
Closed-Form Factorization of Latent Semantics in GANs

Yujun Shen Bolei Zhou

The Chinese University of Hong Kong

{sy116, bzhou}@ie.cuhk.edu.hk

Pose on CelebA-HQ Faces (PGGAN) Orientation on LSUN Cars (StyleGAN)

Expression on Anime Faces (StyleGAN) Body Pose on LSUN Cats  (StyleGAN)

Pose on ImageNet Magpies (BigGAN) Layout on LSUN Bedrooms  (StyleGAN2)

Figure 1. Versatile interpretable directions of the latent space unsupervisedly discovered in different GAN models including

PGGAN [16], StyleGAN [17], BigGAN [4], and StyleGAN2 [18]. For each set of images, the middle one is the original output, while the

left and the right are the output images by moving the latent code toward and backward the interpretable direction found by SeFa.

Abstract

A rich set of interpretable dimensions has been shown to

emerge in the latent space of the Generative Adversarial

Networks (GANs) trained for synthesizing images. In

order to identify such latent dimensions for image editing,

previous methods typically annotate a collection of syn-

thesized samples and train linear classifiers in the latent

space. However, they require a clear definition of the target

attribute as well as the corresponding manual annotations,

limiting their applications in practice. In this work, we

examine the internal representation learned by GANs to

reveal the underlying variation factors in an unsupervised

manner. In particular, we take a closer look into the gen-

eration mechanism of GANs and further propose a closed-

form factorization algorithm for latent semantic discovery

by directly decomposing the pre-trained weights. With

a lightning-fast implementation, our approach is capable

of not only finding semantically meaningful dimensions

comparably to the state-of-the-art supervised methods, but

also resulting in far more versatile concepts across multiple

GAN models trained on a wide range of datasets.1

1. Introduction

Generative Adversarial Networks (GANs) [8] have

achieved tremendous success in image synthesis [16, 17,

4, 18]. It has been recently found that when learning to

1Project page is at https://genforce.github.io/sefa/.
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synthesize images, GANs spontaneously represent multiple

interpretable attributes in the latent space [7, 15, 24, 22,

27], such as gender for face synthesis [24] and lighting

condition for scene synthesis [27]. By properly identifying

these semantics, we can reuse the knowledge learned by

GANs to reasonably control the image generation process,

enabling a wide range of editing applications, like face

manipulation [25, 9] and scene editing [27, 29].

The crux of interpreting the latent space of GANs

is to find the meaningful directions in the latent space

corresponding to the human-understandable concepts [7,

15, 24, 22, 27]. Through that, moving the latent code

towards the identified direction can accordingly change the

semantic occurring in the output image. However, due to

the high dimensionality of the latent space as well as the

large diversity of image semantics, finding valid directions

in the latent space is extremely challenging.

Existing supervised approaches typically first randomly

sample a large amount of latent codes, then synthesize a

collection of images and annotate them with some pre-

defined labels, and finally use these labeled samples to

learn a classifier in the latent space. To get the labels for

training, they either employ pre-trained attribute predic-

tors [7, 24, 27] or utilize some simple statistical information

of the image (e.g., object position and color tone) [15, 22].

Several limitations rise from the above supervised training

process. Firstly, relying on pre-defined classifiers hinders

the algorithm from being applied to the case where the

classifiers are not available or difficult to train. On the

other hand, sampling is both time-consuming and unstable,

e.g., a different collection of synthesized data may lead

to a different training result. Some very recent studies

explore the unsupervised discovery of interpretable GAN

semantics [26, 10], but they also require model training [26]

or data sampling [10].

In this work, we propose a novel algorithm to discover

the latent semantic directions learned by GANs, which is

independent of any kind of training or sampling. We call

it SeFa as the short for Semantic Factorization. Instead of

relying on the synthesized samples as an intermediate step,

SeFa takes a deep look into the generation mechanism of

GANs to examine the relation between the image variation

and the internal representation. In fact, GANs project

a latent code to a photo-realistic image step by step (or

say layer by layer), where each step learns a projection

from one space to another. Many explanatory factors

originate in such process. Thus we investigate the first

projection step that directly acts on the latent space we

want to study. We propose a closed-form method that

can identify versatile semantics from the latent space by

merely using the pre-trained weights of the generator. More

importantly, these variation factors, unsupervisedly found

by SeFa, are accurate and in a wider range compared to

the state-of-the-art supervised approaches. We demonstrate

some interesting manipulation results using the discovered

semantics in Fig. 1. For instance, we can rotate the object in

an image without knowing its underlying 3D model or pose

label. Extensive experiments suggest that our approach

is efficient and applicable to most popular GAN models

(e.g., PGGAN [16], StyleGAN [17], BigGAN [4], and

StyleGAN2 [18]) that are trained on different datasets.

1.1. Related Work

Generative Adversarial Networks. GAN [8] has signifi-

cantly advanced image synthesis in recent years [23, 2, 16,

4, 17, 18]. The generator in GANs can take a randomly

sampled latent code as the input and output a high-fidelity

image through adversarial learning. Existing GAN models

are commonly built on deep convolutional neural networks

where the latent code is fed into the first convolution layer

using an affine transformation [23, 2, 16]. Recently, this

idea is improved by the style-based generator [17, 18] where

the latent code is mapped to layer-wise style codes and then

fed into each convolution layer through Adaptive Instance

Normalization (AdaIN) [14] operation.

Latent Semantic Interpretation. Generative models show

great potential in learning variation factors from observed

data. Chen et al. [5] and Higgins et al. [13] propose to

add regularizers into the training process to explicitly learn

an interpretable factorized representation. Recent work has

found that the native GANs, without any constraints or

regularizers, are able to automatically encode various se-

mantics in the intermediate feature space [3] and the initial

latent space [7, 15, 24, 27]. However, these methods are

usually performed in a supervised fashion, which requires

sampling a collection of images and labeling them to train a

classifier. Thus they heavily rely on the attribute predictors

or human annotators to get the label. Some concurrent work

studies unsupervised semantic discovery in GANs. Voynov

and Babenko [26] jointly learn a candidate matrix and a

classifier such that the semantic directions in the matrix

can be properly recognized by the classifier. Härkönen et

al. [10] perform PCA on the sampled data to find primary

directions in the latent space. However, they still require

model training [26] and data sampling [10]. Differently, we

study the generation mechanism of GANs and propose a

closed-form factorization method, which is independent of

any kind of training or sampling.

2. Method

We introduce SeFa, a closed-form method to discover

latent interpretable directions in GANs. By taking a close

look into the generation mechanism of GANs, SeFa can

identify semantically meaningful directions in the latent

space efficiently by decomposing the model weights.
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2.1. Preliminaries

Generation Mechanism of GANs. The generator G(·) in

GANs learns the mapping from the d-dimensional latent

space Z ⊆ R
d to a higher dimensional image space I ⊆

R
H×W×C , as I = G(z). Here, z ∈ Z and I ∈ I denote the

input latent code and the output image respectively. State-

of-the-art GAN models [23, 16, 4, 17, 18] typically adopt

convolutional neural networks as the generator architecture.

Consisting of multiple layers, G(·) projects the starting

latent space to the final image space step by step. Each

step learns a transformation from one space to another. We

focus on examining the first step, which directly acts on

the latent space we would like to explore. In particular,

it can be formulated as an affine transformation, like most

GANs [23, 16, 4, 17, 18] have done, as

G1(z) , y = Az+ b, (1)

where y ∈ R
m is the m-dimensional projected code. A ∈

R
m×d and b ∈ R

m denote the weight and bias used in the

first transformation step G1(·) respectively.

Manipulation Model in GAN Latent Space. The latent

space of GANs has recently been shown to encode rich

semantic knowledge [7, 15, 24, 27]. These semantics can be

further applied to image editing with the vector arithmetic

property [23]. More concretely, prior work [7, 24, 27, 26,

10] proposed to use a certain direction n ∈ R
d in the latent

space to represent a semantic concept. After identifying a

semantically meaningful direction, the manipulation can be

achieved via the following model

edit(G(z)) = G(z′) = G(z+ αn), (2)

which is commonly used in the existing approaches [7, 24,

27, 26, 10]. Here, edit(·) denotes the editing operation.

In other words, we can alter the target semantic by linearly

moving the latent code z along the identified direction n. α

indicates the manipulation intensity.

2.2. Unsupervised Semantic Factorization

Our goal is to reveal the explanatory factors (i.e., the

direction n in Eq. (2)) from the latent space of GANs.

As discussed above, the generator in GANs can be viewed

as a multi-step function that gradually projects the latent

space to the image space. Let us take a closer look into

the first projection step, as suggested in Eq. (1). Under

its formulation of affine transformation, the manipulation

model in Eq. (2) can be simplified as

y′ , G1(z
′) = G1(z+ αn)

= Az+ b+ αAn = y + αAn. (3)

We observe from Eq. (3) that the manipulation process

is instance independent. In other words, given any latent

code z together with a certain latent direction n, the editing

can be always achieved by adding the term αAn onto the

projected code after the first step. From this perspective, the

weight parameter A should contain the essential knowledge

of the image variation. Thus we aim to discover important

latent directions by decomposing A.

To this end, we propose an unsupervised approach,

which is independent of data sampling and model training,

for semantic factorization by solving the following opti-

mization problem

n∗ = argmax
{n∈Rd: nTn=1}

||An||2
2
, (4)

where || · ||2 denotes the l2 norm. This problem aims at

finding the directions that can cause large variations after

the projection of A. Intuitively, if some direction n′ is

projected to a zero-norm vector, i.e., An′ = 0, the editing

operation in Eq. (3) turns into y′ = y, which will keep the

output synthesis unchanged, let clone alter the semantics

occurring in it.

When the case comes to finding k most important

directions {n1,n2, · · · ,nk}, we expand Eq. (4) into

N∗ = argmax
{N∈Rd×k: n

T

i
ni=1 ∀i=1,··· ,k}

k∑

i=1

||Ani||
2

2
, (5)

where N = [n1,n2, · · · ,nk] correspond to the top-k se-

mantics. To solve this problem, we introduce the Lagrange

multipliers {λi}
k
i=1

into Eq. (5) as

N∗ = argmax
N∈Rd×k

k∑

i=1

||Ani||
2

2
−

k∑

i=1

λi(n
T
i ni − 1)

= argmax
N∈Rd×k

k∑

i=1

(nT
i A

TAni − λin
T
i ni + λi). (6)

By taking the partial derivative on each ni, we have

2ATAni − 2λini = 0. (7)

All possible solutions to Eq. (7) should be the eigenvec-

tors of the matrix ATA. To get the maximum objective

value and make {ni}
k
i=1

distinguishable from each other,

we choose columns of N as the eigenvectors of ATA

associated with the k largest eigenvalues.

2.3. Implementation on GAN Models

In Sec. 2.2, we propose a closed-form algorithm, termed

as SeFa, to factorize the latent semantics learned by GANs.

Our algorithm can be performed in a completely unsuper-

vised fashion by efficiently investigating the weights of a

pre-trained GAN generator. In this part, we introduce how

our approach is applied to the state-of-the-art GAN models,

such as PGGAN [16], StyleGAN [17], and BigGAN [4].
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Anime Face Face Pose Eye Size Painting Style (Lines)

Cat Posture (Prone v.s. Upright) Zoom Hair Color

Car Orientation Shape Appearance

Bottom Layers Middle Layers Top Layers

Church Vertical Position Exterior (Shape) Wall Color

Streetscape Viewpoint Trees Weather

Source

Figure 2. Hierarchical interpretable directions discovered in the style-based generators, i.e., StyleGAN [17] and StyleGAN2 [18].

Among them, the streetscapes model is trained with StyleGAN2, while the others are using StyleGAN.

PGGAN. PGGAN [16] is a representative of the con-

ventional generator, where the input latent code is firstly

mapped into a spatial feature map and then projected to an

image with a sequence of convolution layers. For this kind

of generator structure, SeFa studies the transformation from

the latent code to the feature map.

StyleGAN. StyleGAN [17] proposes the style-based gener-

ator, which feeds the latent code into each convolution layer.

In particular, for each layer, the latent code is transformed

to a style code, which is used to alter the channel-wise

mean and variance of the feature map through Adaptive

Instance Normalization (AdaIN) [14]. For this GAN type,

we investigate the transformation from the latent code to

the style code. Note that our algorithm is flexible such that

it supports interpreting all or any subset of layers. For this

purpose, we concatenate the weight parameters (i.e., A in

Eq. (1)) from all target layers along the first axis, forming a

larger transformation matrix.

BigGAN. BigGAN [4] is a large-scale GAN model primar-

ily designed for conditional generation. The latent code is

both mapped to the initial feature map and fed into each

convolution layer. Hence, the analysis on BigGAN can be

viewed as a combination of the above two types of GANs.

3. Experiments

We evaluate our closed-form algorithm on a wide range

of models to discover interpretable directions. We also

compare SeFa with existing supervised and unsupervised

alternatives to demonstrate its effectiveness.

3.1. Results on Diverse Models and Datasets

We conduct experiments on the state-of-the-art GAN

models, such as StyleGAN [17], BigGAN [4], and Style-

GAN2 [18]. They are trained on different datasets, includ-

ing human faces (FF-HQ [17]), anime faces [1], scenes and
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Source Zoom Rotation Content

Figure 3. Diverse interpretable directions found in the BigGAN [4], which is conditionally trained on ImageNet [6]. These semantics

are further used to manipulate images from different categories.

objects (LSUN [28]), streetscapes [20], and ImageNet [6].2

Interactive Editing by Tuning Interpretable Directions.

Our algorithm is performed in a completely unsupervised

manner, hence we do not rely on any auxiliary predictors.

After discovering the important directions by decomposing

the model weights, we can interact with the GAN model for

collaborative content editing. Thus we develop an interface

to facilitate human-model interaction, as shown in Fig. 4.

Meanwhile, with the help of this interface, users can easily

annotate the identified semantics.

Results on StyleGAN. As described in Sec. 2.3, our

algorithm can interpret a subset of layers in the style-based

generators [17, 18]. We evaluate SeFa on the models trained

on a wide range of datasets, including anime faces, objects,

scenes, and streetscapes. In particular, we interpret a target

model at the levels of bottom layers, middle layers, and

top layers respectively. Fig. 2 shows the versatile semantic

directions found in these models. We noticeably find that

they are organized as a hierarchy, which is consistent with

the observations from prior work [17, 27]. Taking cars as an

example, bottom layers tend to control the rotation, middle

layers determine the shape, while top layers correspond

to the color. We further conduct a user study to see

how the variation factors found by SeFa align with human

perception. Here, questions are asked to 10 annotators.

As suggested in Tab. 1, SeFa can indeed find human-

understandable concepts, even from some particular layers

in GAN models.

2We have collected a model zoo consisting of various types of GANs.

SeFa can be easily applied to interpreting these models benefiting from its

efficient implementation (i.e., less than 1 second for one model). Please

refer to the demo video for diverse and continuous manipulation results.

Figure 4. Interface for interactive editing.

Table 1. User study. We randomly generate 2K images for each

dataset, and use the Top-50 eigen directions from each level of

layers to manipulate these images. Numbers in brackets indicate

the index of the layers to interpret. Users are asked how many

directions result in obvious content change (numerator) and how

many directions are semantically meaningful (denominator).

Dataset Bottom (0-1) Middle (2-5) Top (6-)

Anime Face [1] 12/12 26/26 38/50

LSUN Cat [28] 14/15 21/28 47/50

LSUN Car [28] 10/10 16/22 22/34

LSUN Church [28] 15/15 18/26 48/50

Streetscape [20] 9/9 12/18 15/36

Results on BigGAN. We also interpret the large-scale

BigGAN [4] model that is conditionally trained on Ima-

geNet [6]. BigGAN extends the latent code with a category-

derived embedding vector to achieve conditional synthesis.

Here, we only focus on the latent code part for semantic
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(a)

(b)

Pose Gender Smile

Source

from PGGAN

Source

from StyleGAN

Pose Eyeglasses Smile

Figure 5. Qualitative comparison of the latent semantics found by (a) the supervised method, InterFaceGAN [24] and (b) our closed-form

solution, SeFa, where SeFa achieves similar performance to InterFaceGAN. PGGAN trained on CelebA-HQ [16] and StyleGAN trained

on FF-HQ [17] are used as the target models to interpret.

Table 2. Re-scoring analysis of the semantics identified by InterFaceGAN [24] and SeFa from the PGGAN model trained on CelebA-HQ

dataset [16]. Each row evaluates how the semantic scores change after moving the latent code along a certain direction.

(a) InterFaceGAN [24], which is supervised.

Pose Gender Age Glasses Smile

Pose 0.53 -0.06 -0.09 -0.01 0.05

Gender -0.02 0.59 0.20 0.08 -0.07

Age -0.03 0.35 0.50 0.08 -0.03

Glasses -0.01 0.37 0.19 0.24 0.00

Smile -0.01 -0.07 0.03 -0.01 0.60

(b) SeFa, which is unsupervised.

Pose Gender Age Glasses Smile

Pose 0.51 -0.11 -0.07 0.02 0.06

Gender 0.02 0.55 0.46 0.09 -0.13

Age -0.07 -0.25 0.34 0.10 0.10

Glasses 0.02 0.55 0.46 0.09 -0.13

Smile 0.03 -0.03 0.15 -0.16 0.42

discovery. Fig. 3 provides some examples. We can tell

that the semantics found by our algorithm can be applied to

manipulating images from different categories. This verifies

the generalization ability of SeFa.

3.2. Comparison with Supervised Approach

We compare our closed-form algorithm with the state-

of-the-art supervised method, InterFaceGAN [24]. We

conduct experiments on face synthesis models due to the

well definition of facial attributes. In particular, we make

comparison between SeFa and InterFaceGAN on both the

conventional generator (i.e., PGGAN [16]) and the style-

based generator (i.e., StyleGAN [17]).

Qualitative Results. Fig. 5 visualizes some manipulation

results by using the identified semantics. We can tell

that SeFa achieves similar performance as InterFaceGAN

from the perspective of editing pose, gender, eyeglasses,

and expression (smile), suggesting its effectiveness. More

importantly, InterFaceGAN requires sampling numerous

data and pre-training attribute predictors. By contrast, SeFa

is completely independent of data sampling and model

training, which is more efficient and generalizable.

Re-scoring Analysis. For quantitative analysis, we train

an attribute predictor on CelebA dataset [19] with ResNet-

50 structure [11], following [24]. With this predictor, we

are able to perform re-scoring analysis to quantitatively

evaluate whether the identified directions can properly

represent the corresponding attributes. In particular, we

randomly sample 2K images and manipulate them along

a certain discovered direction. We then use the prepared
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Source Bangs + Straight Hair Bangs + Wavy Hair Bangs Direction

Source Hair Color Hair Style Brightness

(a)

(b)

Figure 6. (a) Diverse semantics, which can not be identified by InterFaceGAN [24] due to the lack of semantic predictors. (b) Diverse hair

styles, which can not be described as a binary attribute. The PGGAN model trained on CelebA-HQ dataset [16] is used.

(a)

(b)

Pose Eyeglasses SmileSource

Figure 7. Qualitative comparison between (a) GANSpace [10] and (b) SeFa. The StyleGAN model trained on FF-HQ dataset [17] is used.

predictor to check how the semantic score varies in such

manipulation process. Tab. 2 shows the results where we

have three observations. (i) SeFa can adequately control

some attribute, such as pose and gender, similar to Inter-

FaceGAN. (ii) When altering one semantic, InterFaceGAN

shows stronger robustness to other attributes, benefiting

from its supervised training manner. For example, the age

and eyeglasses corresponding to the same latent direction

identified by SeFa. That is because the training data is

somewhat biased (i.e., older people are more likely to wear

eyeglasses), as pointed out by [24]. By contrast, involving

labels as the supervision can help learn a more accurate

direction to some extent. (iii) SeFa fails to discover the

direction corresponding to eyeglasses. The reason is that

the presence of eyeglasses is not a large variation and hence

does not meet the optimization objective in Eq. (4).

Diversity Comparison. Supervised approach highly de-

pends on the available attribute predictors. By contrast, our

method is more general and can find more diverse semantics

in the latent space. As shown in Fig. 6 (a), we successfully

identify the directions corresponding to hair color, hair

style, and brightness. This surpasses InterFaceGAN since

predictors for these attributes are not easy to acquire in

Table 3. Quantitative comparison with GANSpace [10].

FID Re-scoring User Study

GANSpace [10] 7.43 0.33 41%

SeFa (Ours) 7.36 0.38 59%

practice. Also, supervised methods are usually limited

by the training objective. For example, InterFaceGAN is

proposed to handle binary attributes [24]. In comparison,

our method can identify more complex attributes, like the

different hair styles shown in Fig. 6 (b).

3.3. Comparison with Unsupervised Baselines

We compare our method with some unsupervised alter-

natives, including the sampling-based method [10] and the

learning-based method [5]. The major difference is that

SeFa works as a closed-form solution, which is independent

of any kind of data sampling or model training.

Comparison with Sampling-based Baseline. GANSpace

[10] proposes to perform PCA on a collection of sampled

data to find principal directions in the latent space. In this

part, we compare SeFa with GANSpace on the StyleGAN

model trained on FF-HQ dataset [17]. Fig. 7 visualizes

some qualitative comparison results, where the semantics
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(a)

(b)

Pose Smile Hair ColorSource

Figure 8. Qualitative comparison between (a) Info-PGGAN [21, 5] and (b) SeFa. The result of the Info-PGGAN model is extracted

directly from [21], and the official PGGAN model trained on CelebA-HQ dataset [16] is used for SeFa.

found by SeFa lead to a more precise control. For example,

when changing face pose, SeFa better preserves the identity

and skin color. We also quantitatively compare these two

approaches with FID [12], re-scoring analysis, and user

study. Here, users are asked which approach changes a

particular attribute more adequately on 2K manipulations.

Results are shown in Tab. 3. SeFa and GANSpace show

close FID score since this is mostly determined by the

generator itself as well as the manipulation model in Eq. (2),

which are shared by these two methods. But SeFa outper-

forms GANSpace on attribute re-scoring and user study.

Comparison with Learning-based Baseline. Info-

GAN [5] proposed to explicitly learn a factorized represen-

tation by introducing a regularizer to maximize the mutual

information between the output image and the input latent

code. We compare our method with the Info-PGGAN

model [21], which trains the native PGGAN [16] with the

information regularizer [5]. Fig. 8 shows the comparison

results. We can tell that the semantics identified by SeFa

through a closed-form factorization on pre-trained weights

are more accurate than those learned from Info-PGGAN.

Taking pose manipulation as an example, the hair color

varies when using Info-PGGAN for editing. By contrast,

SeFa achieves a more precise control.3

3.4. Real Image Editing

In this part, we verify that the latent semantics revealed

by SeFa is applicable for real image editing. Since the

generator lacks the inference ability to take a real image

as the input, we involve GAN inversion [9, 29] approaches

into our algorithm. More concretely, given a target image

to edit, we first project it back to the latent space, and

then use the variation factor found by SeFa to modulate the

inverted code. Fig. 9 shows some examples, where SeFa

3We use different samples for Info-PGGAN [21] and SeFa because

Info-PGGAN requires model retraining, leading to a different model from

the one that is officially released by [16]. As a result, it is hard to produce

the same face with these two different models.

Input

Inversion Eyeglasses

Pose Smile

Gender

Figure 9. Real image editing with respect to various facial

attributes. All semantics are found with the proposed SeFa. GAN

inversion [29] is used to project the target real image back to the

latent space of StyleGAN [17].

shows satisfying performance. For example, we manage to

remove eyeglasses from the input images and also alter the

face pose. It suggests that SeFa is capable of discovering

the directions of the latent space which are generalizable

for real image editing.

4. Conclusion

In this work we propose a closed-form solution to fac-

torizing the latent semantics learned by GANs. Extensive

experiments demonstrate the great power of our algorithm

in identifying versatile semantics from different types of

GAN models in an unsupervised manner.
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