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Abstract

Binary grid mask representation is broadly used in in-

stance segmentation. A representative instantiation is Mask

R-CNN which predicts masks on a 28 × 28 binary grid.

Generally, a low-resolution grid is not sufficient to cap-

ture the details, while a high-resolution grid dramatically

increases the training complexity. In this paper, we propose

a new mask representation by applying the discrete cosine

transform(DCT) to encode the high-resolution binary grid

mask into a compact vector. Our method, termed DCT-

Mask, could be easily integrated into most pixel-based in-

stance segmentation methods. Without any bells and whis-

tles, DCT-Mask yields significant gains on different frame-

works, backbones, datasets, and training schedules. It does

not require any pre-processing or pre-training, and almost

no harm to the running speed. Especially, for higher-quality

annotations and more complex backbones, our method has

a greater improvement. Moreover, we analyze the perfor-

mance of our method from the perspective of the quality

of mask representation. The main reason why DCT-Mask

works well is that it obtains a high-quality mask represen-

tation with low complexity.

1. Introduction

Instance segmentation tasks involve detecting objects

and assigning category labels to pixels. It is the corner-

stone of many computer vision tasks, such as autonomous

driving and robot manipulation. Recently, the applica-

tion of deep convolutional neural networks(CNNs) has

greatly promoted the development of instance segmentation

[21, 23, 16, 15, 17]. Pixel-based method is one of the main-

stream methods which generates a bounding box by an ob-

ject detector and performs pixel mask predicting within a

*These authors contributed equally to this work.
†Corresponding author.

Ground Truth 28× 28 Reconstructed Error

(a) Binary grid mask representation

Ground Truth 128× 128 Reconstructed Error

(b) DCT mask representation

Figure 1: Binary grid mask representation vs. DCT

mask representation. The leftmost sub-graph is the ground

truth, the left-middle is the mask representation, the middle

right is the reconstructed mask, the rightmost is the error

between the reconstructed mask and the ground truth.

low-resolution regular grid. But is the low-resolution grid

an ideal choice for mask representation?

As a representative instantiation in instance segmen-

tation, Mask R-CNN [15] first downsamples the binary

ground truth to a 28 × 28 grid and then reconstructs it

through upsampling. As shown in Figure 1(a), the binary

grid mask representation with low resolution is not suffi-

cient to capture detailed features and causes bias during up-

sampling. To describe this phenomenon more accurately,

we use the metric of Intersection over Union(IoU) between

the reconstructed mask and the ground truth to evaluate the

quality of mask representation. We find that in the COCO

val2017 dataset, the 28 × 28 binary grid achieves only

93.8% IoU. It means even the prediction of the mask branch

is exactly accurate, the reconstructed mask has a 6.2% error.

A higher-quality mask representation may reduce the re-

construction error. It turns out 128 × 128 resolution could

achieve 98% IoU. But experiments show that the mask aver-
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age precision(AP) of predicting a higher resolution binary

grid is worse than the original 28 × 28 resolution. (The

specific experimental results will be discussed in the Exper-

iments section.) The discriminative pixels of the mask dis-

tribute along the object boundaries, while the binary grid

mask representation makes excessive predictions over all

pixels on the whole large grid. The training complexity will

increase sharply as the resolution increases. The improve-

ment in the quality of mask representation can not compen-

sate for its shortcoming.

A better mask representation with high resolution and

low complexity is required. In this work, we explore

to apply the discrete cosine transform to the mask rep-

resentation. The discrete cosine transform (DCT) [1] is

a widely used transformation technique in signal process-

ing and data compression due to its strong “energy com-

paction” property [25]. Regarding mask in instance seg-

mentation as a binary image, most information is concen-

trated in a few low-frequency components. By transform-

ing the high-resolution binary mask into the frequency do-

main and keeping its low-frequency components, we ob-

tain a high-quality and low-complexity mask representa-

tion, termed DCT mask representation. Experiments indi-

cate that it achieves 97% IoU with only a 300-dimensional

vector compressed from a 128 × 128 resolution mask. The

information of the discarded high-frequency components

is negligible compared with the improvement brought by

higher resolution. Consequentially the overall quality of

mask representation is improved. Different from dictio-

nary learning compression methods such as principal com-

ponent analysis(PCA), sparse coding, and autoencoders,

DCT does not require any pre-training or preprocessing,

and the computational complexity of DCT transformation

is O(nlog(n)) which could be omitted in the whole frame-

work of instance segmentation.

In this paper, we integrate the DCT mask representation

into the Mask R-CNN [15] framework with slight modifica-

tions to the model architecture. Our method termed DCT-

Mask consistently improves mask AP by about 1.3% on the

COCO dataset, 2.1% on the LVIS* dataset, and 2.0% on the

Cityscapes. Because DCT mask representation raises the

upper bound of the mask quality, it tends to obtain more

increase for more complex backbones and higher-quality

annotations. On the COCO dataset, DCT-Mask achieves

1.3% and 1.7% increase with ResNet-50[16] and ResNeXt-

101[34], respectively. On the LVIS∗ dataset , it achieves

2.1% and 3.1% increase respectively. Besides, we demon-

strate the generality of our method on other pixel-based

instance segmentation frameworks such as CascadeRCNN

[2].

DCT-Mask does not require extra pre-processing or pre-

*We use the COCO sub-categories of the LVIS dataset and evaluate it

with same models trained on COCO.

training. Compared to the standard Mask R-CNN with

ResNet-50 backbone, the application of our method shows

almost no harm to the running speed, which reaches 22 FPS

on the V100 GPU. Besides, we analyze the performance of

mask prediction from the perspective of the mask quality

and reveal that at the same level of complexity, improving

the quality of mask representation can effectively improve

mask AP.

In summary, this work has the following contributions:

• We propose a high-quality and low-complexity mask

representation for instance segmentation, which en-

codes the high-resolution binary mask into a compact

vector with discrete cosine transform.

• With slight modifications, DCT-Mask could be inte-

grated into most pixel-based frameworks, and achieve

significant and consistent improvement on different

datasets, backbones, and training schedules. Specifi-

cally, it obtains more improvements for more complex

backbones and higher-quality annotations.

• DCT-Mask does not require extra pre-processing or

pre-training. It achieves high-resolution mask predic-

tion at a speed similar to low-resolution.

2. Related Works

Discrete cosine transform in computer vision. Dis-

crete cosine transform is widely used in classic computer

vision algorithms [3, 26, 31] which encodes the spatial-

domain RGB images into components in the frequency do-

main. With the development of deep learning, several stud-

ies investigate to integrate the DCT into computer vision

frameworks based on deep learning. Ulicny et al. [28] used

a CNN to classify DCT encoded images. Ehrlich et al. [12]

proposed a DCT-domain ResNet. Lo et al. [24] performs

semantic segmentation on the DCT representation by feed-

ing the rearranged DCT coefficients to CNNs. Xu et al.

[35] explores learning in the frequency domain for object

detection and instance segmentation, which uses DCT co-

efficients as the input of CNN models instead of the RGB

input. In these works, DCT is utilized to extract features of

the model input. Here, we apply the DCT to represent the

ground truth of mask in instance segmentation.

Mask representation in instance segmentation. Mask

representation is the cornerstone of instance segmentation.

Pixel-based instance segmentation methods [11, 15, 17, 23]

represent the mask of objects on the pixel level within a

region proposal. A representative instantiation is Mask R-

CNN which predicts masks on a 28 × 28 grid irrespective

of object size. As discussed before, the low-resolution grid

mask representation is low-quality, and the high-resolution

grid suffers from high complexity.
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Resolution AP IoU

28× 28 35.2 0.938

64× 64 34.4 0.968

128× 128 32.9 0.98

Table 1: Mask AP of Mask R-CNN with different resolution

mask grid. Directly increasing the resolution decreases the

mask AP.

Several studies investigate to improve mask quality.

Cheng et al. [9] proposed boundary-preserving mask head

which aligns the predicted masks with object boundaries.

Mask Scoring R-CNN [17] proposed MaskIoU head to

learn the quality of the predicted instance masks. It cal-

ibrates the misalignment between mask quality and mask

score. PointRend [20] regards image segmentation as a ren-

dering problem, and obtains high-resolution segmentation

predictions by iteratively refining the low resolution pre-

dicted mask at adaptively selected locations. It achieves

224 × 224 resolution by 5 iterations starting from 7 × 7
which yields significantly detailed results. But multiple it-

erations also increase the inference time.

Other studies investigate to reduce the complexity of

mask representation. Jetley et al. [18] uses a denoising con-

volutional auto-encoder to learn a low-dimensional shape

embedding space, and regresses directly to the encoded vec-

tor by a deep convolutional network. This shape prediction

approach is hard to cope with a larger variety of shapes and

object categories. MEInst[36] uses PCA to encode the two-

dimensional mask into a compact vector and incorporates it

into a single-shot instance segmentation framework. But it

only encodes 28×28 resolution mask, and performs poorly

on large objects due to the low quality of mask representa-

tion. PolarMask [33] represents the mask by its contour in

the polar coordinates, and formulates the instance segmen-

tation problem as predicting contour of instance through in-

stance center classification and dense distance regression in

a polar coordinate. These studies achieve higher running

speed with more compact mask representations. But their

mask quality deteriorates, and the performance of instance

segmentation is not ideal.

In this paper, we explore to improve mask quality as well

as reducing the complexity to achieve a balance between

performance and running speed.

3. Method

As shown in Table 1, when the resolution of binary mask

representation increases from 28×28 to 128×128, the mask

quality is improved, and the output size of mask branch

increases from 784 to 16384. Suffering from the massive

increase of training complexity, the mask AP significantly

decreases. Here, we propose DCT mask representation to

reduce complexity.

Figure 2: The pipeline of DCT mask representation.

3.1. DCT mask representation

Our method is motivated by the JPEG standard [29], an

image file format. The pipeline of DCT mask representation

is similar to JPEG which encodes the binary mask into a

compact vector. As shown in Figure 2, for binary ground

truth mask Mgt ∈ RH×W , where H and W denotes the

height and width, respectively. We resize it into MK×K ∈
RK×K with bilinear interpolation where K×K is the mask

size. Throughout this paper, K = 128. It should be noted

that K = 28 in Mask R-CNN.

Two-dimensional DCT-II transforms MK×K to the fre-

quency domain MDCT ∈ RK×K :

MDCT (u, v) =
2

K
C(u)C(v)

K−1∑

x=0

K−1∑

y=0

MK×K(x, y) cos
(2x+ 1)uπ

2K
cos

(2y + 1)vπ

2K
,

(1)

where C(w) = 1/
√
2 for w = 0 and C(w) = 1 otherwise.

Because of the strong “energy compaction” property of

DCT, we select the first N-dimensional vector V ∈ RN

from MDCT in a “zig-zag”. Here the DCT mask vector V
is the mask representation we desire.

We restore M̄DCT ∈ RK×K from V by filling in the

other parts with 0. The next step is to take the two-

dimensional inverse DCT (a 2D type-III DCT):

M̄K×K(x, y) =
2

K

K−1∑

u=0

K−1∑

v=0

C(u)C(v)M̄DCT (u, v)

cos
(2x+ 1)uπ

2K
cos

(2y + 1)vπ

2K
, (2)

Finally, the bilinear interpolation is adopted to resize

M̄K×K into Mrec ∈ RH×W .

From the above, we encode the ground truth of mask

Mgt as a compact vector V , then decode V to reconstruct

the mask Mrec. In this way, we use an N-dimensional

vector V as mask representation instead of a binary image
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Resolution Dim IoU

28× 28 None 0.938

64× 64 None 0.968

128× 128 None 0.980

128× 128 100 0.940

128× 128 300 0.970

128× 128 500 0.976

128× 128 700 0.979

256× 256 100 0.940

256× 256 300 0.970

256× 256 500 0.977

256× 256 700 0.980

Table 2: The quality of DCT mask representation with dif-

ferent dimensions and resolution. “None” stands for the bi-

nary grid mask representation.

which significantly reduces the redundancy. From Figure 2,

DCT mask representation captures the shape of the object

accurately, and the discarded high-frequency component is

only a few points from the boundary.

As shown in Table 2, We evaluate the quality of mask

representation by the metric of IoU between Mgt and Mrec.

DCT mask representation uses 100-dimensional and 700-

dimensional vectors to achieve the same IoU as the 28× 28
and 128× 128 matrices in binary grid mask representation.

This shows the efficiency of DCT mask representation. Be-

cause the size of most objects is smaller than 256× 256 on

COCO, the results of 256 × 256 are close to 128 × 128.

Therefore, 128 × 128 resolution mask is sufficient for the

task of instance segmentation.

Moreover, fast cosine transform (FCT) algorithm [14]

computes DCT operations with only O(nlogn) complexity,

so the amount of calculation in this part is negligible. DCT

can be perfectly integrated into the deep learning framework

for training and inference.

In summary, without any pre-processing or pre-training,

DCT mask representation effectively captures the details of

a mask with low complexity. It casts the task of mask pre-

diction into regressing the DCT vector V .

3.2. DCT­Mask in Mask R­CNN

We could integrate the DCT-mask into most pixel-based

instance segmentation frameworks with slight modifica-

tions to the model architecture. In this section, we take

Mask R-CNN as an example.

We begin by briefly reviewing the Mask R-CNN [15].

Mask R-CNN is a two-stage instance segmentation method.

The first stage generates proposals about the regions by the

Region Proposal Network(RPN). The second stage consists

of detection branch and mask branch. The detection branch

predicts the class of the object and refines the bounding box

based on the first stage proposal by R-CNN Head. The mask

branch performs pixel classification to generate the mask of

(a) Mask R-CNN

(b) DCT-Mask R-CNN

Figure 3: The implementation of DCT-Mask on the basis of

Mask R-CNN.

the object by mask head.

By applying the DCT mask representation, the predic-

tion of the mask branch is a compact vector instead of a

binary grid. As shown in Figure 3, we use 4 convolution

layers to extract the feature of mask, and 3 fully connected

layers to regress the DCT mask vector. The setting of con-

volution layers is the same as Mask R-CNN where the ker-

nel size and filter number are 3 and 256 respectively. The

outputs of the first two fully-connected layers have the size

of 1024, and the output size of the last layer is the dimen-

sion of the DCT mask vector. Furthermore, the prediction

of mask head is class-agnostic which reduces the training

complexity by keeping a small output size.

With DCT mask representation, the ground truth of mask

branch is a vector encoded by DCT. It leads to a regression

problem. Then we define the loss function of mask branch

as following:

Lmask = 1
obj

N∑

i

D(V̂i, Vi), (3)

where Vi, V̂i denotes i-th element in ground-truth and pre-

diction vectors, respectively. 1
obj is the indicator function

for positive samples. D is the distance metric which is l1
loss in this article.

We define the loss function of the whole model,

L = Ldet + λmask · Lmask, (4)

where Ldet is the loss for the detection branch. λmask is the

corresponding weight.

During inference, we follow the standard Mask R-CNN

inference procedure. After NMS, top-k scoring boxes are
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selected and fed into the Mask branch with RoIAlign. Mask

branch predicts a DCT mask vector for each bounding box.

The mask within the box is generated by decoding the DCT

mask vector.

In summary, keeping the other parts completely un-

changed, we only modify the mask branch by replacing the

last 2 layers with 3 fully connected layers. Similarly, our

method can be easily applied to other pixel-based instance

segmentation frameworks

4. Experiments

4.1. Datasets

We evaluate our method on COCO [22] and Cityscapes

datasets [10]. We use COCO evaluation metrics AP (av-

eraged over IoU thresholds) to report the results including

AP@0.5, AP@0.75, APS , APM , and APL (AP at different

scales).

COCO has 80 categories with instance-level annotation.

Following COCO 2017 settings, we train on train2017

(about 118k images) and validate on val2017 (about 5k im-

ages). The COCO ground-truth is often too coarse to reflect

improvements in mask AP while LVIS [13] re-annotates the

COCO dataset with higher quality masks. We use the same

models trained on the COCO dataset, and re-evaluate it on

the COCO category subset of LVIS, denoted as LVIS∗.

Cityscapes is a widely used ego-centric street-scene

dataset with 2975 training, 500 validation, and 1525 test-

ing images with high-quality annotations. We evaluate the

performance in terms of the average precision (AP) metric

averaged over 8 semantic classes of the dataset.

4.2. Implementation Details

In this paper, we choose 128 × 128 mask size and 300-

dimensional DCT mask vector as default mask representa-

tion. Our method is implemented on both Detectron2 [32]

and MMDetection [6], the experimental results of these two

toolboxes are consistent. We use the standard 1× train-

ing schedule and multi-scale training from Detectron2 by

default. On COCO, the experiments adopt 90K iterations,

batch size 16 on 8 GPUs, and base learning rate 0.02. The

learning rate is reduced by a factor of 10 at iteration 60K

and 80K. Multi-scale training is used with shorter side ran-

domly sampled from [640, 800]. The short side is resized

to 800 in inference. On Cityscapes, we use 24K iterations

and 0.01 base learning rate, and reduce the learning rate at

18K. Shorter side is randomly sampled from [800, 1024] in

training, and resized to 1024 in inference.

Loss function and corresponding weight. As shown

in Figure 4, because of the energy concentration character-

istics of DCT, most information concentrates on the previ-

ous dimensions. The mean and variance of previous dimen-

sions are much larger than the latter. Hence l2 loss would

(a) Mean (b) Variance

Figure 4: Mean value and Variance of DCT mask vectors

on COCO 2017 val dataset.

Loss Weight COCO AP LVIS∗ AP

l1

0.005 36.2 39.3

0.006 36.4 39.4

0.007 36.5 39.6

0.008 36.2 39.2

smooth l1

0.004 36.4 39.1

0.005 36.4 39.2

0.006 36.4 39.5

0.007 36.4 39.3

Table 3: The results of l1 loss and smooth l1 loss with dif-

ferent corresponding weights. The resolution is 128× 128,

and the number of dimensions is 300.

be unstable in the training process. In Table 3, we com-

pare l1 loss and smooth l1 loss with different corresponding

weights λmask. It turns out l1 and smooth l1 have similar

performance, and DCT-Mask is robust to the correspond-

ing weight. We choose the best combination of l1 loss and

λmask = 0.007 in this paper.

4.3. Main Results

We compare DCT-Mask R-CNN to the standard Mask

R-CNN with ResNet-50 backbone in Table 4. On the

COCO, LVIS∗, and Cityscapes datasets, mask AP of our

method is increased by 1.3%, 2.1%, 2.6% respectively. Es-

pecially for AP@75, DCT-Mask outperforms baseline by

2.1% and 2.9% on COCO and LVIS∗, respectively. Recall-

ing that Cityscapes and LVIS∗ have higher-quality annota-

tions, which allows them to evaluate mask improvements in

more details. DCT-Mask yields more increments in APM

and APL than APS , because larger objects need higher-

resolution mask representation to capture the details.

DCT mask representation allows our method to yield

higher AP with lower FLOPs. As shown in Table 6, com-

pared to Mask R-CNN with 128 × 128 resolution, our

method brings a 3.6% AP gain with more than 20 times

less computation (FLOPs). Moreover, DCT-Mask predicts

128 × 128 resolution masks at 22 FPS which is almost the

same as Mask R-CNN with 28× 28 resolution.

Theoretically, DCT-Mask can be integrated into most

pixel-based instance segmentation frameworks. At Table 5,
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Method
COCO LVIS∗ Cityscapes

AP AP@50 AP@75 APS APM APL AP AP@50 AP@75 APS APM APL AP

Mask R-CNN 35.2 56.3 37.5 17.2 37.7 50.3 37.6 59.2 39.2 21.2 43.7 55.1 33.0

DCT-Mask R-CNN 36.5 56.3 39.6 17.7 38.6 51.9 39.7 59.7 42.1 23.5 46.5 58.5 35.6

Table 4: Mask AP on the validation set of COCO, LVIS∗ and Cityscapes. ResNet-50 backbone and 1x training schedule are

used. The results show that DCT-Mask yields higher AP gains with higher quality annotations.

Method Backbone DCT-Mask
COCO LVIS∗

AP AP@50 AP@75 AP AP@50 AP@75

Mask R-CNN

ResNet-50
35.2 56.3 37.5 37.6 59.2 39.2

X 36.5(+1.3) 56.3 39.6 39.7(+2.1) 59.7 42.1

ResNet-101
38.6 60.4 41.3 41.4 63.0 44.0

X 39.9(+1.3) 60.5 43.4 43.7(+2.3) 63.6 46.8

ResNeXt-101
39.5 61.7 42.6 42.1 63.6 45.0

X 41.2(+1.7) 62.4 44.9 45.2(+2.9) 65.7 48.5

Casecade Mask R-CNN

ResNet-50
36.4 56.9 39.2 38.9 59.9 41.2

X 37.5(+1.1) 57.0 40.8 40.9(+2.0) 60.1 43.5

ResNet-101
39.6 60.9 42.9 42.2 63.5 45.3

X 40.8(+1.2) 61.5 44.4 44.3(+2.1) 63.8 47.8

ResNeXt-101
40.2 62.3 43.5 43.2 64.4 46.3

X 42.0(+1.8) 63.0 45.8 46.0(+2.8) 66.3 49.5

Table 5: Mask AP on COCO and LVIS∗ validation dataset with different backbones. The results without Xare those of

standard Mask R-CNN and Cascade Mask R-CNN, while with Xare those of DCT-Mask. 1x training schedule is used for

ResNet-50, 3x training schedule is used for ResNet-101 and ResNeXt-101. The results shows that our method yields higher

AP gains with more complex backbones.

Method Resolution AP FLOPs FPS

Mask R-CNN 28× 28 35.2 0.5B 23

Mask R-CNN 64× 64 34.4 2.7B 19

Mask R-CNN 128× 128 32.9 11.0B 13

DCT-Mask R-CNN 128× 128 36.5 0.5B 22

Table 6: Mask head FLOPs and FPS for a 128×128 resolu-

tion mask. The FPS index is measured on V100. DCT-Mask

increases 3.6% AP with 20 times less FLOPs.

we show that DCT-Mask achieves consistent performance

on Cascade Mask R-CNN[2].

It is worth to mention that our method has a greater im-

provement for large backbones. We show this property in

Table 5. Compared to the standard Mask R-CNN, DCT-

Mask respectively increases 1.3% and 1.7% mask AP with

ResNet-50 and ResNeXt-101 on COCO 2017 val dataset.

On LVIS∗ dataset, it increases 2.1% and 3.1% mask AP

respectively. The same property is also presented on Cas-

cade Mask R-CNN[2]. DCT-Mask respectively increases

1.1% and 1.8% mask AP with ResNet-50 and ResNeXt-101

on COCO, while it increases 2.0% and 2.8% mask AP on

LVIS∗. Because DCT mask representation captures more

detailed features and improves the quality of the mask, a

larger backbone can make full use of this advantage, thereby

further improving the results.

DCT-Mask R-CNN outputs are visualized in Figures 5.

Resolution Dim AP IoU

32× 32 300 35.4 0.950

64× 64 300 36.4 0.968

128× 128 300 36.5 0.970

256× 256 300 36.5 0.970

Table 7: DCT-Mask with different resolutions. It shows that

higher resolution has higher IoU and mask AP.

Compared to the standard Mask R-CNN, DCT-Mask ob-

tains finer results around object boundaries. Moreover,

we compare our method with other instance segmentation

methods on COCO test-dev2017 and Cityscapes test at Ta-

ble 11 and Table 12. Without bells and whistles, DCT-Mask

achieves state-of-the-art performances.

4.4. Ablation Study

In this part, we explore the reason why our method in-

creases the mask AP from the perspective of mask quality

and model architecture modifications. In these experiments,

we use Mask R-CNN framework and ResNet-50 backbone,

and evaluate on COCO 2017val dataset.

Resolution of mask representation. DCT mask repre-

sentation can obtain high-quality mask with low complex-

ity. As shown in Table 7, when the dimension of the DCT

vector is the same(Dim=300), as the resolution increases

from 32×32 to 128×128, IoU increases from 0.95 to 0.97.
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Resolution Dim AP IoU

128× 128 100 35.3 0.940

128× 128 300 36.5 0.970

128× 128 500 36.5 0.976

128× 128 700 36.5 0.979

128× 128 900 36.4 0.980

Table 8: DCT mask vectors with different dimensions. As

dimension increases, the growth of IoU is gradually slowed,

and mask AP remains basically unchanged when Dim >
300.

DCT mask representation captures more information, and

mask AP is increased from 35.4 to 36.5. When the reso-

lution increases to 256 × 256, the mask quality is almost

unchanged, mask AP is the same as 128× 128.

Dimension of DCT mask vector. Because of the energy

concentration characteristics of DCT, the “importance” of

the latter dimension is less than the former. This is reflected

in the experiments. As illustrated in Table 8, with the same

resolution 128×128, as the dimension increases from 100 to

900, the growth of mask quality is gradually slowed. When

Dim >300, due to the increased training complexity, al-

though the mask quality has improved, mask AP remains

basically unchanged.

Different representations with the same quality. For

a 784-dimensional DCT mask vector of 28 × 28 resolu-

tion, DCT could be regarded as a reversible transforma-

tion. It transforms the pixel mask representation into the

frequency domain, and the quality of mask representation is

the same. Besides, for a 100-dimensional DCT mask vec-

tor of 128× 128 resolution, the mask quality is 0.94 which

is close to binary mask representation with 28 × 28 reso-

lution in the standard Mask R-CNN. As shown in Table 9,

the performance of these experiments is very close to the

Mask R-CNN baseline. This implies that the type of mask

representation is not the reason for the increase in mask AP.

In summary of the previous three parts, DCT mask repre-

sentation of different resolutions with the same mask qual-

ity has the same performance. Different types of mask rep-

resentations with the same mask quality have the same per-

formance. Besides, when mask quality increases as the di-

mension increases, the mask AP also increases. When mask

quality remains basically unchanged as the dimension in-

creases, the mask AP remains unchanged. We can conclude

that the increase of mask AP is due to the increase of mask

quality, not the type of mask representation. The reason

why DCT-Mask works is that it achieves a balance between

mask quality and complexity.

The effect of the architecture modifications. We inte-

grate DCT mask representation into the standard Mask R-

CNN with slight modifications to the model architecture.

To make sure the improvement of our method is not due

to these modifications, we add 3 fully connected(FC) lay-

Resolution Dim AP IoU

28× 28 None 35.2 0.938

28× 28 784 35.4 0.938

128× 128 100 35.3 0.940

Table 9: Different mask representations with similar mask

quality. “None” denotes the binary grid mask representation

in standard Mask R-CNN. Mask AP is close with similar

mask quality.

Method 3 FC L1 AP

Mask R-CNN

34.7

X 34.6

X X 18.5

Table 10: The effect of architecture modifications. The

added 3 FC layers shows negligible impact on the results.

l1 loss is not suitable for Mask R-CNN.

ers and apply l1 loss to the standard Mask R-CNN mask

branch, respectively. Because the output size of the FC lay-

ers is 784, we use the class agnostic mask. As shown in

Table 10, the impact of the FC layers could be ignored, and

l1 loss is not suitable for binary grid mask.

The design of the mask branch. We investigate the im-

pact of the detailed setting of mask branch. As we present

before, we use 4 convolution layers and 3 FC layers in mask

branch and achieves 36.5 AP on COCO with ResNet-50.

We find that adding one more convolution layer or FC layer

will achieve 36.4 AP and 36.3 AP respectively. Moreover,

when we increase the hidden size of FC layers from 1024

to 2048, it achieves 36.5 AP. It implies that the design of

the mask branch is not specific, DCT-Mask is feasible for

different setting of mask branch.

5. More discussion to prior works

In this section, we investigate relations and differences

between DCT-Mask and some prior works.

Comparison with PointRend. PointRend[20] improves

the mask representation by iteratively “rendering” the out-

put mask from 7 × 7 resolution to 224 × 224, while

DCT-Mask directly achieves high resolution by decod-

ing the DCT mask vector. As shown in Table 13, our

method achieves slightly better mask AP and outperforms

PointRend by lower FLOPs and higher FPS.

Comparison with MEInst. MEInst[36] proposes a one-

stage instance segmentation framework based on FCOS,

which applies PCA to encode the mask into a compact vec-

tor as mask representation. It increases the mask AP by

reducing the training complexity with a much smaller com-

pact vector. As we discussed before, mask quality is impor-

tant to the mask prediction. MEInst only uses a 28×28 res-

olution mask, and the mask quality drops to 91.5%. We ap-

ply PCA to encode the mask with the same setting, which is
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Method Backbone aug. sched. AP AP@50 AP@75 APS APM APL

MEInst[36] ResNet-101-FPN X 3× 33.9 56.2 35.4 19.8 36.1 42.3

TensorMask[8] ResNet-101-FPN X 6× 37.1 59.3 39.4 17.4 39.1 51.6

MaskLab+[7] ResNet-101-C4 X 3× 37.3 59.8 39.6 16.9 39.9 53.5

BMask R-CNN [9] ResNet-101-FPN 1× 37.7 59.3 40.6 16.8 39.9 54.6

MS R-CNN[17] ResNet-101-FPN 18e 38.3 58.8 41.5 17.8 40.4 54.4

BlendMask[4] ResNet-101-FPN X 3× 38.4 60.7 41.3 18.2 41.5 53.3

Mask R-CNN[15] ResNet-101-FPN X 3× 38.8 60.9 41.9 21.8 41.4 50.5

CondInst[27] ResNet-101-FPN X 3× 39.1 60.9 42.0 21.5 41.7 50.9

SOLOv2[30] ResNet-101-FPN X 6× 39.7 60.7 42.9 17.3 42.9 57.4

HTC[5] ResNet-101-FPN 20e 39.7 61.8 43.1 21.0 42.2 53.5

HTC ResNeXt-101-FPN 20e 41.2 63.9 44.7 22.8 43.9 54.6

PointRender[20] ResNeXt-101-FPN X 3× 41.4 63.3 44.8 24.2 43.9 53.2

DCT-Mask R-CNN ResNet-101-FPN X 3× 40.1 61.2 43.6 22.7 42.7 51.8

DCT-Mask R-CNN ResNeXt-101-FPN X 3× 42.0 63.6 45.7 25.1 44.7 53.3

Casecade DCT-Mask R-CNN ResNet-101-FPN X 3× 41.0 61.7 44.7 23.7 43.3 52.6

Casecade DCT-Mask R-CNN ResNeXt-101-FPN X 3× 42.6 64.0 46.4 25.2 45.1 54.3

Table 11: Comparing different instance segmentation methods on COCO 2017 test-dev. “aug.”: using multi-scale data

augmentation during training. “sched.”: the used learning rate schedule.

Figure 5: Example result pairs from Mask R-CNN vs. with DCT-Mask R-CNN(right image), using ResNet-50 with FPN.

Methods Backbone AP AP50

Mask R-CNN[15] ResNet-50-FPN 26.2 49.9

BshapeNet+[19] ResNet-50-FPN 27.3 50.5

BMask R-CNN[9] ResNet-50-FPN 29.4 54.7

PointRend[20] ResNet-50-FPN 30.4 55.1

DCT-Mask R-CNN ResNet-50-FPN 30.6 55.4

Table 12: Comparing different instance segmentation meth-

ods on Cityscapes test with only fine annotations.

128× 128 resolution and 300 components. It only achieves

34.8 AP on COCO while DCT achieves 36.5 AP. Moreover,

PCA needs extra pre-training. DCT is clearly a better choice

for mask encoding.

6. Conclusion

In this work, we have introduced a simple and effec-

tive approach to significantly increase the mask AP of in-

Method Resolution COCO LVIS∗ FLOPs FPS

DCT-Mask R-CNN 128× 128 36.5 39.7 0.5B 22

PointRend 224× 224 36.3 39.7 0.9B 16

Table 13: Comparison with PointRend on the COCO

2017val dataset. DCT-Mask outperforms PointRend with

lower FLOPs and higher FPS.

stance segmentation. The increase is due to the high-quality

and low-complexity DCT mask representation. DCT-Mask

could be easily integrated into most pixel-based methods.

We hope our method can serve as a fundamental approach

in instance segmentation.
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