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Abstract

We address the problem of unsupervised localization

of task-relevant actions (key-steps) and feature learning

in instructional videos using both visual and language

instructions. Our key observation is that the sequences of

visual and linguistic key-steps are weakly aligned: there

is an ordered one-to-one correspondence between most

visual and language key-steps, while some key-steps in

one modality are absent in the other. To recover the

two sequences, we develop an ordered prototype learning

module, which extracts visual and linguistic prototypes

representing key-steps. To find weak alignment and perform

feature learning, we develop a differentiable weak sequence

alignment (DWSA) method that finds ordered one-to-one

matching between sequences while allowing some items in

a sequence to stay unmatched. We develop an efficient for-

ward and backward algorithm for computing the alignment

and the loss derivative with respect to parameters of visual

and language feature learning modules. By experiments on

two instructional video datasets, we show that our method

significantly improves the state of the art.

1. Introduction

Learning to perform procedural tasks by watching visual

demonstrations or reading manuals is one of the complex

capabilities of humans. Bringing this capability to machines

allows us to design intelligent agents that autonomously

learn to perform tasks or help humans/agents to achieve

complex tasks and enables building massive instructional

knowledge bases for education and autonomy. The explo-

sion of data, on the other hand, has provided invaluable

resources for automatic procedural task learning: there exist

tens or hundreds of thousands of instructional videos on the

web about how to cook different recipes, how to assemble or

repair different devices, etc. [1, 49, 50, 32, 17, 45, 41, 25].

Given instructional videos of one or multiple tasks,

the goal of procedure learning is to localize the key-steps

(actions required to accomplish a task) in videos. Over

Figure 1: Key-steps in visual data and narrations for three videos from

the task ‘change tire’. Each color represents one key-step or background.

the past several years, we have seen great advances on

different aspects of learning from instructions [42, 1, 40,

21, 30, 36, 12, 34, 11, 31]. The majority of works address

learning from weakly annotated videos [22, 3, 37, 38, 9,

50, 27, 7, 28], i.e., videos with ground-truth lists/sequences

of key-steps or ground-truth summaries [47]. On the

other hand, understanding instructional videos at the scale

necessary to build large knowledge bases or assistive agents

that respond to many instructions, requires unsupervised

learning that does not require costly video annotations. This

has motivated several works on unsupervised procedure

learning [42, 40, 17, 26, 19, 16, 51, 1, 18, 15], which mostly

rely on learning from visual data alone.

Learning from Visual and Language Instructions. In-

structional videos are often accompanied with narrations,

where visual demonstrations of many steps have language

descriptions, see Figure 1. Indeed, these two modalities

contain rich information that can be leveraged to more

effectively discover key-steps. However, there are multiple

challenges that we need to address to leverage this shared

information. First, while the majority of key-steps appear

in both modalities, some may only appear in visual data or

narrations. For example, ‘read manual’ appears in narration

1 but does not occur in the video, and ‘screw wheel’ occurs

in video 1 while being absent in the narration. Second,

the two modalities are not necessarily aligned: for a visual

demonstration of a key-step, the associated narration could

happen before, during or after performing it (e.g., one may

review one or a few steps using language before or after

demonstrating them). Third, visual data and narrations
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often contain substantial amount of background not related

to the task, which do not necessarily occur at the same time1

(see grey temporal regions in Figure 1). While few works

have addressed unsupervised learning from both modalities

[1, 42, 18], they rely on narration as the main modality or

assume that visual and language descriptions have close

temporal alignment. This limits their applicability to

general cases where visual data and narrations are unaligned

or when some key-steps are missing in one modality.

Paper Contributions. We address task-relevant action

(key-step) localization and multimodal feature learning

in instructional videos using visual and language data.

Our key observation is that the ‘sequences’ of visual and

linguistic key-steps are weakly aligned. More specifically,

there is a one-to-one correspondence between most visual

and language key-steps, while some key-steps in one

modality are absent in the other. Moreover, the ordering

of the common key-steps in two modalities are similar.

Thus, instead of assuming temporal alignment of key-steps

in language and visual data, we assume weak alignment of

key-step sequences once recovered, which allows for some

steps to appear in only one modality and for the visual and

language demonstration of a key-step to be temporally far.

To recover the sequences, we develop an ordered proto-

type learning module, which extracts visual and linguistic

prototypes representing key-steps. On the other hand,

to find weak alignment and perform feature learning, we

develop a differentiable weak sequence alignment (DWSA)

method that finds ordered one-to-one matching between

sequences while allowing some items in a sequence to stay

unmatched. We derive an efficient dynamic programming-

based algorithm for computing the loss and alignment as

well as an efficient backpropagation method for computing

the gradient with respect to parameters of visual and

language feature learning modules. By experiments on

two instructional video datasets, we show that our method

improves the state of the art by about 4.7% in F1 score.

2. Related Works

Procedure Learning. Existing works on learning from

instructional videos can be divided into three categories.

The first group of works assumes that annotations of key-

steps in videos are given and the goal is to learn how to

segment new videos [49] or anticipate future key-steps [41].

To reduce the costly and unscalable annotation requirement,

the second group of works on weakly-supervised learning

assumes that each video is accompanied with an ordered or

unordered list of its key-steps, and the goals are to localize

and learn models of key-steps in videos [22, 3, 37, 38, 9,

50, 27, 7, 28]. However, gathering error-free list of key-

1One might demonstrate two consecutive key-steps, while expressing

opinions or advertising products in between narrations of the key-steps.

steps requires annotators to watch each video or manual

intervention on noisy video meta data.

Unsupervised learning, which is the subject of our

work, removes the annotation requirement by exploiting

the common structure of videos to discover and localize

key-steps. Many unsupervised methods have focused on

learning from either narrations or visual demonstrations

[40, 17, 26, 16, 12, 19, 14]. Hence, they cannot leverage

the rich complementary information of the two modalities.

On the other hand, [1, 30, 48, 42, 18] have addressed

learning from multi-modal instructional data. However,

they assume that each key-step appears in both modalities,

rely on having (close) temporal alignment of a key-step in

the two modalities, or mainly use narration to discover key-

steps and then localize the discovered steps in visual data.

Sequence Alignment. Dynamic Time Warping (DTW) is

a classic algorithm to measure the distance between two

temporal sequences [39]. Cuturi and Blondel [8] extend

DTW to a differentiable loss (soft-DTW) that enables

training predictive and generative models for time series.

Chang et al. [7] extend soft-DTW to a discriminative

setting for weakly-supervised action segmentation. Cao

et al. [5] propose an ordered temporal alignment module,

using a variant of DTW, for few-shot video classification.

However, all of the above works are based on one-to-

many matchings and assume that each item in one sequence

has a match in the other sequence. While [1] develops

a Frank-Wolfe-based optimization algorithm for ordered

alignment of multiple sequences, it does not allow for

feature learning and is costly and initialization-dependent.

[10] proposes a differentiable neural network for multiple

sequence alignment, but is supervised and requires ground-

truth alignments, which are not available in our setting.

To the best of our knowledge, our DWSA is the first

differentiable method that measures the cost of one-to-one

alignment between sequences, allows some items in each

sequence to be unmatched, and enables feature learning

without access to ground-truth alignments. Our DWSA is

to some extent similar to identifying regions of similarity

among different genes [2].

Self-Supervised Representation Learning. Learning self-

supervised video representations has become increasingly

popular, due to the high cost of large-scale video annota-

tions [33, 43, 6, 13, 35]. Our work is more related to self-

supervised multimodal representation learning [32, 20, 44,

29, 31]. Some works assume that video clips and narrations

are aligned [32] or close in time [31], and use such cor-

respondences to train joint video-text embedding models.

This could be limiting as demonstrations and narrations

could be unaligned. Hu et al. [20] proposes a multi-

modal clustering method to learn audio-visual embeddings,

but the learned representations are fine-grained object-level

representations and require aligned audio-image pairs.
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3. Learning to Segment Actions from Instruc-

tional Videos with Narrations

In this section, we develop a framework for unsupervised

localization of key-steps and segmentation of instructional

videos using visual and language data. It is worth

mentioning that our framework can also handle using only

visual data or narrations, as we show in the experiments.

3.1. Problem Statement

Assume we have N narrated videos from the same task.

We denote the visual and language features of video n by

X v
n =

(

xv
n,1,x

v
n,2, . . .

)

, X l
n =

(

xl
n,1,x

l
n,2, . . .

)

, (1)

where xv
n,i is the feature vector of segment i and xl

n,i

is the feature of verb-phrase i (notice that the number of

segments and verb-phrases in a video could be different).

Given that each segment or verb-phrase occurs during a

time interval, we denote the middle time instant of the i-

th segment and verb-phrase interval in the n-th video by

tvn,i and tln,i, respectively. Our goal is to assign each video

frame and verb-phrase to a key-step or background, hence,

recover segmentation of videos and find frames and verb-

phrases across videos that belong to the same key-step.

3.2. Proposed Framework

We model key-steps in visual data using visual pro-

totypes {cvk}
Kv

k=1
and model narration key-steps using

linguistic prototypes {clk}
Kl

k=1
. The number of visual and

linguistic prototypes Kv and Kl are hyperparameters (in

practice, we set Kl > Kv , since narration often contains

more key-step descriptions). Our goals are to jointly learn

the visual and linguistic prototypes, find their associations

that result in recovering segmentations of videos, and learn

representations that bring matched visual and linguistic

prototypes closer. To do so, we propose a framework

that consists of the following components, as shown in

Figure 2: 1) a narration processing module that discovers

verb-phrases from narrations and removes irrelevant ones;

2) visual-text2 feature extraction and refinement; 3) two

soft ordered prototype learning (SOPL) modules that learn

visual and linguistic prototypes; 4) a differentiable weak

sequence alignment (DWSA) loss that aligns the sequences

of prototypes of two modalities and enables self-supervised

feature learning.

3.2.1 Narration Processing

We use the subtitles automatically generated from YouTube

to extract verb phrases. Following the pipeline in [11],

we first adopt T-BRNN [46] to punctuate the subtitles.

Next, we perform coreference resolution to resolve the

2We interchangeably use textual and linguistic in this paper.

Extracted verb phrases key-steps in groundtruth

assemble your instrument put case facing up

remove the reed open case

put the thin end in your mouth put reed in mouth

hold the lower section

grease the cork grease corks

twist the bell onto the lower section put on bell

hold the upper section in your other hand

twist the two sections join lower joint and upper joint

twist the barrel onto the upper joint

rest the bell in your leg line up bridge key

attach the mouthpiece to the barrel put mouthpiece on barrel

align the open flat side with a register key

put the ligature put ligature on mouthpiece

slip the reed with the flat side

slide down the ligature

center the reed on the mouthpiece put reed on mouthpiece

center the reed with only a hair line

touch the tip

tighten the screws until snug tighten ligature screws

ask your teacher for help

Table 1: Extracted verb-phrases from a video of ‘assemble clarinet’.

Verb-phrases and steps in bold have similar semantics.

pronouns via SpaCy3. We then run the dependency parser

to discover verb phrases in the narrations. Unlike [1]

that only keeps verb+dobj pairs, the format of our verb

phrases is verb+(prt)+dobj+(prep+pobj).4 We keep more

components because they are important to distinguish one

key-step from another. For instance, the two key-steps

of ‘pass tie in front of knot’ and ‘pass tie through knot’

in the task of ‘tie a tie’ lead to the same verb+dobj pair

‘pass tie’, which is undesired. Finally, we remove some

irrelevant verb-phrases that do not correspond to physical

actions in videos by using their concreteness scores [4, 23].

The concreteness of a phrase is the highest concreteness of

its words. We remove phrases with score lower than 3, e.g.,

‘keep interruptions to a minimum’ and ‘avoid this problem’.

We also remove phrases that only contain stop words. Table

1 shows an example of extracted verb-phrases along with

ground-truth key-steps. Notice that verb-phrases capture

the majority of key-steps while still containing some noisy

information and missing some key-steps.

3.2.2 Visual+Text Feature Extraction and Learning

We extract unsupervised features from visual data and

narrations and refine them using our method. We use the

unsupervised pretrained joint visual-text embedding model5

in [31] to extract embeddings: xv
n,i is the output of the

I3D network and xl
n,i is the output of two fully-connected

layers after the word2vec model, pretrained on Howto100M

dataset [32]. To learn more discriminative features where

visual and narration features of the same key-step are close,

we use a feature learning module to refine the unsupervised

3https://spacy.io
4 prt: particle; dobj: direct object; prep: preposition; pobj: object of

preposition. The components in the parenthesis are optional.
5This model is pretrained in an unsupervised manner without access

to any ground-truth annotations. We keep this model fixed, i.e., do not

fine-tune it, in our experiments.
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Narration

processing

Video segments

We begin by inserting the

mouthpiece into the barrel

joint. Clarinets have what are

called cork joints to connect

the pieces together… Now

we remove the reed from the

reed holder and place it flat

side down on what is called

the reed table. Then we hold

the reed with our thumb…

Pretrained

textual 

network

Visual 

feature 

extractor

Textual 

feature 

extractor

𝒚𝒚𝑙𝑙

SOPL

V
is

u
a
l 

d
a
ta

N
a
rr

a
ti

o
n

s

Video segmentation
Pretrained 

visual

network

Verb phrases

𝒙𝒙𝑙𝑙

𝒚𝒚𝑣𝑣

Linguistic time-stamp 𝑡𝑡𝑙𝑙
insert the mouthpiece 

into the barrel joint;

connect the pieces;

…

remove the reed;

hold the reed with our 

thumb…

Visual prototypes

Linguistic prototypes

𝒙𝒙𝑣𝑣
Visual time-stamp 𝑡𝑡𝑣𝑣

DWSA

SOPL

Figure 2: Overview of our framework for unsupervised learning from instructional videos and their narrations. The dashed arrows in the plot of prototypes

denote their learned ordering and black arrows represent the alignment found by DWSA, which minimizes distances of aligned pairs for feature learning.

features of each modality. Let fΘv
(·) and fΘl

(·) denote,

respectively, the feature learning functions for visual data

and narrations, with parameters Θv and Θl. We denote the

transformed visual and language features by

yv
n,i , fΘv

(xv
n,i), yl

n,i , fΘl
(xl

n,i). (2)

In the experiments, we discuss the exact architectures used

for feature learning.

3.2.3 Soft Ordered Prototype Learning

To recover visual and linguistic prototypes, we use the

following observations. First, given that videos come from

the same task, the sequences of key-steps in different videos

are similar, e.g., have a small edit distance from each other

(see Figure 1). Moreover, the relative length of each key-

step with respect to the video length is similar across videos

(several works on weakly-supervised learning also rely on

such length consistency [38, 27, 28]). Also, nearby frames

or verb-phrases belong to the same key-step or background.

For simplicity of notation and removing repetitive de-

scriptions, we drop the superscript/subscript v and l. We

associate each feature prototype c, representing a key-step,

with a time-stamp prototype τ to enforce that nearby time-

stamps in each video and similar time-stamps across videos

(when lengths of all videos are normalized to be the same)

should belong to the same key-step. To do so, we optimize

the modified k-means objective function

min
{ck,τk}

∑

n

∑

i

−β log
(

∑

k

e−dnik/β
)

,

dnik ,
∥

∥yn,i − ck
∥

∥

2
+ γ (

tn,i

Tn
− τk)

2

(3)

where the term inside the second sum corresponds to the

soft-min operation6 with parameter β ≥ 0, which allows

us to learn features by backpropagating the gradient of

our DWSA loss function. Also, Tn denotes the length of

the video n and γ ≥ 0 is a hyperparameter. Algorithm

1 shows the steps of the soft ordered prototype learning

6Soft-min is defined as minβ{α1, α2, . . .} = −β log
∑

k e−αk/β .

Algorithm 1: Soft Ordered Prototype Learning (SOPL)

Input : {(yn,i, tn,i)}n,i,K, β ≥ 0

1 Initialize prototypes, {ck, τk}
K
k=1

2 for iter ← 1 to p = 5 do

3 Compute {dnik} via (3) and soft assignments

snik = exp (−dnik/β)∑K
j=1

exp(−dnij/β)

4 Update prototypes

[ck, τk] =
∑

n

∑
i snik[yn,i, tn,i/Tn]
∑

n

∑
i snik

Output: Feature and time prototypes {ck, τk}
K
k=1

to solve (3) via gradient descent, by iteratively computing

soft assignments and updating feature/time prototypes. To

remove background segments, we use a background ratio

parameter b ∈ [0, 1], similar to [26]. We keep 1− b fraction

of the segments within each cluster that are closest to the

prototype and consider other segments as background.

Remark 1 Based on Algorithm 1, SOPL can be viewed as

a network which receives initial prototypes as inputs and

whose each layer outputs the updated prototypes.7 This

allows integration of SOPL with our proposed DWSA loss.

The output of the algorithm provides ordering of feature

prototypes {ck} based on their learned time prototypes

{τk}. Let Ov and Ol denote the ordered visual and

linguistic prototypes, respectively,

Ov , (cvi1 , c
v
i2
, . . .), where τvi1 ≤ τvi2 ≤ . . . ,

Ol , (clj1 , c
l
j2
, . . .), where τ lj1 ≤ τ lj2 ≤ . . . ,

(4)

which correspond to sequences of visual and linguistic key-

steps learned from videos. Given that some key-steps may

appear in only one modality, we develop a differentiable

weak sequence alignment (DWSA) method to find the best

ordered one-to-one matching between Ov and Ol while

allowing some prototypes in a modality to stay unmatched.

7Note that s is computed from the pairwise distance between inputs and

prototypes and it is not a trainable parameter.
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∅ a ∅ b ∅ c ∅ d ∅ f ∅ g ∅
a 0 -1 0 1 0 1 0 1 0 1 0 1 0

c 0 1 0 1 0 -1 0 1 0 1 0 1 0

d 0 1 0 1 0 1 0 -1 0 1 0 1 0

e 0 1 0 1 0 1 0 1 0 1 0 1 0

h 0 1 0 1 0 1 0 1 0 1 0 1 0

f 0 1 0 1 0 1 0 1 0 -1 0 1 0

∅ a ∅ b ∅ c ∅ d ∅ f ∅ g ∅
a 0 -1 0 1 0 1 0 1 0 1 0 1 0

c 0 1 -1 0 -1 -2 -1 0 -1 0 -1 0 -1

d 0 1 -1 0 -1 0 -2 -3 -2 -1 -2 -1 -2

e 0 1 -1 0 -1 0 -2 -1 -3 -2 -3 -2 -3

h 0 1 -1 0 -1 0 -2 -1 -3 -2 -3 -2 -3

f 0 1 -1 0 -1 0 -2 -1 -3 -4 -3 -2 -3

Pairwise Cost Cumulative Cost

a a∅ b

c c

d d

e ∅
h ∅
f f∅ g

Alignment

… …

…

…

Figure 3: Illustration of our dynamic programming-based method for

weak sequence alignment.

Remark 2 The SOPL differs from [26] as we learn the

feature and time prototypes simultaneously in a differen-

tiable way for multi-modal feature learning, while [26]

first applies kmeans on visual embeddings and then sorts

clusters in temporal order based on their time-stamps.

3.2.4 Diff. Weak Sequence Alignment (DWSA)

Each of the ordered visual and linguistic prototype se-

quences (Ov and Ol) represents the common sequence of

key-steps in each modality. However, these sequences are

not necessarily aligned, as some steps in one modality might

be missing in the other modality (see Figure 1). Thus, our

goal is to find an ordered correspondence between Ov and

Ol while allowing some prototypes in each sequence to

be unmatched. More specifically, if item i in the visual

sequence is aligned with item j in the linguistic sequence,

then item i + 1 can be associated with either items after j

or with empty. To do so, we develop a differentiable weak

sequence alignment (DWSA) loss between ordered visual

and linguistic prototypes and propose to solve

min
Θv,Θl

DWSA(Ov,Ol, ℓ(·, ·)), (5)

over the parameters of the visual and language feature

learning modules. Here, ℓ(·, ·) denotes the metric used for

computing distances between items of the two sequences.

In the paper, we use the cosine dissimilarity between visual

and linguistic prototypes as distance, i.e.,

ℓ(cvi , c
l
j) = 1−

〈cvi , c
l
j〉

‖cvi ‖‖c
l
j‖

. (6)

After solving (5) (see the next section for details), we use

the learned prototypes from SOPL and assign each video

segment to the closest learned visual prototype to obtain

segmentation of videos into key-steps (similarly, we assign

each verb-phrase to the closest linguistic prototype). Given

that our method finds correspondences between visual and

linguistic prototypes, we can also find all segments and

verb-phrases that are clustered together.

4. Sequence Alignment via DWSA

We develop a differentiable weak sequence alignment

method that i) finds a one-to-one ordered matching between

two sequences while allowing some items in a sequence to

be unmatched; ii) enables feature learning. We motivate

Algorithm 2: Forward Propagation for DWSA

input :Cost matrix ∆; soft-min parameter β ≥ 0
1 d1,j ← δ1,j , j ∈ {1, 2, . . . , 2q

′ + 1}
2 for i← 2 to q do

3 for j ← 1 to 2q′ + 1 do

4 if j is odd then

5 di,j ← δi,j +minβ{di−1,1, . . . , di−1,j}
6 else

7 di,j ← δi,j +minβ{di−1,1, . . . , di−1,j−1}

8 L ← minβ{dq,1, . . . , dq,2q′+1}
output: DWSA Loss = L

the algorithm using a toy example of aligning symbolic

sequences and then generalize it to arbitrary sequences.

Assume we have two symbolic sequences

O = (a, c, d, e, h, f) and O′ = (a, b, c, d, f, g). Our

goal is to find the best one-to-one alignment between two

sequences that respects their orderings. This ideal ordering

is shown in Figure 3 (right), where a’s in two sequences

are matched, b in sequence 2 is matched with empty ∅,

c in two sequences are matched, and so on. To achieve

this alignment, first, we take one of the sequences (here,

O′) and expand it by inserting empty before and after each

symbol, O′ = (∅, a,∅, b,∅, c,∅, d,∅, f,∅, g,∅). We

compute a pairwise matching cost matrix, shown in Figure

3 (left), as ∆(O,O′) = [δi,j ] whose (i, j)-th entry denoted

by δi,j is the cost of aligning item i in O with item j in

O′. In our toy example, we set δi,j = −1 for matching

the same symbols, δi,j = 0 for matching a symbol with

empty and δi,j = +1 for matching two distinct non-empty

symbols. This means we prefer to align same symbols (cost

of -1) over aligning a symbol with empty (cost of 0) over

aligning two distinct symbols (cost of +1).

Our goal is to find a valid alignment path with minimum

cost according to ∆ that satisfies the ordered one-to-one

alignment: it can start from any entry in the first row

of ∆ and keeps going downward (↓) or right-downward

(ց). More specifically, if the current alignment position

is at (i, j) and j is odd (corresponding to empty), the next

alignment position can be (i+ 1, j′) for any j′ ≥ j (orange

arrows in Fig. 3). This ensures that if a symbol of O
is matched with empty in O′, the next symbol of O can

be paired with empty or the next symbol of O′. On the

other hand, if the current alignment position is at (i, j) and

j is even (corresponding to symbols), the next alignment

position can be (i + 1, j′) for any j′ > j (green arrows in

Fig. 3). This ensures that when two symbols in O and O′

are matched, the next symbol in O can be paired with either

empty or the next symbol in O′, hence, preserving one-to-

one correspondence.

Therefore, to find the minimum cost valid alignment, we

use dynamic programming: we calculate a cumulative cost
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matrix D = [di,j ], whose first row is initialized by d1,j =
δ1,j and its (i, j)-th entry is computed as

di,j =

{

δi,j+minβ {di−1,1, . . . , di−1,j} , j is odd

δi,j+minβ {di−1,1, . . . , di−1,j−1} , j is even.
(7)

After computing D, the minimum value in the last row of

D corresponds to the minimum alignment cost. We obtain

the optimal alignment path by starting from this minimum

entry location and by backtracking (see the supplementary

materials for more details). Algorithm 2 shows the steps of

the dynamic programming solution.

For the general case where we have two sequences

O = (o1, . . . ,oq) and O′ = (o′

1, . . . ,o
′

q′) of vectors, we

construct the matrix of pairwise matching cost ∆(O,O′) as

∆(O,O′),
[

eδi,j/
∑

j′

eδi,j′
]

, δi,j ,

{

ℓ(oi,o
′
j) , j: even,

δe , j: odd,

(8)

where ℓ(·, ·) is the cosine dissimilarity (other distance

metrics could also be used) defined in (6) and δe is a

predefined constant measuring the cost of matching with

empty. In the experiments, we show that given the ability to

learn features, our results are robust to δe.

Remark 3 Notice we use a softmax function on each row of

the distance matrix in (8) to discriminate between good and

bad matchings and, more importantly, to avoid the trivial

solution of collapsing all features to the same vector.

Computing DWSA Gradient. When sequences are

functions of learnable parameters, not only we can find the

best alignment, but also learn features that lend themselves

to better alignment. Indeed, this is the case in our setting,

where the visual and linguistic sequences (Ov and Ol)

depend on parameters of the feature learning modules (Θv

and Θl). Thus, to update Θv , we need to compute

∇ΘvDWSA(O,O′) =
(

∂O

∂Θv

)T

∇ODWSA(O,O′), (9)

which requires differentiating the loss w.r.t. O (similarly

for Θl). As we show in the supplementary materials,

differentiation can be efficiently computed by defining

intermediate variables gi,j and recursively updating them

starting from the last row and column of ∆. Algorithm 3

shows the recursion for computing the gradient w.r.t. O
(once computed, the gradient w.r.t. Θv is given by (9)).

Computational Complexity. The complexity of each for-

ward and backward pass in our method is O(qq′). This can

be seen from Algorithm 2, where we scan over q rows and

2q′ + 1 columns of the cost matrix. Notice that computing

di,j has O(1) cost as we can reuse the minimum from

the previous iteration, i.e., minβ{di−1,1, . . . , di−1,j} =
minβ{minβ{di−1,1, . . . , di−1,j−1}, di−1,j}. Similarly, in

Algorithm 3, the precomputed sum values can be reused in

Lines 5 and 7.

Algorithm 3: Backward Propagation for DWSA

input : Matching cost ∆ ∈ R
q×2q′+1; Cumulative cost

D; soft-min parameter β ≥ 0

1 gq,j ←
e
−dq,j/β

∑2q′+1

r=1
e−dq,r/β

, j ∈ {1, . . . , 2q′ + 1}

2 for i← q − 1 to 1 do

3 for j ← 2q′ + 1 to 1 do

4 if j is odd then

5 gi,j ←
∑

r≥j gi+1,re
(−di,j+di+1,r−δi+1,r)/β

6 else

7 gi,j ←
∑

r>j gi+1,re
(−di,j+di+1,r−δi+1,r)/β

8 Set G = [gi,j ]

output:∇ODWSA(O,O′) =
( ∂∆(O,O′)

∂O

)T
G

5. Experiments

5.1. Experimental setup

Datasets. We evaluate our proposed method on two

instructional video datasets: ProceL [17] and CrossTask

[50]. ProceL consists of 47.3 hours of videos from 12 tasks,

where each task has about 60 videos. CrossTask has 213

hours of footage from 2,750 videos from 18 primary tasks.8

In both datasets, each video has narrations and annotations

of key-steps. We cannot use COIN [45] as it lacks narrations

or Howto100M [32] as it lacks key-step annotations.

Evaluation metrics. We use the framewise F1 score as

the primary metric and also report the framewise recall

and precision. Similar to prior works [1, 26, 17], we

run the Hungarian algorithm to find a global one-to-one

matching between steps in the ground-truth and predictions.

Recall is the ratio between the number of correctly predicted

frames and number of frames with key-steps in ground-

truth. Precision is the ratio between the number of correctly

predicted frames and number of frames predicted as key-

steps. F1 score is the harmonic mean of precision and recall.

To better demonstrate the undesired effect of including

background on the evaluation metric, we also compute the

mean-over-frames (MoF) [26], which is the percentage of

frames for which the predictions, including background, are

correct. Additionally, similar to prior works [1, 50, 18],

we compute the step recall. Here, one assigns a single

frame to each predicted step in a video and measures the

ratio between the number of correct predictions (a predicted

frame is correct when it falls into the correct ground-truth

time interval) and the number of ground-truth key-steps.

Baselines. We compare our method with the following

unsupervised baselines: Uniform, which distributes key-

step assignments uniformly over all segments in each video;

Alayrac et al. [1], which uses narrations and visual data;

8CrossTask also consists of 65 secondary tasks, whose key-steps are

not annotated, hence, we cannot use them in our experiments.
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ProceL CrossTask

F1 (%) Recall (%) Precision (%) MoF (%) F1 (%) Recall (%) Precision (%) MoF (%)

Uniform 10.28 9.36 12.41 48.20 9.03 9.75 8.69 55.88

Alayrac et al. [1] 5.54 3.73 12.25 55.77 4.46 3.43 6.80 64.18

Kukleva et al. [26] 16.39 30.19 11.69 12.04 15.27 35.90 9.82 13.95

Elhamifar et al. [16] 14.00 26.70 9.49 5.61 16.30 41.60 10.14 13.72

Fried et al. [18] – – – – – 28.80 – 31.80

Ours 21.07±0.25 31.78±0.37 16.51±0.09 25.79±0.22 21.00±0.09 35.46±0.14 15.21±0.07 40.99±0.07

Table 2: Performance comparison on ProceL and CrossTask. We report framewise F1, recall, precision and MoF averaged over tasks.
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Weakly sup.
Specific [50] 13.2 17.6 19.3 19.3 9.7 12.6 30.4 16.0 4.5 19.0 29.0 9.1 29.1 14.5 22.9 29.0 32.9 7.3 18.6

Sharing [50] 13.3 18.0 23.4 23.1 16.9 16.5 30.7 21.6 4.6 19.5 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3 22.4

Unsup.

Uniform 4.2 7.1 6.4 7.3 17.4 7.1 14.2 9.8 3.1 10.7 22.1 5.5 9.5 7.5 9.2 9.2 19.5 5.1 9.7

Alayrac et al. [1] 15.6 10.6 7.5 14.2 9.3 11.8 17.3 13.1 6.4 12.9 27.2 9.2 15.7 8.6 16.3 13.0 23.2 7.4 13.3

Kukleva et al. [26] 12.3 13.1 13.9 17.2 14.8 11.9 13.2 10.1 7.6 16.2 24.1 6.3 17.0 11.1 16.1 15.5 18.1 11.5 13.9

Elhamifar et al. [16] 7.5 5.1 9.5 5.8 5.1 22.4 24.9 5.3 8.2 9.6 6.8 11.3 9.8 15.8 4.6 6.6 11.5 8.7 9.9

Fried et al. [18] – – – – – – – – – – – – – – – – – – 10.6

Ours 18.5 16.3 25.9 22.4 17.8 17.3 16.8 15.8 14.3 11.8 32.5 10.6 24.3 10.3 28.6 27.4 33.2 11.7 19.8

Table 3: Step recall (%) on CrossTask. We compare our unsupervised approach with unsupervised baselines and the weakly-supervised methods in [50].

Kukleva et al. [26], Elhamifar et al. [16] and Fried et

al. [18], which use visual data (the unsupervised version

of [18] uses only visual data and its weakly-supervised

version uses both modalities). In the presented results in

the main paper, similar to [26, 18], we set the number of

visual clusters Kv to be the number of key-steps in the

ground-truth. Given that [1, 16] measure performance as

a function of the number of key-step K ∈ {7, 10, 12, 15}
in predictions, we report their best performance across K’s.

In the supplementary materials, we also report results as a

function of K, which give similar conclusions.

5.2. Implementation details

Data preprocessing. As discussed in Section 3.2.2, we use

the unsupervised pretrained visual-text embedding model in

[31] to extract visual and textual features. To do so, similar

to [31], we segment each video into intervals of 32 frames

sampled at 10 fps (3.2 seconds) with 224×224 resolution.

For each verb-phrase in narrations, we lowercase, perform

tokenization and remove stop words as preprocessing. The

feature dimension for both modalities is 512.

Feature learning. For visual and textual feature extrac-

tors, discussed in Section 3.2.2, we use a linear layer

followed by normalization into unit length vectors, y⋆
n,i =

norm(W ⋆x⋆
n,i+b⋆), with ⋆ ∈ {v, l}, where Θv = {W v, bv}

and Θl = {W l, bl} are trainable parameters. In our

experiments, more complex models did not improve results.

Hyperparameters. For feature learning, we train the

feature extractors using Adam optimizer [24] with learning

rate of 5e−4, weight decay of 0.02, and batch size of

30 videos for 30 epochs. On both datasets, the softmin

parameter β in SOPL and DWSA is set to 0.001 and the

cost of alignment with empty is set to δe = 1. We set (γ =

ProceL CrossTask
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Figure 4: Ablation studies (left) and effect of timestamp weights γ

(right). The bars show standard deviations.

4, b = 0.2) on ProceL and (γ = 1, b = 0.4) on CrossTask.

We set the number of textual prototypes to be the number of

visual prototypes plus 10. We repeat every experiment 20

times for different initializations of the visual and textual

prototypes and report the mean and standard deviation. We

show the robustness of our method to the hyperparameters

in the next section and in the supplementary materials.

5.3. Experimental results

Table 2 shows the average scores of different methods on

ProceL and CrossTask datasets. Notice that [1] has lower

framewise precision, recall and F1 than other methods

but much higher MoF. This comes from the fact that it

only predicts a single frame instead of intervals, which

reduces the first three metrics (later, we also show the step

recall, which only considers a single frame prediction).

Having a high MoF is due to the fact that a large portion

of each video is background, hence, predicting almost

all frames as background achieves a high score (this can

also be seen from the results of Uniform). While [26]

does better than [16] on ProceL, the trend is opposite

on CrossTask. This comes from the fact that [16] trains

a deep network in a self-supervised fashion for key-step
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continue CPR give two breaths give second do compressions get victim’s chest give the breaths do CPR

check pulse open up airway check response give two breaths push down chests have a carotid pulsestart compression 

Before

Learning

After

Learning

GroundTruth

call emergency
check breathing
check dangerous

check pulse
check response
give breath

give compression
open airway
background

Alayrac et al.

Kukleva et al.

Ours

Figure 5: Left: Matched visual and textual prototypes before and after feature learning. For visualization, we use the video frame and phrase closest to

the prototypes. Correct matchings are marked with green boxes. Right: Localization results for a video from the task ‘perform cpr’.

localization, which benefits from the larger number of

videos in CrossTask, obtaining the best recall on the dataset.

Notice that our method performs significantly better than

other algorithms, improving the F1 score by about 4.7%

on both datasets. This verifies the importance of properly

leveraging narrations for more effective key-step discovery.

Step detection performance. Table 3 shows the step recall

of different tasks on CrossTask. We additionally compare

our method with two weakly-supervised approaches in [50],

Specific and Sharing9, which use visual and narration data.

Notice that our method outperforms unsupervised methods,

obtaining 19.8% recall compared to 13.9% by [26]. Also,

the performance of the weakly-supervised method, which

could be considered as an upper bound on unsupervised

methods, is close to ours. Interestingly, on 13 out of 18

tasks, our method achieves a higher step recall than other

unsupervised methods and on 6 out of 18 tasks, performs

better than weakly-supervised methods.

Effect of different components. Figure 4 (left) shows

the effect of different components of our method. Kmeans

and SOPL only use visual data, where the former does not

enforce ordering consistency of prototypes (γ = 0), while

the latter does. Notice that enforcing order consistency has

a significant effect, improving performance by 4.3% and

1.2% on ProceL and CrossTask. SOPL+soft-DTW, which

uses both visual and text data and performs feature learning

performs worse than SOPL. This comes from the fact that

poor matching between prototypes in different modalities

obtained by soft-DTW adversely affects feature learning

and performance. On the other hand, using DWSA boosts

the performance of SOPL by about 1% thanks to obtaining

better prototype matchings. Figure 4 (right) shows the effect

of γ in (3). Notice that on both datasets, there is a range for

which our method obtain stable results (for γ ∈ [0.2, 10]
on both datasets, our method outperforms other baselines).

As expected, for very large γ, the performance drops as

the method ignores the common information in visual and

linguistic features (see the supplementary materials for

analysis based on order consistency of tasks).

Qualitative analysis. Figure 5 (left) shows the visual-

ization of matching between visual and textual prototypes

before and after feature learning for the task ‘perform

9They use transcripts as supervision. Specific learns a classifier for each

step of a task, while Sharing incorporates sharing key-steps across tasks.
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Figure 6: Learned distances between visual and textual prototypes using

DWSA and Soft-DTW. White boxes indicate the alignment path.

CPR’. We show the closest frame and verb-phrase to each

prototype. While matchings are poor before learning (e.g.,

‘give two breaths’, ‘get victim’s chest’ and ‘give breaths’

are associated with incorrect demonstrations), the quality

of matching significantly improves after learning. Figure

5 (right) shows localization results of different methods.

Notice that our method can localize ‘check dangerous’

thanks to using narrations, while successfully localizing

other steps such as ‘check response’, ‘check breathing’,

‘give compression’ and ‘give breath’ (but missing its first

occurrence). Finally, Figure 6 shows the learned distances

via our DWSA and soft-DTW for the task ‘change tire’.

Soft-DTW aligns a single visual prototype with multiple

linguistic prototypes (e.g., ‘take off wheel’, ‘raise vehicle’,

‘put tire’), hence, learning similar embeddings for verb-

phrases of distinct key-steps. On the other hand, DWSA

learns one-to-one matching while allowing noisy/incorrect

linguistic prototypes to stay unmatched. More qualitative

examples are included in the supplementary materials.

6. Conclusions
We proposed an unsupervised action segmentation

method for instructional videos and narrations. We

modeled visual and language key-steps by prototypes,

recovered them by developing a soft ordered prototype

learning module and developed a novel weak sequence

alignment method to find correspondence between visual

and linguistic prototype sequences. By experiments on two

datasets, we showed the effectiveness of our method.
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