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Abstract

Recently, the ever-increasing capacity of large-scale an-

notated datasets has led to profound progress in stereo

matching. However, most of these successes are limited

to a specific dataset and cannot generalize well to other

datasets. The main difficulties lie in the large domain dif-

ferences and unbalanced disparity distribution across a va-

riety of datasets, which greatly limit the real-world applica-

bility of current deep stereo matching models. In this paper,

we propose CFNet, a Cascade and Fused cost volume based

network to improve the robustness of the stereo matching

network. First, we propose a fused cost volume represen-

tation to deal with the large domain difference. By fusing

multiple low-resolution dense cost volumes to enlarge the

receptive field, we can extract robust structural representa-

tions for initial disparity estimation. Second, we propose

a cascade cost volume representation to alleviate the un-

balanced disparity distribution. Specifically, we employ a

variance-based uncertainty estimation to adaptively adjust

the next stage disparity search space, in this way driving the

network progressively prune out the space of unlikely cor-

respondences. By iteratively narrowing down the dispar-

ity search space and improving the cost volume resolution,

the disparity estimation is gradually refined in a coarse-to-

fine manner. When trained on the same training images and

evaluated on KITTI, ETH3D, and Middlebury datasets with

the fixed model parameters and hyperparameters, our pro-

posed method achieves the state-of-the-art overall perfor-

mance and obtains the 1st place on the stereo task of Ro-

bust Vision Challenge 2020. The code will be available at

https://github.com/gallenszl/CFNet.

1. Introduction

Stereo matching, i.e. estimating a disparity/depth map

from a pair of stereo images, is fundamental to various ap-

plications such as autonomous driving [3], robot navigation

[1], SLAM [8, 10], etc. Recently, many deep learning-based

*Yuchao Dai is the corresponding author.

Figure 1. Performance comparison in terms of generalization abil-

ity on the Middlebury, ETH3D, and KITTI 2015 datasets. Bad 2.0,

bad1.0, and D1 all (the lower the better) are used for evaluation.

All methods are trained on the same training images and tested on

three datasets with single model parameters and hyper-parameters.

Our CFNet achieves state-of-the-art generalization and performs

well on all three real-world datasets.

stereo methods have been developed and achieved impres-

sive performance on most of the standard benchmarks.

However, current state-of-the-art methods are generally

limited to a specific dataset due to the significant domain

shifts across different datasets. For example, the KITTI

dataset [9, 19] focuses on real-world urban driving sce-

narios while Middlebury [22] concentrates on indoor high-

resolution scenes. Consequently, methods that are state-of-

the-art on one dataset often cannot achieve comparable per-

formance on a different one without substantial adaptation

(visualization comparison can be seen in Fig. 2). However,

real-world applications require the approaches to general-

ize well to different scenarios without adaptation. Thus, we

need to push methods to be robust and perform well across

different datasets with the fixed model parameters and hy-

perparameters.

The difficulties in designing a robust stereo matching

system come from the large domain differences and unbal-

anced disparity distribution between a variety of datasets.

As illustrated in Fig. 2 (a), there are significant domain dif-

ferences across various datasets, e.g., indoors vs outdoors,

color vs gray, and real vs synthetic, which leads to the

learned features distorted and noisy [37]. In addition, as

illustrated in Fig. 3, the disparity range of half-resolution

images in Middlebury [22] is even more than 6 times larger

than full-resolution images in ETH3D [24] (400 vs 64).
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(a) Left image (b) CFNet (c) GANet (d) HSMNet
Figure 2. Visualization of some state-of-the-art methods’ performance on three real-world dataset testsets (from top to bottom: KITTI,

Middlebury, and ETH3D). All methods are trained with a combination of KITTI, Middlebury, and ETH3D train images. GANet [36] and

HSMNet [33] can achieve good performance on one specific dataset but perform poorly on the other two even if they have included targeted

domain images in the training process. Our CFNet achieves SOTA or near SOTA performance on all three datasets without any adaptation.

Such unbalanced disparity distribution makes the current

approaches trained with a fixed disparity range cannot cover

the whole disparity range of another dataset without sub-

stantial adaption.

In this paper, we propose a cascade and fused cost vol-

ume representation to alleviate the above problems. (1)

Towards the large domain differences, we propose to fuse

multiple low-resolution dense cost volumes to enlarge the

receptive field for capturing global and structural represen-

tations. Previous work [37] observes that the limited effec-

tive receptive field of convolutional neural networks [17]

is the major reason the network is domain-sensitive to dif-

ferent datasets and proposes a learnable non-local layer to

enlarge the receptive field. Inspired by it, we find that dif-

ferent scale low-resolution cost volumes can cover multi-

scale receptive fields and are complementary to each other

in promoting the network to look at different scale image

regions. Thus, we can fuse multiple low-resolution dense

cost volumes to guide the network to learn geometric scene

information which is invariant across different datasets. In

addition, this operation only adds a slight computation com-

plexity. (2) Towards the unbalanced disparity distribution,

we propose a cascade cost volume representation and em-

ploy a variance-based uncertainty estimation to adaptively

adjust the next stage disparity search range. That is, our

method only needs to cover the union of all datasets’ dis-

parity distribution (disparity range) at the first stage. Then

we can employ our uncertainty estimation to evaluate pixel-

level confidence of disparity estimation and prune out un-

likely correspondences, guiding our network to look at more

possible disparity search space at the next stage. In addition,

we can save a lot of computational complexity by pruning

out unlikely correspondences.

Experimentally, all methods are trained on the same

training images and tested on three real-world datasets

(KITTI2015, Middlebury, and ETH3D) with fixed model

parameters and hyperparameters. As shown in Fig. 1, our

method performs well on all three datasets and achieves

state-of-the-art overall performance without adaptation.

In summary, our main contributions are:

• We propose a fused cost volume representation to re-

duce the domain differences across datasets.

• We propose a cascade cost volume representation and

develop a variance-based uncertainty estimation to bal-

ance different disparity distributions across datasets.

• Our method shows great generalization ability and ob-

tains the 1st place on the stereo task of Robust Vision

Challenge 2020.

• Our method has great finetuning performance with low

latency and ranks 1st on the popular KITTI 2015 and

KITTI 2012 benchmarks among the published meth-

ods less than 200ms inference time.

2. Related Work

2.1. Cost Volume based Deep Stereo Matching

Stereo matching has been studied for decades and a well-

known four-step pipeline [23] has been established, where

cost volume construction is an indispensable step. Typi-

cally, a cost volume is a 4D tensor of height, width, dispar-

ity, and features. Current state-of-the-art stereo matching

methods are all cost volume based methods and they can be

categorized into two categories. The first category uses a

13907



Figure 3. Disparity distribution of KITTI 2015, Middlebury, and

ETH3D training sets. We plot disparity distribution of half-

resolution images for Middlebury while full-resolution images for

other datasets. The disparity distribution across different datasets

is unbalanced.

full correlation to generate a single-feature 3D cost volume.

Such methods are usually efficient but lose much informa-

tion due to of the decimation of feature channels. Many

previous work, including Dispnet [18], MADNet [29], and

AANet [32], belong to this category. The second cate-

gory usually uses concatenation [14] or group-wise cor-

relation [12] to generate a multi-feature 4D cost volume.

Such methods can achieve improved performance while re-

quiring higher computational complexity and memory con-

sumption. Actually, a majority of the top-performing net-

works in public leaderboards belong to this category, such

as GANet [36] and CSPN [5]. These methods generally

employ multiple 3D convolution layers to constantly regu-

larize the 4D cost volume and then apply softmax over the

disparity dimension to produce a discrete disparity proba-

bility distribution. The final predicted disparity is obtained

by soft argmin [14], where the output is susceptible to multi-

modal disparity probability distributions. To address this is-

sue, ACFNet [38] directly supervises the cost volume with

unimodal ground truth distributions. In contrast, we define

an uncertainty estimation to quantify the degree to which

the cost volume tends to be multi-modal distribution, higher

implies the higher possibility of estimation error.

2.2. Multi­scale Cost Volume based Deep Stereo
Matching

Multi-scale cost volume was firstly applied in the single-

feature 3D cost volume based network with the form of two-

stage refinement [16] and pyramidal towers [29, 27]. Re-

cently, cascade cost volume representation [34, 11, 4] was

proposed in multi-view stereo to alleviate the high compu-

tational complexity and memory consumption in employ-

ing 4D cost volumes. These methods generally predict an

initial disparity at the coarsest resolution. Then, they nar-

row down the disparity search space and gradually refine

the disparity. Recently, Casstereo [11] extends such repre-

sentation to stereo matching. It uniformly samples a pre-

defined range to generate the next stage’s disparity search

range. Instead, we employ uncertainty estimation to adap-

tively adjust the next stage pixel-level disparity search range

and push the next stage’s cost volume to be predominantly

unimodal. Our method also shares similarities with UC-

SNet [4], which constructs uncertainty-aware cost volume

in multi-view stereo. However, it only focuses on dataset-

specific performance. In addition, it generates the next

stage search range with pre-defined parameters while we

use learned parameters, which can better adapt to different

datasets.

2.3. Robust Stereo Matching

Recently, researchers have shown an increased interest

in robust stereo matching. These methods can be roughly

categorized into two types. 1) Cross-domain Generaliza-

tion: This category aims to improve the generalization of

the network to unseen scenes. Towards this end, Jia et al.

[30] propose to incorporate scene geometry priors into an

end-to-end network. Zhang et al. [37] introduce a domain

normalization and a trainable non-local graph-based filter

to construct a domain-invariant stereo matching network.

2) Joint Generalization: This category aims to push the net-

work to perform well on a variety of datasets with the same

model parameter. MCV-MFC [16] introduces a two-stage

finetuning scheme to achieve a good trade-off between gen-

eralization capability and fitting capability in a number of

datasets. However, it doesn’t touch the inner difference be-

tween diverse datasets. To further address this problem,

we propose a cascade and fused cost volume representa-

tion to alleviate the domain shifts and disparity distribution

unbalance between a variety of datasets. Additionally, our

method also performs well on cross-domain generalization,

which further emphasizes the robustness of our network.

3. Our Approach

3.1. Overview of CFNet

We propose a cascade and fused cost volume representa-

tion for robust stereo matching. The overall architecture of

our model is shown in Fig. 4, which consists of three parts:

pyramid feature extraction, fused cost volume, and cascade

cost volume.

Given an image pair, we first employ a siamese unet-like

[33, 21] encoder-decoder architecture with skip connections

to extract multi-scale image features. The encoder consists

of five residual blocks, followed by an SPP module to bet-

ter incorporate hierarchical context information. Our SPP

module is similar to the one used in HSMNet [33] while

changing the size of average pooling blocks to H/s×W/s,

where s ∈ {32, 64, 96, 128}. Compared with the widely

used Resnet-like network [11, 12], our method is more effi-

cient and still contains sufficient information for cost aggre-

gation. Experiments show that our pyramid feature extrac-
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Figure 4. The architecture of our proposed network. Our network consists of 3 parts: pyramid feature extraction, fused cost volume, and

cascade cost volume.

tion can achieve comparable performance with lower com-

putational complexity. Then, we divide the multi-scale fea-

tures into fused and cascade cost volume and predict multi-

resolution disparity respectively. The details of cost volume

fusion and cost volume cascade will be discussed in the next

section.

Figure 5. The architecture of our cost volume fusion module.

Three low-resolution cost volumes (i ∈ (3, 4, 5)) are fused to gen-

erate the initial disparity map.

3.2. Fused Cost Volume

We propose to fuse multiple low-resolution dense cost

volumes (smaller than 1/4 of the original input image res-

olution in our paper) to reduce the domain shifts between

different datasets for initial disparity estimation. Existing

approaches [11, 4, 34] have realized the importance of em-

ploying multi-scale cost volumes. However, these methods

generally abandon small-resolution cost volumes because

such cost volumes don’t contain sufficient information to

generate an accurate disparity map respectively. Instead,

we argue that different scale small-resolution cost volumes

can cover multi-scale receptive fields, guiding the network

to look at different scale image regions. Thus, they can be

fused together to extract global and structural representa-

tions and generate a more accurate initial disparity map than

higher-resolution sparse cost volume. More precisely, we

first construct low-resolution cost volumes at each scale re-

spectively, and then design a cost volume fusion module to

integrate them in an encoder-decoder process. We provide

details about these two steps below.

Cost volume construction: Inspired by [26, 12], we

propose to use both feature concatenation and group-wise

correlation to generate combination volume. The combina-

tion volume is computed as:

V i
concat(d

i, x, y, f) = f i
L(x, y)||f i

R(x− di, y)

V i
gwc(d

i, x, y, g) = 1

Ni
c/Ng

〈
f ig
l (x, y), f ig

r (x− di, y)
〉

V i
combine = V i

concat||V i
gwc

(1)

where || denotes the vector concatenation operation. Nc

represents the channels of extracted feature. Ng is the

amount of group. 〈, 〉 represents the inner product. f i de-

notes the extracted feature at scale (stage) i and i = 0 rep-

resents the original input image resolution.

Note that the disparity searching index di is defined as

di ∈ {0, 1, 2 . . . Dmax

2i
−1} and the hypothesis plane interval

equals to 1 in the fused cost volume representation. That is,

these cost volumes are all dense cost volumes with the size

of H
2i
× W

2i
× Dmax

2i
×F . By densely sampling the whole dis-

parity range in small resolution, we can efficiently generate

a coarsest disparity map. Then we can employ variance-

based uncertainty estimation to narrow down the disparity

searching space at higher resolution and refine the dispar-

ity estimation in a coarse-to-fine manner. Details will be

introduced in Section 3.3.

Cost Volume fusion: Following the method proposed in

[26], we use an improved encoder-decoder architecture to

fuse low-resolution cost volumes. The architecture is shown

in Fig. 5. Specifically, we first employ four 3D convolution

layers with skip connections to regularize each cost volume

and use a 3D convolution layer (stride of two) to down-

sample the combination volume of scale 3 from 1/8 to 1/16

of the input image resolution. Next, we concatenate them

(the down-sampled cost volume and the next stage combi-

nation volumes) at the feature dimension and then decrease

the feature channel to a fixed size via one additional 3D

convolution layer. Then, we apply a similar operation to

progressively down-sample the cost volume to 1/32 of the
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original input image resolution and adopt 3-D transposed

convolution to up-sample the volume in the decoder. In ad-

dition, we utilize one 3-D hourglass network to further reg-

ularize and refine the volume. Finally, an output module is

applied to predict the disparity. The output module contains

two more 3D convolution layers, aiming at obtaining a 1-

channel 4D volume. To transform volume into disparity, we

apply soft argmin [14] operation to generate initial disparity

map D3. The soft argmin operation is defined as:

d̂i=

Dmax

2i
−1∑

d=0

d× σ(−cid), (2)

where σ denotes the softmax operation and c represents

the predicted 1-channel 4D volume. σ(−cd) denotes the

discrete disparity probability distribution and the estimated

disparity map is susceptible to all disparity indexes.

3.3. Cascade Cost Volume

Given the initial disparity estimation, the next step is

to construct a fine-grained cost volume and refine dis-

parity maps in a coarse-to-fine manner. Considering the

next stage disparity search range, uniform sampling a pre-

defined range is the most straightforward way [11]. How-

ever, such an approach assumes that all pixels are the same

and cannot make adaptive pixel-level adjustments. For ex-

ample, we should expand the searching range of ill-posed

and occluded pixels. Furthermore, the disparity distribu-

tion of datasets with different characteristics is usually un-

balanced. Thus, a question arises, can we make networks

avoid being affected by invalid disparity indexes in a large

initial disparity range and capture more possible pixel-level

disparity search space with the prior knowledge of the last

stage’s disparity estimation.

d̂ = 6.0, U = 0.0 d̂ = 6.4, U = 0.64 d̂ = 7.2, U = 3.36

(a)Unimodal (b)Predominantly unimodal (c)Multi-modal

Figure 6. Some samples of uncertainty estimation. Expected value

(ground truth) is 6px. The disparity searching range is from 2 to

10 with 5 hypothesis planes.

To tackle this problem, we propose an adaptive variance-

based disparity range uncertainty estimation. As introduced

in related work, discrete disparity probability distribution

reflects the similarities between candidate matching pixel

pairs and the final predicted disparity is a weighted sum of

all disparity indexes according to their probability. Thus,

the ideal disparity probability distribution should be uni-

modal peaked at true disparities. However, the actual proba-

bility distribution is predominantly unimodal or even multi-

modal at some pixels. Previous work [38, 14] has discov-

ered that the degree of multimodal distribution is highly cor-

related with the probability of prediction error. In addition,

ill-posed areas, texture-less regions, and occlusions tend to

be multimodal distribution as well as high estimation error

rate. Therefore, we propose to define an uncertainty estima-

tion to quantify the degree to which the cost volume tends

to be multi-modal distribution and employ it to evaluate the

pixel-level confidence of the current estimation. The uncer-

tainty is defined as:

Ui=
∑
∀di

(d− d̂i)
2 × σ(−cid),

d̂i=
∑
∀di

d× σ(−cid),

(3)

where σ denotes the softmax operation and c represents the

predicted 1-channel 4D volume. As shown in Fig. 6, the un-

certainty of unimodal distribution equals to 0 and the more

the probability distribution is toward the multi-modal distri-

bution, the higher the uncertainty and error. Therefore, it’s

reasonable to employ uncertainty to evaluate the confidence

of disparity estimation, higher uncertainty implies a higher

probability of prediction error and a wider disparity search-

ing space to correct the wrong estimation (visualization can

be seen in Fig. 8). Thus, the next stage’s disparity searching

range is defined as:

di−1

max
= δ(d̂i +

(
αi + 1

)√
U i + βi),

di−1

min
= δ(d̂i −

(
αi + 1

)√
U i − βi),

(4)

where δ denotes bilinear interpolation. α and β are nor-

malization factors, which is initialized as 0 and gradually

learns a weight. α and β can also be set as hyper param-

eters, while experiment shows that the learned parameters

are more robust than human-selected parameters [4]. Then

we can employ uniform sampling to get next stage discrete

hypothesis depth planes di−1:

di−1 = di−1

min
+ n(di−1

max
− di−1

min
)/

(
N i−1 − 1

)
,

n ∈ {0, 1, 2 . . . N i−1 − 1},
(5)

where N i−1 is the number of hypothesis planes at stage

i − 1. Then, a fine-grained cost volume at stage i − 1 is

similarly defined based on Eq.1, which leads to a sparse

cost volume with the size of H
2i−1 × W

2i−1 ×N i−1×F . After

getting the next stage cost volume, similar cost aggregation

network (omitting the solid line in Figure 5) can be em-

ployed to predict this stage’s disparity map. By iteratively

narrow down the disparity range and higher the cost vol-

ume resolution, we can refine the disparity in a coarser to

fine manner.
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While it is noteworthy that the insight of cascade cost

volume has also been investigated in [11], our work dif-

fers from theirs in the following three main aspects: First,

casstereo constructs higher-resolution sparse cost volume

to predict an initial disparity estimation. Besides, previ-

ous work [34] argues that small resolution cost volume is

too small to generate a reasonable initial disparity map to

be refined. In contrast, we prove such cost volumes can

even generate a more accurate initial disparity map than

higher-resolution sparse cost volume with cost volume fu-

sion. (As shown by the comparison between the estimation

of casstereo at stage 2 and estimation of our CFNet at stage

3 in Fig. 7 (a) and (b)). Second, casstereo only uniform sam-

pling a pre-defined range to generate the next stage disparity

search range. Instead, we develop a variance-based uncer-

tainty estimation to adaptively adjust the next stage dispar-

ity search range which can push disparity distribution to be

more predominantly unimodal (Fig. 7(b)). Third, by the co-

operation of cascade and fused cost volume representation,

our method can better cover the corresponding ground truth

value in the final stage disparity search range and corrects

some biased results in casstereo (Fig. 7(a)).

(a) (b)
Figure 7. Some examples of disparity probability distributions of

cascade stereo (first row) and CFNet (second row). DPD: dispar-

ity probability distribution, DE: disparity estimation, GT: ground

truth. Final disparity estimation is the estimation of stage 1.

4. Experiments

4.1. Dataset

SceneFlow: This is a large synthetic dataset including

35,454 training and 4,370 test images with a resolution of

960 × 540 for optical flow and stereo matching. We use it

to pre-train our network.

Middlebury: Middlebury [22] is an indoor dataset with 28

training image pairs (13 of them are additional training im-

ages) and 15 testing image pairs with full, half, and quarter

resolutions. It has the highest resolution among the three

datasets and the disparity range of half-resolution image

pairs is 0-400. We select half-resolution image pairs to train

and test our model.

KITTI 2012&2015: They are both real-world datasets col-

lected from a driving car. KITTI 2015 [19] contains 200

training and another 200 testing image pairs while KITTI

2012 [9] contains 194 training and another 195 testing im-

age pairs. Both training image pairs provide sparse ground-

truth disparity and the disparity range of them is 0-230.

ETH3D: ETH3D [24] is the only grayscale image dataset

with both indoor and outdoor scenes. It contains 27 training

and 20 testing image pairs with sparsely labeled ground-

truth. It has the smallest disparity range among three

datasets, which is just in the range of 0-64.

4.2. Implementation Details

We use PyTorch to implement our 3-stage network and

employ Adam (β1 = 0.9, β2 = 0.999) to train the whole

network in an end-to-end way. The batch size is set to 8

for training on 2 Tesla V100 GPUs and the whole disparity

search range is fixed to 256 during the training and test-

ing process. We employ the smooth L1 loss function to

train our network and include all intermediate outputs in the

loss weight. N1 and N2 are set as 12 and 16, respectively.

Asymmetric chromatic augmentation and asymmetric oc-

clusion [33] are employed for data augmentation.

Inspired by the two-stage finetuning strategy [16], we

propose a three-stage finetune strategy to train our network.

First, following the method proposed in [26], we use switch

training strategy to pre-train our model in the SceneFlow

dataset. Specifically, we first use ReLU to train our net-

work from scratch for 20 epochs, then we switch the activa-

tion function to Mish and prolong the pre-training process

in the SceneFlow dataset for another 15 epochs. Second,

we jointly finetune our pre-train model on four datasets,

i.e., KITTI 2015, KITTI2012, ETH3D, and Middlebury for

400 epochs. The initial learning rate is 0.001 and is down-

scaled by 10 after epoch 300. Third, we augment Mid-

dlebury and ETH3D to the same size as KITTI 2015 and

finetune our model for 50 epochs with a learning rate of

0.0001. The core idea of our three-stage finetune strategy

is to prevent the small datasets from being overwhelmed by

large datasets. By augmenting small datasets at stage three

and train our model with a small learning rate, our strategy

makes a better trade-off between generalization capability

and fitting capability on three datasets.

4.3. Ablation Study

We perform various ablation studies to show the effec-

tiveness of each component in our network. We divide 20%

of the smallest dataset (5 images) from each real dataset

(KITTI 2015, Middlebury, and ETH3D) as a validation set

and use the rest of them as a training set to finetune our
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Experiment Method
KITTI

D1 all

Middlebury

bad 2.0

ETH3D

bad 1.0

time

(s)

Feature Extraction
Resnet-like-network 1.76 22.81 3.49 0.270

Pyramid Feature Extraction 1.71 22.27 3.57 0.225

Cost Volume Fusion
Not Fuse 1.79 22.65 3.67 0.220

Fuse 1.71 22.27 3.57 0.225

Cost Volume Cascade

Uniform Sample 1.92 23.8 3.97 0.225

UE + Hyperparameters 1.78 23.13 3.83 0.225

UE + Learned Parameters 1.71 22.27 3.57 0.225

Loss weight

Loss1:1,Loss2:1,Loss3:1 1.84 23.87 3.47 0.225

Loss1:1,Loss2:0.7,Loss3:0.5 1.79 22.97 3.62 0.225

Loss1:2,Loss2:1,Loss3:0.5 1.71 22.27 3.57 0.225

Fine-tuning strategy

two stages 1.70 22.77 3.99 0.234

three stages no augment 1.70 22.57 3.92 0.234

three stages 1.71 22.27 3.57 0.234

Table 1. Ablation study results of the proposed network on KITTI

2015, Middlebury, and ETH3D validation set. UE: uncertainty es-

timation. Loss i: the loss weight at stage i. j stages: j-stage

finetune strategy. Three stages no augment: three stages without

small dataset augment.We test a component of our method individ-

ually in each section of the table and the approach which is used

in our final model is underlined. Time is measured on the KITTI

dataset by a single Tesla V100 GPU.

pretrain model. Results are shown in Table 1. Below we

describe each component in more detail.

Feature extraction: We compare our pyramid feature ex-

traction with the most widely used Resnet-like-network

[11, 12]. As shown, our pyramid feature extraction can

achieve similar performance with a faster speed, likely be-

cause the employing of small scale features is also helpful

in feature extraction.

Cost volume fusion: We fuse three small-resolution cost

volumes to generate the initial disparity map. Here, we test

the impact when only a single volume is used. Cost volume

fusion can achieve better performance with a slight addi-

tional computational cost.

Cost volume cascade: We test three ways of generating the

next stage’s disparity searching space in cascade cost vol-

ume representation. As shown, learned parameters based

uncertainty estimation achieves the best performance with

tiny additional computation complexity. Furthermore, com-

paring with using hyperparameters, it is adaptive and elim-

inates the need to adjust hyperparameters according to dif-

ferent datasets. To further emphasize the effectiveness of

our uncertainty estimation, we visualize the error map and

uncertainty map in Fig. 8. As shown, the error map is highly

correlated with the uncertainty map. Experimentally, by re-

moving 1% of uncertain pixels (
√
U >= 2.5), we decrease

the D1 all error rate by 29.68% (from 1.55% to 1.09% in

KITTI 2015 validation set). Similar situations can be ob-

served on the other two datasets. Thus, it is reasonable

to employ uncertainty estimation to evaluate the pixel-level

confidence of disparity estimation.

Loss weight: The N-stages model outputs N disparity

maps. We test three different settings of loss weight in our

three-stage model. Experiments show that later stages shall

set a larger loss weight which matches our intuition.

Finetuning strategy: We test three terms of finetuning

strategy. As shown, only extending the number of itera-

tions can not improve the accuracy of predictions on small

datasets. Instead, our strategy can greatly alleviate the prob-

lem of small datasets being overwhelmed by large ones.

(a) left image (b) disparity map

(c) error map (d) uncertainty map
Figure 8. Comparison between error map and uncertainty map.

Red and white denote large errors and high uncertainty, respec-

tively. As shown, the error map is highly correlated with the un-

certainty map. See examples of the other two datasets in the sup-

plementary material.

4.4. Robustness Evaluation

As mentioned before, we define robustness as joint gen-

eralization. Such generalization is essential for current

methods, which are limited to specific domains and cannot

get comparable results on other datasets. This is also the

goal of Robust Vision Challenge 2020†. Towards this end,

we evaluate methods’ robustness by their performance on

three real datasets without finetuning.

We list some state-of-the-art methods’ performance in

Table 2. It can be seen from this table that HSMNet RVC

[33] ranks first on the Middlebury dataset. But it can’t

get comparable results on the other two datasets (3rd on

ETH3D and 6th on KITTI 2015). In particular, its perfor-

mance on KITTI 2015 dataset is far worse than the other

five. This is because this method is specially designed for

high-resolution datasets and can’t generalize well on other

datasets. GANet [36] is the top-performing method in the

KITTI dataset. However, the error rate of D1 all increased

by 28.73% (from 1.81% to 2.33%) after adding training im-

ages of the other two datasets and only ranks 4th on KITTI

2015. In addition, it still cannot get a good result on the

other two datasets (6th on ETH3D and 7th on Middlebury).

The similar situation also appeared on other methods. In

contrast, our method shows great generalization ability and

performs well on all three datasets (2nd on KITTI 2015, 1st

on ETH3D, and 2nd on Middlebury) and achieves the best

overall performance. We also compare our methods with

the top two methods in the previous Robust Vision Chal-

lenge. As shown in Table 2, our approach outperforms

†http://www.robustvision.net/
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Method
KITTI Middlebury ETH3D Overall

RankD1 bg D1 fg D1 all Rank bad 1.0 bad 2.0 avg error Rank bad 1.0 bad 2.0 avg error Rank

NLCANet V2 RVC [20] 1.51 3.97 1.92 1 29.4 16.4 5.60 3 4.11 1.2 0.29 2 2

HSMNet RVC [33] 2.74 8.73 3.74 6 31.2 16.5 3.44 1 4.40 1.51 0.28 3 3

CVANet RVC 1.74 4.98 2.28 3 58.5 38.5 8.64 5 4.68 1.37 0.34 4 4

AANet RVC [32] 2.23 4.89 2.67 5 42.9 31.8 12.8 6 5.41 1.95 0.33 5 5

GANet RVC [36] 1.88 4.58 2.33 4 43.1 24.9 15.8 7 6.97 1.25 0.45 6 6

CFNet RVC(ours) 1.65 3.53 1.96 2 26.2 16.1 5.07 2 3.7 0.97 0.26 1 1

iResNet ROB [15, 16] 2.27 4.89 2.71 3 45.9 31.7 6.56 2 4.67 1.22 0.27 3 3

Deeppruner ROB [7] - - 2.23 2 57.1 36.4 6.56 3 3.82 1.04 0.28 2 2

CFNet RVC(ours) 1.65 3.53 1.96 1 26.2 16.1 5.07 1 3.7 0.97 0.26 1 1

Table 2. Joint generalization comparison on ETH3D, Middlebury, and KITTI2015 datasets. Top: Generalization comparison with methods

who participated in the Robust Vision challenge 2020. Bottom: Generalization comparison with the top 2 methods in the past two years.

All methods are tested on three datasets without adaptation. The overall rank is obtained by Schulze Proportional Ranking [25] to joining

multiple rankings into one. As shown, our method achieves the best overall performance.

Method
KITTI2012

D1 all(%)

KITTI2015

D1 all(%)

Middlebury

bad 2.0(%)

ETH3D

bad 1.0(%)

PSMNet [2] 15.1 16.3 39.5 23.8

GWCNet [12] 12.0 12.2 37.4 11.0

CasStereo [11] 11.8 11.9 40.6 7.8

GANet [36] 10.1 11.7 32.2 14.1

DSMNet [37] 6.2 6.5 21.8 6.2

CFNet 4.7 5.8 28.2 5.8

Table 3. Cross-domain generalization evaluation on ETH3D, Mid-

dlebury, and KITTI training sets. All methods are only trained

on the Scene Flow datatest and tested on full-resolution training

images of three real datasets.

Deeppruner ROB and iResNet ROB on all three datasets

with a remarkable margin.

We also notice that some previous work defines robust-

ness as cross-domain generalization. To further emphasize

the effectiveness of our method, we compare our method

with some state-of-the-art methods by training on synthetic

images and testing on real images. As shown in Table

3, our method far outperforms domain-specific methods

[2, 12, 11, 36] on all four datasets. DSMnet [37] is specially

designed for cross-domain generalization. Our method can

surpass it on three datasets, which further shows our cas-

cade and fused cost volume representation is an efficient

approach for robust stereo matching.

4.5. Results on KITTI Benchmark

Although our focus is not on domain-specific perfor-

mance, we still fine-tune our model on KITTI 2012 and

KITTI 2015 benchmark to show the efficiency of our

method. Specifically, we adjust each stage’s (except stage

3) stack hourglass number to be one and pretrain our model

on Scene Flow datasets with the same training strategy.

Then the pre-train model is finetuned on KITTI 2015 and

KITTI 2012 datasets for 300 epochs, respectively. The

learning rate starts at 0.001 and decreases to 0.0001 after

200 epochs. Following [7], we combine KITTI 2012 and

KITTI 2015 image pairs for the evaluation of KITTI 2015

while only use KITTI 2012 image pairs for the evaluation

of KITTI 2012.

Some SOTA real-time methods and best-performing ap-

proaches are listed in Table 4. We find that our method

achieves 1.88% D1 all error rate, a 6% error reduction from

our base model casstereo [11] with 3 times faster speed

and gets similar performance with other best-performing

approaches such as GANet-deep [36] and ACFNet [38].

Furthermore, our method outperforms all published meth-

ods faster than 200ms with a noteworthy margin on both

datasets which implies the efficiency of our method.

Method

KITTI2012

3px(%)

KITTI2015

D1 all(%)
time

(s)
Noc All Noc All

LEAStereo [6] 1.13 1.45 1.51 1.65 0.3

GANet-deep [36] 1.19 1.60 1.63 1.81 1.8

AcfNet [38] 1.17 1.54 1.72 1.89 0.48

Casstereo [11] - - 1.78 2.0 0.6

HITNet [28] 1.41 1.89 1.74 1.98 0.015

HDˆ3 [35] 1.40 1.80 1.87 2.02 0.14

AANet+ [32] 1.55 2.04 1.85 2.03 0.06

HSMNet [33] 1.53 1.99 1.92 2.14 0.14

Deeppruner [7] - - 1.95 2.15 0.18

CFNet(ours) 1.23 1.58 1.73 1.88 0.18

Table 4. Results on KITTI benchmark. Top: Comparison with

best-performing methods. Bottom: Comparison with real-time

methods. All methods are finetuned on specific datasets.

5. Conclusion

We have proposed a cascade and fused cost volume rep-

resentation for robust stereo matching. We first introduce

a fused cost volume to alleviate the domain shifts across

different datasets for initial disparity estimation. Then we

construct cascade cost volume to balance the different dis-

parity distribution across datasets, where the variance-based

uncertainty estimation is at the core. We use it to adaptively

narrow down the next stage’s pixel-level disparity searching

space. Experiment results show that our approach performs

well on a variety of datasets with high efficiency. In the fu-

ture, we plan to extend our cost volume representation to

semi-supervised or self-supervised setup [31, 13, 39].
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