also show the backbone and input image size of each method. Here, ‘Resize(·)’ denotes that the

smaller image dimension of input is resized to a specified dimension while maintaining the original aspect ratio. The results were quoted

from their original papers, and ‘-’ denotes the unreported metrics. The corresponding training and testing splits are also shown.

Methods Network Image Size Split
Classification Score Regression Distribution

Accuracy ↑ SRCC ↑ LCC ↑ MSE ↓ EMD1 ↓ EMD2 ↓

DMA-Net [27]† AlexNet 227 × 227 from [33] 75.4 % - - - - -

MNA-CNN [29]† VGG16 224 × 224 from [33] 77.1 % - - - - -

Zeng et al. [47] ResNet-101 384 × 384 from [33] 80.8 % 0.719 0.720 0.275 - 0.065

APM [32] ResNet-101 Resize(500) from [33] 80.3 % 0.709 0.279 - 0.061

A-Lamp [28]† VGG16 224 × 224 from [33] 82.5 % - - - - -

MPada [41]† ResNet-18 224 × 224 from [33] 83.0 % - - - - -

RGNet [25] ResNet-101 300 × 300 from [33] 82.5 % - - - - -

Hosu et al. [10] InceptionResNet Full resolution from [33] 81.7 % 0.756 0.757 - - -

NIMA [42] Inception-v2 299 × 299 random 81.5 % 0.612 0.636 - 0.050 -

AFDC [3] ResNet-50 320 × 320 random 83.0 % 0.649 0.671 0.271 0.045 -

PA IAA [22]‡ Inception-v3 299 × 299 from [22] 83.7 % 0.677 - - 0.047 -

PA IAA [22]‡ DenseNet-121 224 × 224 from [22] 82.9 % 0.666 - - 0.049 -

HLA-GCN ResNet-50 300 × 300 from [22] 84.1% 0.656 0.678 0.264 0.045 0.065

HLA-GCN ResNet-101 300 × 300 from [22] 84.6% 0.665 0.687 0.255 0.043 0.063

Table 2. Comparison results on AADB. Our HLA-GCN is based

on the ResNet-50. Note that ‘-’ denotes the unreported metrics.

Methods SRCC LCC MSE EMD1 EMD2

Reg-Net [19] 0.678 - 0.1268 - -

NIMA [42] 0.708 - - - -

RGNet [25] 0.710 - - - -

PAC-Net [18] 0.837 - - - -

Lee et al. [21] 0.879 - 0.1141 - -

HLA-GCN 0.899 0.9037 0.0980 0.0842 0.1093

stochastic gradient descent (SGD) following [42]. During

training, we employ the layout-preserving warping intro-

duced in Sec. 3.2, which rescales each image to the size

of 300 × 300 associated with the original aspect ratio. To

avoid over-fitting, common data augmentations [25, 42] are

adopted on the rescaled images as preprocessing, including

randomly flipping training images horizontally and scaling

images 1.05 times followed by random cropping. The size

of output feature maps after FCN is 10 × 10, and we first

add a 1 × 1 convolutional layer to reduce the channel-wise

dimension to 1024, which is followed by the 1st LA-GCN

with 3 graph convolution blocks and the 2nd LA-GCN with

1 block for representation learning. In practice, we set the

number of the aggregated nodes K to be 1
4 of the number

of total nodes following [4], i.e., K = 25. We train the net-

work on a machine with four NVIDIA GeForce GTX 1080

Ti and use a mini-batch size of 100 images running for a

total of 20 epochs. The initial learning rate is set to 0.01
for the first 6 epochs and dampened to 0.001 for the rest

epochs and we use the default weight decay of 5e−4 with a

momentum of 0.9.

We implement our proposed framework on two differ-

ent deep learning platforms: PyTorch [38] and Jittor [12].

Experiments (as shown in Tab. 3) show that the implemen-

tation using Jittor yields faster inference than that using Py-

Table 3. Inference speed comparison between PyTorch and Jittor.

The boldface denotes the faster framework. Inference speed is the

average results running on a single GPU with a batch size of 32.

Platform
Time per image Iterations per second

(ms/im) (it/s)

PyTorch [38] 3.8704 8.0742

Jittor [12] 3.6211 8.6300

Torch, thanks to the powerful just-in-time compiler of Jittor.

Evaluation We employ six commonly used metrics to eval-

uate three IAA tasks following [42]. Accuracy is reported

for binary aesthetic quality classification. For aesthetic

score regression, we report Spearman’s Rank Correlation

Coefficient (SRCC), Linear Correlation Coefficient (LCC)

and Mean Squared Error (MSE). For the distribution pre-

diction, EMD with r̂ = 1 and r̂ = 2 are both reported,

denoted by EMD1 and EMD2, respectively.

4.3. Comparison with State­of­the­Art Results

Tab. 1 and Tab. 2 show the results of the state-of-the-

art aesthetics prediction models on both AVA and AADB

datasets. As seen, our proposed HLA-GCN consistently

performs favorably against the state-of-the-art methods for

the unified aesthetics assessment. For the binary classifi-

cation task, compared with multiple-patches methods [27–

29, 41], our proposed framework achieves better accuracy

and alleviates efforts to aggregate sampling prediction by

learning discriminative features directly from the complete

images. For example, A-Lamp [28] focuses on capturing

the spatial layout of images via a complicated path sam-

pling strategy and manually designed aggregation structure,

which crops 50 groups of patches from the original image.

Our end-to-end framework is much more efficient without

feeding multiple cropping patches and outperforms such a
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Table 4. Results on AVA [33] using different variants of the proposed model. Note that all models are based on ResNet-50 and optimized

using EMD loss with an input size of 300× 300. Training speed is the average results running on a single GPU with a batch size of 16.

Models #Params Speed
Classification Score Regression Distribution

Accuracy ↑ SRCC ↑ LCC ↑ MSE ↓ EMD1 ↓ EMD2 ↓

Baseline 23.5M 6.82 81.95 % 0.6050 0.6290 0.303 0.0470 0.0681

+ GCN [17] 36.1M 6.09 83.60 % 0.6300 0.6370 0.283 0.0460 0.0664

+ GloRe [4] 25.8M 5.05 83.46 % 0.6150 0.6368 0.280 0.0459 0.0660

+ LAGCN 35.0M 6.15 83.96 % 0.6480 0.6630 0.270 0.0452 0.0648

+ LAGCN (w/o s.) 35.0M 6.22 83.67 % 0.6320 0.6530 0.274 0.0456 0.0665

+ LAGCN (w/o c.) 28.8M 6.35 83.56 % 0.6240 0.6400 0.285 0.0464 0.0671

+ GCN×2 48.8M 5.63 83.95 % 0.6402 0.6620 0.269 0.0454 0.0654

+ LAGCN×2 44.6M 5.33 83.98 % 0.6489 0.6704 0.266 0.0448 0.0648

+ HLA-GCN (Ours) 38.2M 5.83 84.10 % 0.6555 0.6776 0.264 0.0451 0.0646

method by 2.1%. For the score regression and distribution

prediction tasks, APM [32] and Hosu et al. [10] achieve

the best results on SRCC and LCC since they explicitly

keep the original image ratio for each image, while slows

down the training phase significantly. Compared with the

methods that supports mini-batch training on images with

different aspect ratios [3, 42], our framework incorporating

layout information shows a consistent improvement on all

three tasks. On the AADB dataset, our method improves

the performance by a large margin, illustrating that our pro-

posed HLA-GCN can learn more discriminative and accu-

rate aesthetic representations, resulting in better generaliza-

tion ability for unified aesthetics assessment.

4.4. Ablation Study

To illustrate the effect of individual components, we

conduct ablation studies by analyzing the following vari-

ants based on the ResNet-50 NIMA model. (1) GCN: this

model adds typical GCN [17] after FCN with the same num-

ber of blocks (i.e., 3) as our first LA-GCN; (2) GloRe:

this model adds Global Reasoning Unit (GloRe) [4] after

FCN projecting the same number of nodes (i.e., 25) as our

second LA-GCN; (3) LAGCN: this model is a truncated

version of our HLA-GCN, in which the second LA-GCN

and the fusion are removed. (4) LAGCN (w/o s.): this

model follows LAGCN while discarding the spatial rela-

tion term in Eqn. (1); (5) LAGCN (w/o c.): this model fol-

lows LAGCN while discarding the content similarity term

in Eqn. (1); (6) GCN×2: this model replaces the LAGCNs

in our HLA-GCN with two typical GCNs; (7) LAGCN×2:

this model replaces the second LA-GCN module in our

HLA-GCN with the first LA-GCN module. (8) HLA-GCN:

this is our proposed framework including all the compo-

nents. All models are fine-tuned based on ResNet-50 and

optimized using EMD loss with an input size of 300× 300.

Tab. 4 shows the ablation study results and computation.

The training speed, i.e., images per second, is reported by

averaging timing results on a single GPU with a batch size
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Figure 4. Performance of our proposed HLA-GCN on the AVA

validation set using different number of graph convolution blocks.

The LCC results and number of model parameters are shown.

of 16.

Graph Reasoning Module We first study the case when

only a single graph reasoning module is added to the base-

line model. We compare the proposed 1st LA-GCN with

typical GCN [17] employed in [25] and Global Reasoning

Unit [4]. The results show that all graph-based models lead

to better representations than the baseline CNN, while our

proposed LA-GCN module further improves results by in-

corporating aesthetics-related attributes in graph reasoning.

Choice of Adjacency Matrix To verify the effect of the

constructed aesthetics-related graph, we directly discard the

spatial relation or the content similarity in Eqn. (1) and see

how the model performs. We find that SRCC will drop

sharply from 0.6480 to 0.6240 without the content similar-

ity while still outperforms the baseline model showing the

advance of ‘dynamic receptive field’. When the spatial re-

lation matrix is discarded, the performance also declines.

Such results demonstrate that both the spatial information

and semantic-aware content are significant attributes and

complementary for aesthetics assessment.

Leveraging Multiple Representations To verify that the

improvement of HLA-GCN is not just because it has more

parameters to the network backbone, we further compare
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GT:4.8 Pre:4.8 (5.5 / 4.1)GT:4.49  Pre:4.69 (5.10 / 4.50) GT:4.45  Pre:4.66 (5.04 / 4.58)

GT:7.20  Pre:7.22 (7.33 / 7.11) GT:4.34  Pre:4.35 (4.39 / 4.31)GT:6.91  Pre:6.93 (6.61 / 7.15)

GT:6.55  Pre:4.88 (4.91 / 4.85) GT:4.65  Pre:5.06 (5.33 / 4.90) GT:4.63  Pre:6.25 (6.45 / 6.06) GT:4.6 Pre:5.1 (5.2 / 5.1)

GT:4.89  Pre:4.95 (5.38 / 4.79)

Figure 5. Aesthetic quality prediction results. The ground truth

(GT) and predicted (Pre) scores are shown underneath each image.

The specific prediction of the first and second LA-GCNs are also

shown in brackets in order. The quality is highlighted in different

colors, red and blue denote low-level and high-level aesthetics,

respectively. The third row shows several typical failure cases.

with different double-subnet models. The results show that

although stacking GCNs has more parameters, our pro-

posed framework with dedicated design is more effective

for learning aesthetic representations. In addition, introduc-

ing two LAGCNs in the coordinate space is less effective,

mainly due to the overfitting problem.

Graph Convolution Layers Fig. 4 shows the validation re-

sults of our proposed method using different numbers of

graph convolution blocks in the 1st LA-GCN. It shows that

with the increase of block number from 1 to 3, the perfor-

mance is boosted, while further increasing the block num-

ber leads to no significant improvement. Therefore, we

choose to use three blocks of graph convolution for the

1st LA-GCN making a tradeoff between performance and

model size. In addition, for the 2nd LA-GCN, we found no

significant difference when using more blocks and thus use

one block of graph convolution.

4.5. Model Interpretation

Prediction Results We first show prediction results from

the test set of AVA using our proposed HLA-GCN. In Fig. 5,

the first row shows the examples that are predicted with low

assessment errors. We find that differences between most

low-aesthetic and high-aesthetic quality primarily lie in the

harmony of the entire image with a clear semantic mean-

ing. When the images are presented with a simple scene,

for example, images with clear foreground and background

shown in the second row, the prediction of aesthetics can

be more ambiguous and difficult. Due to the concise ap-

pearance, these images are misclassified to high-aesthetic

quality by the first LA-GCN module, while the second LA-
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Figure 6. Qualitative results of Class Activation Maps. Given the

input image, we extract FCN features and refined features after the

first LA-GCN using our proposed model, and visualize the feature

response via CAM. The ground truth aesthetic score is also given

above each input image. Best viewed in color.

GCN module lessens the confidence mainly due to little in-

teraction in the latent space. Besides, we also show several

failure cases in the last row, where images that exhibit large

prediction errors tend to require a more abstract high-level

understanding of semantics.

Class Activation Maps To visualize aesthetics-specific ac-

tivation within the model, we directly extract Class Activa-

tion Maps (CAM) [48] from our fine-tuned HLA-GCN. The

activation of feature maps after FCN and the first LA-GCN

module are shown in Fig. 6. As can be seen, the attended

region (highlighted in red) is able to cover highly correlated

objects in the scene after graph convolution, which illus-

trates that our proposed module refines the FCN features by

incorporating image layout information in the network.

5. Conclusion

In this paper, we present HLA-GCN, an end-to-end

graph-based representation learning framework for image

aesthetics assessment. Our proposed method builds a graph

representing visual elements and their aesthetics-related at-

tributes, including aspect-ratio-embedded spatial informa-

tion and semantic-aware contents. By performing graph

convolutions, the interactions over the aesthetics-related

graph are modeled in both the coordinate space and latent

space, leading to the layout-aware hierarchical representa-

tion. Extensive evaluations show that our proposed model

achieves state-of-the-art performance on the benchmark vi-

sual aesthetics datasets.
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