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Abstract

Previous studies dominantly target at self-supervised

learning on real-valued networks and have achieved many

promising results. However, on the more challenging bi-

nary neural networks (BNNs), this task has not yet been

fully explored in the community. In this paper, we focus

on this more difficult scenario: learning networks where

both weights and activations are binary, meanwhile, with-

out any human annotated labels. We observe that the

commonly used contrastive objective is not satisfying on

BNNs for competitive accuracy, since the backbone net-

work contains relatively limited capacity and representa-

tion ability. Hence instead of directly applying existing

self-supervised methods, which cause a severe decline in

performance, we present a novel guided learning paradigm

from real-valued to distill binary networks on the final pre-

diction distribution, to minimize the loss and obtain desir-

able accuracy. Our proposed method can boost the sim-

ple contrastive learning baseline by an absolute gain of

5.5∼15% on BNNs. We further reveal that it is difficult

for BNNs to recover the similar predictive distributions as

real-valued models when training without labels. Thus,

how to calibrate them is key to address the degradation

in performance. Extensive experiments are conducted on

the large-scale ImageNet and downstream datasets. Our

method achieves substantial improvement over the simple

contrastive learning baseline, and is even comparable to

many mainstream supervised BNN methods. Code is avail-

able at https://github.com/szq0214/S2-BNN .

1. Introduction

The recent advances and breakthroughs in 1-bit convo-

lutional neural networks (1-bit CNNs), also known as bi-

nary neural networks [7, 30] mainly lie in supervised learn-

ing [21, 23]. With the binary nature of BNNs, such net-

works have been recognized as one of the most efficient and
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Figure 1. Illustration of the motivation for self-supervised BNNs.

As the representation capability of BNNs is relatively limited, the

output prediction is less confident than that of real-valued net-

works. Hence, we argue that the conventional self-supervised

methods in real-valued networks may not be optimal for BNNs.

promising deep compression techniques for deploying mod-

els in resource-limited devices. Generally, as introduced

in [30], BNNs can produce up to 32× compressed mem-

ory and 58× practical computational reduction on a CPU or

mobile device. Considering the immense potential of being

directly deployed in intelligent devices or low-power hard-

ware, it is well worth further studying the behaviors of self-

supervised BNNs (S2-BNN), i.e., BNNs without human-

annotated labels, both to better understand the properties of

BNNs in academia, as well as to extend the scope of their

usage in industry and real-world applications.

The goal of this paper is to study the mechanisms and

properties of BNNs under the self-supervised learning sce-

nario, then deliver practical guidelines on how to establish

a strong self-supervised framework for them. To achieve

this purpose, we start from exploring the widely used self-

supervised contrastive learning in real-valued networks.

Hence, our first question in this paper is: Is the well-

performing contrastive learning in real-valued networks

still suitable for self-supervised BNNs? Intuitively, binary

networks are quite different from real-valued networks on

both learning optimization and back-propagation of gradi-

ents since the weights and activations in BNNs are dis-
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Table 1. A brief overview of our improvement over a variety of different architectures for binarizing models. We choose XNOR Net [30],

Bi-Real Net [22] and ReActNet [21] as our backbone networks.
XNOR (Re-impl.) [30] Bi-Real Net [22] ReActNet [21]

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Supervised BNN 51.200 73.200 56.400 79.500 69.400 88.600

Contrastive Learning (MoCo V2) - Real-valued – – 50.296 75.206 60.776 82.830

Contrastive Learning (MoCo V2) - BNN (Baseline) 23.880 44.690 42.816 67.712 46.922 70.712

Contrastive Learning w/ Adam + lite aug. + progressive binarizing etc. (Ours) - BNN – – – – 52.452 76.080

+ Guided Learning (Ours) - BNN – – – – 56.022 79.168

Guided Learning Only (Ours) - BNN 36.996 61.416 51.242 75.890 61.506 83.512

crete, causing dissimilar predictions between the two dif-

ferent types of networks, as illustrated in Fig. 1. We answer

this question by exploring the optimizers (SGD or the adap-

tive Adam optimizer), learning rate schedulers, data aug-

mentation strategies, etc., and give optimal designs for self-

supervised BNNs. These non-trivial studies enable us to

build a base solution which brings about 5.5% improvement

over the naı̈ve contrastive learning of the baseline.

Subsequently, we empirically observe that the real-

valued networks always achieve much better performance

than BNNs on self-supervised learning (the comparison will

be given later). Many recent studies [21, 23] have shown

that BNNs demonstrate sufficient capability to achieve ac-

curacy as high as the real-valued counterparts in supervised

learning, but an appropriate learning strategy is required to

unleash the potential of binary networks. Our second ques-

tion is thus: What are the essential causes for the perfor-

mance gap between real-valued and binary neural networks

in self-supervised learning? It is natural to believe that if we

can expose the causes behind the inferior results and also

find a proper method for training self-supervised BNNs to

mitigate the obliterated/poor accuracy, we can categorically

obtain more competitive performance for self-supervised

BNNs. Our discovery on this perspective is interesting: we

observe that the distributions of predictions from BNNs and

real-valued networks are significantly different but after us-

ing a frustratingly simple method through a teacher-student

paradigm to calibrate the latent representation on BNNs, the

performance of BNNs can be boosted substantially, with an

extra ∼4% improvement.

Concretely, to address the issue of how to maximize the

representation ability of self-supervised BNNs, we propose

to add an additional self-supervised real-valued network

branch to guide the target binary network learning. This

is somewhat like knowledge distillation but the slight differ-

ence is that our teacher is a self-supervision learned network

and the class for the final output is agnostic. We force the

BNNs to mimic the final predictions of real-valued models

after the projection MLP head and the softmax operation.

In our framework, we introduce a strategy that enables the

BNNs to mimic the distribution of a real-valued reference

network smoothly. This procedure is called guided distil-

lation in our method. Combining contrastive and guided

learning is a spontaneous idea for tackling this problem,

while intriguingly, we further observe that solely employ-

ing guided learning without contrastive loss can dramati-

cally boost the performance of the target model by an ad-

ditional 5.5%. This is surprising since, intuitively, com-

bining both of them seems a better choice. To shed fur-

ther light on this observation, i.e., contrastive learning is

not necessary for directly training self-supervised BNNs,

we study the learning mechanism behind contrastive and

guided/distilled techniques and derive the insights that con-

trastive and guided learning basically focus on different as-

pects of feature representations. Distillation forces BNNs to

mimic the reference network’s predictive probability, while

contrastive learning tries to discover and learn the latent pat-

terns from the data itself. This paper does not argue that

learning the isolated patterns by contrastive learning is not

good, but from our experiments, it shows that recovering

knowledge from a well-learned real-valued network with

extremely high accuracy is more effective and practical for

self-supervised BNNs. An overview of our improvement

over various architectures is shown in Table 1.

To summarize, our contributions in this paper are:

• We are the first to study the problem of self-supervised

binary neural networks. We provide many practical de-

signs, including optimizer choice, learning rate sched-

uler, data augmentation, etc., which are useful to es-

tablish a base framework of self-supervised BNNs.

• We further propose a guided learning paradigm to

boost the performance of self-supervised BNNs. We

discuss the roles of contrastive and guided learning in

our framework and study the way to use them.

• Our proposed framework improves the naı̈ve con-

trastive learning by 5.5∼15% on ImageNet, and we

further verify the effectiveness of our learned models

on the downstream datasets through transfer learning.

2. Related Work

Binary Neural Networks. Binary neural networks [7, 30,

20, 22, 29, 23, 21] have been widely studied in the recent

years. The first work can be traced back to EBP [34] and

BNNs [7]. After that, many interesting explorations have

emerged. XNOR Net [30] is a representative study that pro-

posed the real-valued scaling factors for multiplying with

each of binary weight kernels, this method has become

a commonly used binarization strategy in the community

2166



Figure 2. Illustration of activation distributions from different op-

timizers (Left: SGD; Right: Adam). Dotted lines are the up (+1)

and low (-1) bounds. We observe that Adam can alleviate activa-

tion saturation significantly during training.

and boosted the accuracy of BNNs significantly. Real-to-

binary [23] adopted the better training scheme and attention

mechanism to propagate binary operation on the activations

and obtained better accuracy. ReActNet [21] further studied

the non-linear activations for BNNs and built a strong base-

line upon MobileNet [18]. The proposed method achieved

fairly competitive performance on large-scale ImageNet.

Self-supervised Learning. Self-supervised learning (SSL)

is a technique that aims to learn the internal distributions

and representations automatically through data, meanwhile,

without involving any human annotated labels. Early works

mainly stemmed from reconstructing input images from a

latent representation, such as auto-encoders [36], sparse

coding [26], etc. Following that, more and more stud-

ies focused on exploring and designing handcrafted pre-

text tasks, such as image colorization [40], jigsaw puz-

zles [25], rotation prediction [12], pretext-invariant repre-

sentations [24], etc. Recently, contrastive based visual rep-

resentation learning [15] has attracted much attention in the

community and achieved breakthroughs and promising re-

sults. Among them, MoCo [16] and SimCLR [5] are two

representative methods emerged recently. Also, many inter-

esting works [27, 17, 1, 35, 32, 13, 4] have been proposed.

In this paper, we expose that the distillation process from

a self-supervised strong teacher to the efficient binary stu-

dent is more effective than learning binary student directly

using contrastive learning. A concurrent study SEED [11]

also employed self-supervised distillation loss, which can

be considered as a contemporaneous work of ours.

Self-supervised Learning on BNNs. To the best of our

knowledge, there are no existing works focusing on ex-

ploring BNNs with self-supervised scheme. The proposed

approach in this paper has quite appealing advantages on

this direction. We will elaborate and validate the proposed

method in the following sections. In the network quan-

tization area, Vogel et al. [37] presented a non-retraining

method for quantizing networks. This may be the closest

work to our study. However, they used the intermediate fea-

tures of the network based on the valid input samples to

supervise the quantization procedure, which is not related

to this work, also entirely different from the perspective of

our contrastive based or guided learning paradigms.

Figure 3. Visualization of the weight distributions in the first layer.

For clarity, we use green hyphens to mark the l1 norm of weights

in each channel. The red dotted line denotes the reference value

(0.025) of weights.

3. Optimizer Effects of SSL on BNNs

Saturation on Activations and Gradients. We first in-

troduce an activation saturation phenomenon in the self-

supervised BNNs scenario. When the absolute values of

activations exceed one, the corresponding gradients are sup-

pressed to be zero by the formulation of approximation in

the derivative of the sign function [9]. We study this ob-

servation for explaining why the optimizer used in self-

supervised methods, e.g., MoCo [16] with SGD performs

well for real-valued networks, but it is not optimal on binary

networks. This exploration can help us determine which op-

timizer is superior for our proposed self-supervised method.

Upon our observation, activation saturation emerges in most

layers of a binary network and it always affects the magni-

tude of gradients critically on different channels. As shown

in Fig. 2, we visualize the activation distributions of the first

binary convolution layer of our networks. We can observe

that, for the particular input batch images, a large number

of activations exceed the bounds of -1 and +1, which causes

the gradient passing those neurons to be zero-valued and

makes more weights less active.

Different Optimizer Effects. Adam adapts the learning

rate according to the historical values and amplifies the gra-

dients with small ones. The strength of Adam stems from

the regularization effect of second-order momentum, which

is crucial to revitalize the inactive weights, i.e., zero-valued

ones due to the activation saturation in BNNs as introduced

above. Interestingly, Adam can rouse most of the weights

to be active again with better generalization ability. The vi-

sualization of weight distribution between SGD and Adam

in the first layer is shown in Fig. 3. The red dotted lines

are references at the value of 0.025. The green poly-lines

are the l1 norm values of weights in each output channel

for better comparing to the numerical value between SGD

and Adam. It is obvious that Adam contains overwhelm-

ingly larger weights than SGD, which reflects the weights

optimized by SGD are not as good as those with Adam.

In contrast to the SGD optimizer that only accumulates

the first momentum, the adaptive method Adam, predomi-

nantly uses the accumulation in the second momentum to

amplify the learning rate regarding the gradients with small

historical values. SGD with momentum updating is used to
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Figure 4. A comparison of accuracy using SGD and Adam for

training backbone networks. The learning rates shown in the figure

are in linear evaluation stage and we explore the optimal configu-

rations for them to show the best capability of the two optimizers.

help accelerate and dampen oscillations on gradients, it can

be formulated as: mt = βmt−1 + η∇θJ(θ), θ = θ −mt,
where ∇θJ(θ) is the gradient and β is exponential rate. The

updating rule in Adam is defined as: θt+1 = θt−
η√
v̂t+ǫ

m̂t,

m̂t and v̂t denote exponential moving averages of the gra-

dient and the squared gradient, respectively. With m̂t draw-

ing v̂t of the uncentered gradient variance, the update value

is normalized to alleviate the discrepancy in the gradient.

Fig. 4 shows the accuracy comparisons on the linear evalu-

ation stage with SGD and Adam-trained backbones in self-

supervised learning. It can be observed that, with SGD

training, the accuracy decreases when learning rates be-

come smaller. This tendency is consistent with the real-

valued model. While with Adam, the accuracy increases

dramatically when using smaller learning rates, and the best

final accuracy is much higher than the best result from SGD.

4. Data Augmentation Adjustments

Our data augmentation strategies mainly inherit from the

baseline method MoCo V2 [6]. In real-valued networks,

heavier augmentations have been proven useful in most

cases of contrastive based self-supervised learning. How-

ever, considering the limited capability of BNNs to distin-

guish the same class from different shapes of images, in-

stead of involving more data augmentations, we decrease

the transformations’ probabilities of ColorJitter and Gaus-

sianBlur to facilitate the difficulty for BNNs to classify the

two images in the same class. Intriguingly, this lite data

augmentation strategy can bring an additional ∼1.0% im-

provement on ImageNet. This reflects that the properties of

BNNs are basically different from the real-valued networks,

thus the configurations are required to be reconsidered. It

also demonstrates the value of this study on exploring self-

supervised BNNs. More details are provided in Sec. 6.1.

5. Our Approach

Our roadmap of this paper has three main stages: Firstly,

we follow the real-valued self-supervised method with con-

trastive loss whereas replacing particular configurations to

fit the properties of BNNs, such as optimizer, data augmen-

tation, learning rate, etc. These strategies can produce 5.5%

improvement over vanilla MoCo V2 baseline. Then, we

propose to adopt an additional guided learning method to

enforce representations of BNNs to be similar to the real-

valued reference network. This simple strategy can bring

an additional ∼4% improvement. Lastly, we remove con-

trastive loss and solely optimize BNNs with the guided

learning paradigm and the performance is further increased

by 5.5%. Several motivations and insights of our proposed

method are discussed in the following sections.

5.1. Preliminaries

BNNs aim to learn networks that both weights and ac-

tivations are with discrete values in {-1, +1}. In the for-

ward propagation of training, the real-valued activations

will be binarized by the sign function: Ab = Sign(Ar) =
{

−1 if Ar < 0,
+1 otherwise.

where Ar is the real-valued acti-

vation of the previous layers calculated from the binary

or real-valued convolutional operations. Ab is the bina-

rized activation. The real-valued weights in the model

will be binarized through: Wb =
||Wr||l1

n Sign(Wr) =
{

−
||Wr||l1

n if Wr < 0,

+
||Wr||l1

n otherwise.
where Wr is the real-valued

weights that are maintained as latent parameters to accumu-

late the tiny gradients, n is #weight in each channel. Wb is

the weights after binarization. The binary weights will be

updated through multiplying the sign of latent real-valued

weights and the channel-wise l1 norm ( 1
n ||Wr||l1 ). The

gradient g is calculated with respect to binary weights Wb:

gt = ∇Wbt
J(Wbt) · 1|Wrt

|<1, where t is #iteration.

Training BNNs is a challenging task since the gradient

for optimizing parameters in the network is approximated

and the capacity of models for memorizing all data distri-

butions is also limited. It is thus worthwhile to discuss that

as the sign function has a bounded range, the approxima-

tion to the derivative of the sign operation will suffer from

a vanished gradient issue when the activations exceed the

effective gradient range, i.e., [−1, 1].

5.2. Real­Value Guided Distillation

Self-supervised Contrastive Loss. The conventional con-

trastive learning uses a standard log-softmax function to ap-

ply one positive sample out of K negative samples and it

predicts the probability of data distribution as:

LCL = − log
exp(s(vI ,vÎ)/τ)

exp(s(vI ,vÎ)/τ)+
∑

Î′∈Neg
exp(s(vI ,vÎ′)/τ)

(1)

where
(

vI ,vÎ

)

are two random “views” of the same image

under random data augmentation. s is the cosine similarity

or other matching function for measuring the similarity of
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(1) Shallow layer (2) Middle layer (3) Deep layer

binary real-valued binary real-valued binary real-valued

Figure 5. Illustration of activation distributions on shallow, middle and deep layers of self-supervised binary and real-valued networks. The

input image is in the upper left corner of the first subfigure. Interestingly, we observe that at the shallow layer, the semantic representations

between these two models are visually similar, while on the middle and deep layers, real-valued representations obviously contain richer

information than BNNs in the activation maps, which is beneficial for learning good latent features. This phenomenon motivates us to

propose a method for calibrating the high-level distribution of BNNs in a self-supervised learning scenario to arouse its potential.

Contrastive

Loss

Contrastive

Loss

inherit Step 1 – Self-supervised Partial Binarizing

Step 2 – Self-supervised Complete Binarizing

Figure 6. Illustration of progressive binarization. We take the con-

trastive based framework as an example, while it is also feasible

for the proposed guided learning solely framework.

two representations. τ is a temperature hyper-parameter.

Guided with KL-divergence Loss. KL-divergence loss is

used to measure the degree of how one probability distribu-

tion is different from another reference one. We train the

BNNs Biθ by minimizing the KL-divergence between its

output pBiθ (xi) and the representation pRealθ (xi) generated

by a self-supervised real-valued reference model. The loss

function can be formulated as:

LKL(Biθ) = −
1

N

N
∑

i=1

(pRealθ (xi)/τ) log(
pBiθ (xi)/τ

pRealθ (xi)/τ
)

(2)

where N is the number of samples. τ is a temperature

hyper-parameter. Note that the data augmentation strategy

should be the same for both binary and real-valued models.

In practice, we only optimize with cross-entropy loss as:

LCE(Biθ) = −
1

N

N
∑

i=1

(pRealθ (xi)/τ) log(p
Biθ (xi)/τ)

(3)

which is equivalent to LKL following MEAL [31, 33].

Initial status
Intermediate

status

Final status

Figure 7. Illustration of binarization with intermediate status to

facilitate self-supervised learning difficulties.

5.3. Progressive Binarization

As illustrated in Fig. 5, there are many differences on

activation distributions between binary and real-valued net-

works across middle and high-level layers, and real-valued

activations always contain more fine-grained details and se-

mantic information of instance and background on repre-

sentation distributions. As our purpose is to recover the dis-

tributions from real-valued networks to binary networks, we

propose to adopt a multi-step binarization procedure. The

motivation behind this design is straight-forward, as shown

in Fig. 7, directly recovering distribution from real-valued

networks to binary networks is challenging, to facilitate the

difficulty of optimization, we first keep partial parameters

or weights in the target model to be real-valued, and then

binarize them progressively. This strategy is somewhat sim-

ilar to [23, 21], while we emphasize that all these previous

studies lie in supervised learning, here our objective is a

self-supervised contrastive loss or distillation loss. Hence

the learning procedure and hyper-parameter design are en-

tirely different from prior works.

In our method, the initial status is a complete real-valued

network, the intermediate status is a partially binarized net-

work with real-valued weights and binary activations, as

shown in Fig. 6. We train such a network first to obtain

the real-valued parameters, then we reuse these pre-trained

parameters in the final completely binary models. Since the

binarization is modeled by the sign function during train-

ing, hence the binary models can inherit the real-valued pa-

rameters as the initialization. This study shows that such a
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Figure 8. Illustration of three strategies of our frameworks. “CL” denotes the conventional contrastive learning and “KL” denotes Kull-

back–Leibler divergence, i.e. the proposed guided learning. In each subfigure, solid and dashed boxes represent freezing and non-freezing

parameters in training, respectively.

Real-valued

Real-valued&

'()1

'()2

CL

BNN'()2
KL

Stage 1

Stage 2

3

Figure 9. Illustration of online and offline training of self-

supervised real-valued reference network. This is also a more de-

tailed explanation of ③ in Fig. 8.

multi-step binarization can facilitate optimization for self-

supervised training and obtain significant improvement.

Weight Decay Strategy. Weight decay is a widely used

technique for preventing networks from overfitting. We ob-

serve that it is necessary to adopt an appropriate weight

decay strategy in different steps of our multi-step training.

Since the intermediate status is only a transitional phase,

the existing real-valued weights can make model’s capac-

ity larger than the final completely-binary status, thus the

weight decay is not employed in the first step (or choosing

a smaller value of weight decay in this phase). For the sec-

ond step, weight decay is adopted to avoid overfitting.

5.4. What Happens If Removing Contrastive Loss

Since adding guided learning term brings a substantial

improvement, we are curious whether guided learning is

capable of learning good representations solely. Our ob-

servation is surprising, removing contrastive loss gives an

additional 5.5% improvement. We conjecture this is be-

cause contrastive and guided learning are basically optimiz-

ing with different directions. Guided learning is mimicking

the real-valued high-quality representation and recovering

the knowledge stored in it, if the reference model is strong

enough, the target BNNs can be extremely well-performing,

while contrastive loss learns from data itself which explores

different patterns (e.g., instance discrimination, coloriza-

tion, etc.) from guided learning. Therefore, in this work

we study the following three schemes, as shown in Fig. 8:

①: Enhanced baseline of contrastive learning.

②: Contrastive + guided learning (distillation).

③: Guided learning (distillation) only.

Where is the self-supervised real-valued network from?

There are two ways to obtain the real-valued reference net-

work: (1) online training with the target BNN simultane-

ously; (2) offline pretraining. As shown in Fig. 9, if we train

“stage 1” and “stage 2” together, this is the online training

scheme and the real-valued network will be optimized to-

gether with binary network. However, the learning cost will

increase significantly since in each individual run we have

to include an additional real-valued branch. A simpler and

more efficient way is to train “stage 1” offline and in ad-

vance, then reuse it for all experiments. The offline strategy

is utilized in this work of all our experiments. Based on

the perspective of MEAL V2 [33] that better teachers usu-

ally distill better students, we choose MoCo V2 800-ep pre-

trained real-valued ResNet-50 as our strong teacher model.

Algorithm 1 Online and offline training for self-supervised

real-valued reference and target binary networks.

Preparation:

1: x1 = aug1(x) ⊲ x is the input image

2: x2 = aug2(x)
3: p

Realθ
1

= fRealθ (x1) ⊲ fRealθ is the real-valued network

4: p
Realθ
2

= fRealθ (x2)
5: p

Biθ = fBiθ (x2) ⊲ fBiθ is the binary network

Online Scheme:

1: L(fBiθ , fRealθ ) = LCL(p
Realθ
1

,p
Realθ
2

) + LKL(p
Biθ ,p

Realθ
2

)

Offline Scheme:

1: Stage 1: L(fRealθ ) = LCL(p
Realθ
1

,p
Realθ
2

)

2: p
Realθ
2

= fRealθ (x2)
3: p

Biθ = fBiθ (x2)
4: fRealθ = fRealθ .detach() ⊲ stop-gradient()

5: Stage 2: L(fBiθ ) = LKL(p
Biθ ,p

Realθ
2

)

6. Experiments

In this section, we first introduce the datasets we used

and implementation details for self-supervised pre-training,

linear evaluation and transfer learning. Then, we pro-

vide extensive ablation studies for each component in our

method. Following that, we show our main and transfer

results. Lastly, we illustrate activation visualizations to fur-

ther demonstrate the effectiveness of our proposed method.

6.1. Datasets and Implementation Details

Datasets. Our experiments are conducted on the widely-

used large-scale ImageNet 2012 dataset [8], which contains

1,000 classes with a total number of 1.2 million training im-
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ages and 50,000 images for validation. For transfer learn-

ing, we use PASCAL VOC2007 [10], CUB200-2011 [38],

Birdsnap [2] and CIFAR-10/100 [19] benchmarks.

Data Augmentation. As mentioned above, our basic data

augmentation follows MoCo V2 [6] with no additional op-

erations, but we reduce the probability of ColorJitter from

0.8 to 0.6 and GaussianBlur from 0.5 to 0.2. We apply this

lite data augmentation strategy to all of our experiments.

Self-supervised Pre-training. We adopt MoCo V2 [6] as

the baseline self-supervised method. For our distillation so-

lution, we use none of momentum update, shuffling BN, a

memory bank (negative pairs) and contrastive loss. The ini-

tial learning rates are 3×10−2 for SGD following [6] and

3×10−4 for Adam, and are reduced with a linear decay

through lr = (initial lr) × (1 - epoch / total epoch). τ is set

to 0.2 for both contrastive and distillation losses. If no oth-

erwise specified, all networks are trained with 200 epochs.

Linear Evaluation. We freeze all the parameters in the

backbone and train a supervised linear classifier using the

conventional self-supervised evaluation protocol [6, 5, 32].

We train with smaller lr and 100 epochs, and other hyper-

parameters are following the baseline method [6].

Transfer Learning. We fine-tune the entire network us-

ing the weights of our learned models as initializations. We

train for 180 epochs with a batch size of 128 and an initial

learning rate of 0.01. On PASCAL VOC multi-object clas-

sification task, we adopt sigmoid cross-entropy instead of

softmax one. We use SGD with a momentum parameter of

0.9 and weight decay of 0.0001. We perform standard ran-

dom crops with resize and flips as data augmentation during

fine-tuning. The training image size is 224×224. At test

time, we resize images to 256 pixels and take a 224×224

center crop. When freezing backbone, we solely train the

last linear layer as the standard linear evaluation protocol.

6.2. Ablation Studies

Optimizers. We study the standard SGD and adaptive opti-

mizer Adam in the pre-training stage. Our results in Fig. 4

shows that Adam can bring about 2.8% improvement.

Learning Rate Scheduler. Here the learning rate scheduler

indicates in the linear evaluation stage. In the training stage,

we use a uniform value of 3×10−4 as presented above. The

results are shown in Table 2, we provide results of our three

schemes on the lr range from 30 to 0.05. It can be observed

0.1 is the optimal choice for the Adam optimized models.

Data Augmentation Effects. We conducted a comparison

using our proposed lite data augmentation and MoCo V2

vanilla strategy, and the same contrastive loss and Adam

optimizer are used here. The Top-1/5 results are neatly im-

proved from 49.402/73.152 to 50.410/73.968 on ImageNet.

Multi-step Binarization. Our results are shown in Table 3,

the proposed multi-step strategy generally obtains better ac-

curacy. Whereas, the improvement seems to decrease when

Table 2. One-step results with different lr in linear evaluation.

lr ① ② ③

30 44.248 47.918 54.518

20 44.454 48.570 54.986

10 45.662 50.054 56.050

5 47.942 51.808 57.868

1 49.702 53.324 59.838

0.5 49.914 53.468 59.968

0.1 49.870 53.484 60.418

0.05 49.228 52.926 60.304

Table 3. Comparison of one-step and multi-step binarization.

① ② ③

Complete in one step 49.914 53.484 60.418

Multi-step binarization 52.452 56.022 61.506

Table 4. Comparison of the Top-1 accuracy on ImageNet with su-

pervised and self-supervised state-of-the-art methods.

Binary Methods #Epoch
BOPs FLOPs OPs Acc (%)

(×109) (×108) (×108) Top-1

Supervised Learning:

BNNs [7] – 1.70 1.20 1.47 42.2

XNOR-Net [30] – 1.70 1.41 1.67 51.2

MobiNet [28] – – – 0.52 54.4

Bi-RealNet-18 [22] – 1.68 1.39 1.63 56.4

PCNN [14] – – – 1.63 57.3

CI-BCNN [39] – – – 1.63 59.9

Binary MobileNet [29] – – – 1.54 60.9

Real-to-Binary [23] – 1.68 1.56 1.83 65.4

MeliusNet29 [3] – 5.47 1.29 2.14 65.8

ReActNet [21] – 4.82 0.12 0.87 69.4

Self-Supervised Learning:

MoCo V2 [6] (baseline) 200 4.82 0.12 0.87 46.9

Ours

① 200 4.82 0.12 0.87 52.5

② 200 4.82 0.12 0.87 56.0

③ 200 4.82 0.12 0.87 61.5

the base performance becomes higher, i.e., from ① to ③.

Different Architectures and Strategies. The results with

different backbones are shown in Table 1, we choose XNOR

Net [30], Bi-Real Net [22] and ReActNet [21] as our back-

bones for this ablation study. It can be seen that we obtain

substantial improvement across all of these architectures.

6.3. Main Results

A summary of our main results is shown in Table 4, we

adopt ReActNet as our backbone network. Comparing to

the self-supervised baseline MoCo V2, our method outper-

forms it by 14.6% with the same training epochs. Promis-

ingly, it can be observed that our results are even compara-

ble to some recently proposed supervised methods, such as

Bi-RealNet-18 [22], CI-BCNN [39] while only containing

about 1/2 OPs to them. The results demonstrate the great

potential of our self-supervised BNN method on real-world

applications where annotation and memory are both scarce.

Visualization. To better understand where the boost comes

from in our distillation method, we further visualize the ac-

tivation maps of contrastive and guided learned models at

the same level of layers. As shown in Fig. 10, in each group,
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Table 5. Transfer accuracy on the classification task.

VOC2007 CUB200-2011 Birdsnap CIFAR-10 CIFAR-100

From Scratch (Real-valued) 72.7 29.8 46.2 93.1 70.9

From Scratch (Binary) 50.0 – – 65.9 37.2

Fine-tune:

MoCo V2 Real-valued (baseline 1) 89.6 67.3 63.6 95.3 79.3

MoCo V2 Binary (baseline 2) 81.0 34.4 34.0 89.9 69.5

Ours (①) 82.3 38.2 38.0 91.5 71.9

Ours (②) 83.5 40.5 39.2 91.3 72.3

Ours (③) 86.9 50.1 45.7 92.7 74.3

Freeze backbone:

MoCo V2 Real-valued (baseline 1) 86.5 51.5 22.8 86.9 60.7

MoCo V2 Binary (baseline 2) 79.8 23.3 20.3 79.3 56.7

Ours (①) 81.7 33.1 21.9 80.4 58.7

Ours (②) 83.1 38.4 25.6 80.7 58.8

Ours (③) 86.4 47.5 34.1 82.7 61.9

contrastive guided real-valued
Figure 10. Illustration of contrastive and guided learned activation

maps from the same layer of models. Visually, it can be identi-

fied that the quality of activation maps from contrastive learning

to guided learning is improved with more details.

we visualize the first 16 channels in those layers. Visually,

it can be recognized that the quality of activation maps from

contrastive learning to guided learning is improved signif-

icantly with more details, and guided learning results are

more close to the real-valued ones.

More Training Epochs. In real-valued scenario of self-

supervised learning, more training budget always obtains a

significant improvement. For example, SwAV [4] achieves

0.7% gain when training from 200 to 400 epochs. How-

ever, we also train our model with 400 epochs but we found

the improvement is marginal (from 61.5% to 61.8%). We

conjecture the reason is that our distillation based frame-

work utilizes neither positive nor negative pairs, the binary

student basically recovers the teacher’s capability, so it is

bounded by teacher’s ability rather than the training budget.

Training Cost Analysis. Compared to the self-supervised

baseline method, our main extra training cost is the learn-

ing procedure of generating the self-supervised real-valued

model. As we adopt the offline strategy in our framework,

we only need to train it once, hence if not considering this

pre-training process, our total computational cost is nearly

the same as the baseline MoCo V2.

Why Solely Using Distillation Loss is Better Than Com-

bining with Contrastive Loss for Self-supervised BNNs.

Intuitively, distillation loss forces BNNs to mimic the ref-

erence network’s predictive probability, while contrastive

learning tends to discover the latent patterns from the data

itself. Our Fig. 10 evidences that in binary scenario, con-

trastive loss is relatively weaker than distillation loss to

learn fine-grained representations, and the semantics are

also vague. Combining both of them may not be an optimal

solution due to the discrepancy of the optimization spaces.

Transfer Learning. It is critical to further verify the trans-

ferability of our learned parameters from different learn-

ing schemes. We follow the conventional self-supervised

fine-tuning evaluation protocol for this study. The summary

of our transfer results is provided in Table 5, all the net-

work structures in this table are MobileNet-like ReActNet.

Our results of ① can be regarded as the stronger contrastive

baseline. “From scratch” denotes we train networks with

the randomly initialized parameters and we show them here

for the reference purpose. Generally, our transfer results

are consistent with their linear evaluation performance on

ImageNet. In particular, the improvement from ② to ③ is

dramatically higher than that from ① to ② across different

datasets. Moreover, we observe our best result is even close

to the self-supervised real-valued baseline.

7. Conclusion

It is worthwhile considering how to train a robust and

accurate self-supervised binary network. In this work, we

have summarized and explained several behaviors observed

while training such networks without labels. We focused on

how optimizer, learning rate scheduler and data augmenta-

tion encourage representations and affect the performance

in building a base BNN framework. We further proposed

a guided learning paradigm enabled by a real-valued refer-

ence network to distill the target binary network training,

and exposed such learning strategy can obtain better results

comparing to both the contrastive learning and even super-

vised learning BNNs scheme. We attribute the proposed su-

perior training scheme to its ability of mimicking the high

quality of the reference network’s representation. Finally,

we performed extensive ablation experiments on each com-

ponent of our method. Moreover, our trained parameters

can be crucial for many downstream tasks that depend on a

good representation, such as fine-grained recognition, etc.
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