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Abstract

Panoptic segmentation aims to partition an image to ob-

ject instances and semantic content for thing and stuff cat-

egories, respectively. To date, learning weakly supervised

panoptic segmentation (WSPS) with only image-level la-

bels remains unexplored. In this paper, we propose an ef-

ficient jointly thing-and-stuff mining (JTSM) framework for

WSPS. To this end, we design a novel mask of interest pool-

ing (MoIPool) to extract fixed-size pixel-accurate feature

maps of arbitrary-shape segmentations. MoIPool enables

a panoptic mining branch to leverage multiple instance

learning (MIL) to recognize things and stuff segmentation

in a unified manner. We further refine segmentation masks

with parallel instance and semantic segmentation branches

via self-training, which collaborates the mined masks from

panoptic mining with bottom-up object evidence as pseudo-

ground-truth labels to improve spatial coherence and con-

tour localization. Experimental results demonstrate the ef-

fectiveness of JTSM on PASCAL VOC and MS COCO. As

a by-product, we achieve competitive results for weakly su-

pervised object detection and instance segmentation. This

work is a first step towards tackling challenge panoptic seg-

mentation task with only image-level labels.

1. Introduction

Panoptic segmentation focuses on simultaneously seg-

menting all object instances and semantic content in an

image. It is one of the most important tasks in computer

*Corresponding author.

Figure 1: The overall flowchart of our JTSM framework.

vision due to its great academic values and industrial ap-

plications. Recent rapid progress on panoptic segmenta-

tion has been driven by combining the strength of instance

segmentation and semantic segmentation tasks via a multi-

branch scheme. However, these deep models heavily rely

on a large amount of training data with expensive instance-

level and pixel-wise annotations. Collecting such training

data has been a particular bottleneck on the way of apply-

ing panoptic segmentation to real-world applications, e.g.,

autonomous driving, robotics, and image editing, where la-

belling each pixel for numerous images is particularly time-

consuming. For example, fully annotating a single image in

Cityscapes [1] required more than 1.5 hours on average.

One way to reduce the requirement of strong supervision

is the weakly supervised panoptic segmentation (WSPS),

which seeks to use weak annotations for model training. To

our best knowledge, the only previous work that attempted

to address WSPS problem is that of [2], which requires

bounding boxes for thing categories and image-level tags

for stuff during training. However, for applications needing

very large-scale image sets and categories, bounding-box-

level annotations still require enormous human effort. It is
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thus desirable to learn panoptic segmentation from large-

scale datasets with weaker supervision.

We focus on the most extreme case of WSPS where only

image-level labels are available, and no instance-level an-

notations are involved during training. To date, none of the

existing work further investigates the problem of learning

panoptic segmentation with only image-level labels. An in-

tuitive and strong baseline method is to perform weakly su-

pervised instance segmentation (WSIS) and weakly super-

vised semantic segmentation (WSSS) independently, and

use heuristic post-processing method [3] to merge their re-

sults. However, the straightforward combination of such

two techniques disregards the underlying relationship and

fails to borrow rich contextual cues between things and

stuff. As context information is critical to recognize and

localize the objects, and foreground objects provide com-

plementary cues to assist background understanding [4, 5].

In this paper, we propose a Joint Thing-and-Stuff Min-

ing (JTSM) framework to learn panoptic segmentation with

only image-level labels, as illustrated in Fig. 1. Our motiva-

tion is to consider foreground things and background stuff

as uniform object instances in form of segmentation masks.

Particularly, each connected component of stuff content is

viewed as an individual instance, which shares the same

spirit as thing objects. Different to the baseline that frames

the two related tasks at architectural level via a multi-branch

scheme, the main advantage of JMTS is to model the corre-

lations between objects and background at instance level.

To this end, we design a novel mask of interest pool-

ing (MoIPool) to extract fixed-size pixel-accurate feature

maps for arbitrary-shape segmentations, which provides a

uniform representational power for things and stuff. Thus,

given a set of segment proposals, a panoptic mining branch

leverages multiple instance learning (MIL) to mine all tar-

get categories in a unified manner. We further introduce two

schemes to refine segmentation masks. First, we collaborate

the mined results from panoptic mining with bottom-up ob-

ject evidence to improve spatial coherence and contour lo-

calization. Second, we introduce self-training to refine seg-

mentation masks with parallel instance and semantic seg-

mentation branches. With pseudo-ground-truth masks from

its preceding branch, the discriminatory power of the im-

age segmentation can be enhanced. Experimental results

demonstrate the effectiveness of our proposed JTSM com-

pared to strong baselines on PASCAL VOC [6] and MS

COCO [7]. As a by-product, we also achieve competitive

results for both weakly supervised object detection and in-

stance segmentation tasks.

The contributions of this work are three folds:

• We propose JTSM to jointly segment things and stuff

for weakly supervised panoptic segmentation in a uni-

fied framework. To our best knowledge, this work

makes the first attempt to tackle challenge panoptic

segmentation task with only image-level labels.

• We design a novel mask of interest pooling (MoIPool)

to compute fixed-size pixel-accurate feature maps of

arbitrary-shape segmentations, which enables JTSM

to leverage multiple instance learning (MIL) to mine

thing and stuff with a uniform representational power.

• Self-training is further introduced to refine the image

segmentation with two parallel instance and semantic

segmentation branches, which are supervised by the

mined results and bottom-up object evidence to im-

prove spatial coherence and contour localization.

2. Related Work

Weakly Supervised Panoptic Segmentation (WSPS).

Although learning panoptic segmentation with only image-

level labels is challenging without any existing work in pre-

vious literature, one attempt with bounding-box-level anno-

tations has been made [2]. Our work has significant differ-

ences to [2]. First, method in [2] required bounding-box su-

pervision and fully-labelled examples of some categories.

We use only image-level labels to learn panoptic segmen-

tation for the first time. Second, they [2] heavily relied on

external models to pre-compute pseudo-ground-truth masks

for thing and stuff categories independently, which failed to

model the intrinsic interaction between semantic segmen-

tation and instance segmentation. However, our method

simultaneously segments all target categories in a unified

manner to achieve a holistic understanding of an image.

Weakly Supervised Object Detection (WSOD).

WSOD aims to predict object instance in the form of

bounding boxes with weak supervision. Recent widely-

used WSOD alternates between localizing object instances

and training appearance representation via multiple in-

stance learning (MIL). For example, WSDDN [8] selected

box proposals by parallel detection and classification

branches in deep convolutional neural networks (CNNs).

This method is extended by leveraging contextual informa-

tion [9], gradient map [10, 11], attention mechanism [12],

semantic segmentation [13, 14, 15] to suppress low-quality

box proposals. Some work in [16, 17, 18, 19] treated

the top-scoring proposals as supervision to train multiple

instance refinement classifiers. Other different strate-

gies [20, 21, 22, 23, 24, 25, 26] were also proposed to

generate pseudo-ground-truth boxes and assign labels to

box proposals. And the above framework was further

improved by min-entropy prior [27, 28], continuation

MIL [29], utilizing uncertainty [30, 31, 32], knowledge

distillation [33], spatial likelihood voting [34], objectness

consistent [35, 36] and generative adversarial learning [37].

Methods in [38, 39, 40] trained object detection systems

from different supervisions.
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Figure 2: The figure illustrates the overall architecture of JTSM. Given an image, panoptic mining branch jointly segments

things and stuff in a unified manner, which are refined by instance segmentation and semantic segmentation, respectively.

Weakly Supervised Instance Segmentation (WSIS).

WSIS methods can be categorized into two groups. The

first group utilizes bounding-box annotations as weak su-

pervision to training WSIS models. Most methods in this

group used box-driven segmentation [41, 42] or multiple

instance learning [43] to generate instance-level pseudo-

ground-truth labels, which are then refined by recursive

training [41, 2]. The second group further challenges WSIS

problem with only image-level supervision. The early

work [44, 45] utilized class response maps to capture vi-

sual cues via back-propagation, which are used to generate

instance masks from object segment proposals. WISE [46]

and IRNet [47] generated coarse masks from class activa-

tion maps [48], which is regarded as pseudo-ground-truth

labels to train fully supervised models. S4Net [49] and

LIID [50] further leveraged graph partitioning algorithms to

learn pseudo-ground-truth labels. Label-PEnet [51] trans-

form image-level labels to pixel-wise predictions with mul-

tiple cascaded modules and curriculum learning strategy.

Kim et al. [52] proposed multi-task community learning to

construct a positive feedback loop and generates pseudo-

ground-truths masks using class activation maps [48].

Weakly Supervised Semantic Segmentation (WSSS).

Recently, lots of WSSS methods have been proposed to al-

leviate labelling cost. Many early work [53, 54, 55, 44]

leveraged CNN built-in pixel-level cues and constraint pri-

ors to learn segmentation masks. Pathak et al. [53] proposed

a constrained CNN, which applied linear constraints on the

structured output space of pixel labels. Saleh et al. [55] ex-

tracted the built-in masks directly from the hidden layer ac-

tivation and incorporated the resulting masks via a weakly

supervised loss. Some works derive category-wise saliency

maps from intermediate feature maps of CNNs to estimate

the segmentation masks [54, 44]. Recently, WSSS meth-

ods [56, 57, 58, 59] often treat initial object localization

cues as pseudo supervision and train fully supervised seg-

mentation models. Popular methods [60, 61, 49, 62, 63]

leveraged object saliency maps and feature activation maps

to provide complimentary information. Many regulariza-

tions [56, 64, 65, 66, 63] were proposed to improve the

segmentation results. There are also works [67, 68, 69,

70, 71] that focused on improving feature learning in it-

erative frameworks. Various approaches based on iter-

atively mining common feature [72, 73], region refine-

ment [59, 74], random-walk label propagation [75], dilated

convolution [57] and pixel-level semantic affinity [58] were

proposed. Work in [73, 76] also explored object boundaries

to refine localization maps.

3. The Proposed Method

3.1. Overall Framework

The overview of our proposed Joint Thing-and-Stuff

Mining (JTSM) framework is illustrated in Fig. 2 We con-

struct a parallel multi-branch architecture for panoptic min-

ing, instance segmentation and semantic segmentation, re-
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spectively. Each branch takes full-image feature maps

from the backbone network as input. First, panoptic min-

ing branch leverages multiple-instance learning (MIL) [77]

to jointly segment thing and stuff object with multiple

panoptic refinement heads. Particularly, we design a novel

MoIPool to produce fixed-size pixel-accurate convolutional

feature maps for segment proposals, which are generated

by unsupervised proposal generation methods [78, 79], Sec-

ond, mined masks from panoptic mining are integrated with

bottom-up object evidence to improve spatial coherence and

contour localization. Third, parallel instance and semantic

segmentation branches further refine thing and stuff masks

by taking the predictions as supervision. During training,

we have the following objective function

L = LPM + LIS + LSS, (1)

where LPM is the loss functions of panoptic mining branch,

LIS and LSS are the loss functions for instance and semantic

segmentation branches, respectively.

3.2. Joint Thing­and­Stuff Mining

The panoptic mining branch aims to jointly segment

countable thing instances and uncountable stuff content in

a unified manner. Recall that background stuff can be par-

titioned into a set of connected components. Thus, we con-

sider each connected component of background as an in-

dividual instance, which shares the same spirit as count-

able objects. Although distinguishing disconnected com-

ponents for background is unnecessary, all things and stuff

are viewed as uniform object instances. To this end, we fol-

low the MIL pipeline in deep convolutional networks and

convert two-stream WSDDN [8] and OICR [18] algorithms

to recognize instances for all categories in a unified manner.

Formally, given an image I and corresponding image-

level labels t = [t1, t2, . . . , tnc ] during training, JTSM

aims to estimate segmentation mask for each object instance

in this image. Let t be a fixed-length binary vector, where

tc = 1 denotes that image I contains the cth target cate-

gory, and otherwise, tc = 0. And nc is the total number

of thing and stuff categories. The backbone network first

outputs full-image feature maps Φf of input I . Then we

use MoIPool layer (discussed later) to compute fixed-size

pooled feature maps Φp for segment proposals, which are

followed by two fully-connected layers with ReLu activa-

tion and dropout layer to extract final proposal features. Af-

ter that, a MIL head forks the proposal features into two

streams to produce two score matrices SC, SD ∈ R
np

×nc

by another two fully-connected layers, respectively, where

np is the number of proposals. Finally, we use the element-

wise product to compute the final proposal score matrix as

SMIL = σ(SC) ⊙ σ((SD)T )T , where σ(·) is the softmax

function. To train the MIL head with only image-level su-

pervision, a sum pooling is applied to acquire image-level

multi-label classification scores as yc =
∑np

p=1 S
MIL
pc . Then

we obtain a multi-label cross-entropy objective function

LMIL =−

nc

∑

c=1

{

tc logyc + (1− tc) log(1− yc)
}

.

(2)

To further reduce mis-recognize, we refine MIL scores

via multiple panoptic refinement heads, each of which con-

tains a single fully-connected layer. For the rth refinement

head, it reuses proposal features as input and produces new

classification scores Sr ∈ ℜnp
×(nc+1), where nc + 1 indi-

cates the nc object categories and 1 background category.

During training, for the rth head and the cth category that

tc = 1, the highest-score bounding box from previous pre-

diction Sr−1 is selected as pseudo-ground-truth labels and

assigns positive/negative labels for the rest segment propos-

als. We also set S0 = SMIL. Thus, the corresponding

panoptic refinement loss is

Lr
PR = −

np

∑

p=1

ytr
p
log

( exp(Sr
ptr

p

)
∑

j log(S
r
pj)

)

, (3)

where trp denotes the classification targets for the pth seg-

ment proposal in the rth head, and Sr
ptr

p

is the corresponding

prediction score. Thus, LPR is the softmax cross-entropy

loss weighted by image-level classification scores ytr
p
.

With above definitions, the overall objective function for

panoptic mining branch is defined as

LPM = LMIL +

nr

∑

r=1

Lr
PR, (4)

where nr is the number of panoptic refinement heads. Dur-

ing testing, the average output of all heads is used.

3.3. Mask of Interest Pooling (MoIPool)

We design a novel Mask of Interest Pooling to com-

pute fixed-size feature maps for segment proposals. Dif-

ferent to RoIPool [80] and RoIAlign [81] that require rect-

angle proposals, i.e., bounding boxes, MoIPool enables to

extract pixel-accurate feature maps of arbitrary-shape seg-

mentations. To this end, we introduce two efficient variants:

shape-interpolation and shape-invariant MoIPool.

The first variant is shape-interpolation MoIPool, which

only applies the pooling operation inside the segment pro-

posals. Our intuition is that if non-rigid segmentations

are transformed into rigid regions, we can reuse traditional

methods, e.g., RoIPool and RoIAlign. Therefore, we first

interpolate segmentations to rectangle regions by thin plate

splines (TPS) algorithm, which has been widely used as

the non-rigid transformation model in image alignment and

shape matching. TPS produces smooth surfaces, which are
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infinitely differentiable. Despite its simplicity, experiment

results show that shape-interpolation MoIPool achieves

competitive performance compared to shape-invariant one.

We further design a shape-invariant MoIPool to maintain

accurate contour information of segment proposals. Sup-

pose that the backbone network extracts a full-image fea-

ture map Φf ∈ ℜhf
×wf

, which has a total stride size s. We

omit the channels of feature maps for simplification. Each

segment proposal is defined by a binary mask M , which

has the same spatial size as the input image I . We can eas-

ily obtain the corresponding bounding boxes B of segment

proposal, which is defined by a four-tuple (xb, yb, wb, hb)
that specifies its top-left corner (yb, xb) and its width and

height (wb, hb). We also denote the pooled proposal feature

map as Φp ∈ ℜhp
×wp

, where hp×wp is the pre-difined spa-

tial size of pooled features. The proposed MoIPool works

by dividing the hb/s×wb/s cropped proposal feature map

into a hp × wp grid of sub-windows of approximate size

hb/s/hp×wb/s/wp. Maximum value in each sub-window

is assigned into the corresponding output grid cell as

Φp
uv = max(ΩijΦ

f
ij),

i ∈
[

yb/s+ ⌊hb/s · u/hp⌋, yb/s+ ⌈hb/s · (u+ 1)/hp⌉
]

,
j ∈

[

xb/s+ ⌊wb/s · v/wp⌋, xb/s+ ⌈wb/s · (v + 1)/wp⌉
]

,
(5)

where Ω ∈ ℜhf
×wf

is an indicator matrix, which equals

1 if the corresponding elements in proposal feature maps

are available for max-pooling. Given the ith row and the

jth column element in proposal feature maps, we crop the

corresponding sub-window in binary mask M ∈ ℜhm
×wm

of segment proposals, and acquire maximum values as

Ωuv = maxMij

i ∈ [⌊u · s⌋, ⌈(u+ 1) · s⌉], j ∈ [⌊v · s⌋, ⌈(v + 1) · s⌉].
(6)

However, the above definition fills activations to zeros if

corresponding sub-windows do not belong to segment pro-

posals. To align the feature activations among different pro-

posals, we further introduce a compensation term

ψ =
hpwp

∑

ij Φ
p
. (7)

Thus, the final pooled proposal features are scaled up as

Φ̂p = ψΦp. (8)

In fact, the proposed MoIPool can be regarded as a gener-

alization of RoIPool. As MoIPool degenerates to RoIPool

when the segment proposal is a rectangle window.

3.4. Segmentation Refinement

As the quality of segmentation results from panoptic

mining branch heavily rely on segment proposals, we fur-

ther take the advantage of self-train to refine masks. To

do this we introduce two parallel instance and semantic

segmentation branches, which are supervised by pseudo-

ground-truth masks generated from panoptic mining.

In details, instance segmentation branch consists of 4
convolutional layers with 3× 3 kernels and 256 channels to

extract feature maps, which followed by a deconvolutional

layer with 2 × 2 kernels and a final prediction layer with

1 × 1 kernels. Instance segmentation takes proposal fea-

tures Φ̄p from RoIAlign [81] as input and produces refined

masks M IS for all nt thing categories. Thus, given a set of

box proposals, instance segmentation objective function is

LIS =

np

∑

p=1

nt

∑

c=1

[tISp = c]ytIS
p
LBCE(M

IS
pc , M̂

IS
pc ), (9)

where M IS
pc and M̂ IS

p are the predicted and target masks for

the pth proposals and the cth category, and tISp is the pseudo

category labels for the pth proposals. And LBCE is the bi-

nary cross-entropy loss. As mask head is class-specific, we

only compute losses for categories existed in images, which

are then weighted by the image-level prediction scores ytIS
p

.

Semantic segmentation branch consists of two convolu-

tional layers with 3× 3 kernels and 256 channels to extract

feature maps and a final prediction layer with 1× 1 kernels.

Different to instance segmentation, semantic segmentation

branch takes full-image feature maps Φf as input and out-

puts refined masks MSS for each stuff category. Thus, the

semantic segmentation objective function is defined as

LSS =LCE(M
SS, M̂SS), (10)

where M̂SS denotes the target segmentation masks, and

LBCE is the binary cross entropy loss function.

To generate pixel-wise supervision M̂ IS and M̂SS for

segmentation refinement, we integrate the mined masks of

panoptic mining branch with bottom-up object evidence to

improve spatial coherence and contour localization. We

employ unsupervised grouping-based segmentation Grab-

Cut [86] algorithm to re-estimate object masks within the

corresponding bounding boxes. For each thing and stuff

category existed in images, we constrain the area within the

highest-score segment proposal as firm positive pixels and

the areas outside its bounding boxes as firm negative pix-

els during re-estimation. Such post-process of mined masks

helps to reduce ambiguous outline using low-level features

such as the pixel colours. We are not restricted with the al-

gorithms that generate object evidence from input images.

The re-estimated masks are treated as pseudo-ground-truth

masks to learn above segmentation refinement.
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Table 1: Ablation study of different proposal-pooling methods on PASCAL VOC 2012 panoptic segmentation.

Methods PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

RoIPool 36.5 74.4 48.0 34.6 73.3 46.0 75.6 84.6 90.3

RoIAlgin 36.2 74.2 47.7 34.4 73.2 43.8 74.3 84.3 89.1

MoIPool

Shape-interpolation 37.2 74.2 48.8 35.3 73.2 46.9 76.0 84.4 90.9

Shape-invariant 39.0 74.4 51.5 37.1 73.9 49.5 77.7 85.1 91.2

Table 2: Ablation study of segmentation refinement on PASCAL VOC 2012 panoptic segmentation.

LIS LSS Re-estimate PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

30.7 73.4 41.4 29.0 72.9 39.5 66.9 81.8 81.8

X 34.9 73.6 46.2 33.9 73.1 44.9 69.4 81.7 85.1

X 33.9 73.2 45.5 28.8 72.7 39.2 76.6 83.5 91.6

X X 36.5 73.9 48.6 34.6 73.4 46.5 76.7 84.0 91.1

X X X 39.0 74.4 51.5 37.1 73.9 49.5 77.7 85.1 91.2

Table 3: Ablation study of different nr values in Equ. 4 on

PASCAL VOC 2012 panoptic segmentation.

nr PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

0 30.3 71.9 41.5 28.3 71.3 39.3 71.4 82.0 87.1

1 35.0 72.2 47.8 33.6 69.8 44.9 73.2 82.7 89.2

2 36.5 72.8 50.3 36.1 72.2 47.5 75.3 83.8 89.4

3 38.1 73.9 50.8 36.5 73.0 48.8 76.1 84.6 90.2

4 39.0 74.4 51.5 37.1 73.9 49.5 77.7 85.1 91.2

5 38.6 74.3 51.5 36.7 73.6 49.8 77.8 85.6 91.0

4. Quantitative Evaluations

4.1. Experimental Setup

Datasets We evaluate our method on two popular bench-

marks, i.e., PASCAL VOC 2012 [6] and MS COCO [7].

PASCAL VOC 2012 consists of 20 target categories as well

as one background category. As in full supervised panoptic

segmentation [87, 82], we generate a training set by merg-

ing the Pascal VOC 2012 training set and the additional an-

notations from the SBD dataset [88]. This results in 10, 582
training images. For validation, we evaluate on the Pas-

cal VOC 2012 validation set, as the evaluation server is

not available for panoptic segmentation. The MS COCO

panoptic segmentation has a greater number of images and

categories. It features 118k training images, 5k validation

images. There are 133 semantic classes, including 53 stuff

and 80 thing categories. We also evaluate the performance

of object detection on PASCAL VOC 2007 [6], which are

widely-used benchmark dataset for WSOD. PASCAL VOC

2007 consists of 5, 011 trainval images, and 4, 092 test im-

ages over 20 categories. Note that only image-level labels

are used for model training in all our results.

Evaluation Protocol. Our main evaluation metric is the

panoptic quality (PQ), which is the product of segmenta-

tion quality (SQ) and recognition quality (RQ) [3]. SQ

captures the average segmentation quality of matched seg-

ments, whereas RQ measures the ability of an algorithm to

detect objects correctly. For the evaluation metrics of in-

stance segmentation, we also report the standard MS COCO

metrics [7], which is mean average precision (AP) over IoU

thresholds. For object detection on Pascal VOC, we follow

standard PASCAL VOC protocol to report the mAP at 50%
Intersection-over-Union (IoU) of the detected boxes with

the ground-truth ones. We also report CorLoc to indicate

the percentage of images in which a method correctly local-

izes an object of the target category. For object detection on

MS COCO, we report standard COCO metrics, including

AP at different IoU thresholds.

Implementation Details We implement our method us-

ing PyTorch framework. All backbones are initialized with

the weights pre-trained on ImageNet ILSVRC [89]. We use

synchronized SGD training on 4 GPUs. A mini-batch in-

volves 1 images per GPU. We use a learning rate of 0.01,

momentum of 0.9, and dropout rate of 0.5. We use a step

learning rate decay schema with decay weight of 0.1 and

step size of 70, 000 iterations. The total number of train-

ing iterations is 100, 000. We adopt 4× training schedules

for MS COCO. In the multi-scale setting, we use scales

range from 480 to 1, 216 with stride 32. To improve the

robustness, we randomly adjust the exposure and saturation

of the images by up to a factor of 1.5 in the HSV space.

We use MCG [79] to generate segment proposals for all ex-

periments. We set the maximum number of proposals in an

image to be 4, 000. The test scores are the average of scales

of {480, 576, 688, 864, 1200} and flips. Detection results

are post-processed by NMS with a threshold of 0.5.

We use the following parameter settings in all the exper-

iments unless specified otherwise. We set the number nr of

object refinement branches to 4. For the proposed MoIPool,

we use the shape-invariant version for default.

4.2. Weakly Supervised Panoptic Segmentation

We first perform several ablation studies to evaluate the

effectiveness of different design choices and parameter set-

tings. All ablation studies are conducted on the PAS-

CAL VOC 2012 panoptic segmentation as described above.

Here, we use ResNet18-WS [90] as the backbone to save
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Table 4: Comparison with the state-of-the-art methods on PASCAL VOC 2012 panoptic segmentation. The terms M, B and

I denote pixel-level, bounding-box-level and image-level labels, respectively

Method Supervision Backbone PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

DeeperLab [82] M Xception-71 67.4 - - - - - - - -

Panoptic FPN [83] M ResNet50 65.7 84.3 77.6 64.5 83.9 76.5 90.8 92.5 98.1

Li et al. [2] B + I ResNet101 59.0 - - - - - - - -

Combination [47, 58] I ResNet50 37.1 69.8 49.5 35.5 70.5 47.2 74.2 82.6 86.3

JTSM I ResNet18-WS 39.0 74.4 51.5 37.1 73.9 49.5 77.7 85.1 91.2

Table 5: Comparison with the state-of-the-art methods on MS COCO panoptic segmentation.

Method Supervision Backbone PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Panoptic FPN [83] M ResNet50 39.0 - - 45.9 - - 28.7 - -

JTSM I ResNet18-WS 5.3 30.8 7.8 8.4 46.6 11.4 0.7 6.4 0.5

Table 6: Comparison with the state-of-the-art methods on

PASCAL VOC 2012 instance segmentation.

Method Supervision Backbone mAP0.50 mAP0.75

Mask R-CNN [81] M ResNet101 67.9 44.9

PRM [44] I ResNet50 26.8 9.0

IAM [45] I ResNet50 28.8 11.9

IRNet [47] I ResNet50 46.7 -

Label-PEnet [51] I VGG16 30.2 12.9

WISE [46] I ResNet50 41.7 23.7

Kim et al. [52] I ResNet50 35.7 5.8

Arun et al. [42] I ResNet50 50.9 28.5

LIID [50] I ResNet50 48.4 24.9

JTSM I ResNet18-WS 44.2 12.0

time if not mentioned. When tuning each group of hyper-

parameters, other parameters are kept as default.

The number nr of panoptic refinement heads. The

panoptic refinement heads output final mining scores for

segmentation during testing, which heavily influence the

performance of instance and semantic segmentation. The

hyperparameter nr in Equ. 4 controls the number of panop-

tic refinement branches. Different settings and correspond-

ing results of nr are displayed in Tab. 3. When we have

nr = 0, the second term of loss function LIR in Equ. 4

are omitted. We can see that the results of this setting

are worse than using panoptic refinement branches, demon-

strating that the panoptic refinement is very helpful for seg-

mentation predictions. When nr ≥ 4, the performance

gains are margin. We use 4 as the default values for nr.

The shape-invariant vs. shape-intepolation MoIPool.

We first use the traditional RoIPool [80] and RoIAlgin [81]

methods to analyze how performance varies with different

proposal pooling methods. As shown in Tab. 1, traditional

methods are unable to handle stuff well. As stuff content

often has large outline and scale variance, which may also

contain other stuff and thing object. Thus, it requires to

pooling methods to compute pixel-accurate feature maps of

arbitrary-shape regions. The proposed MoIPool achieves

large performance gains compared to RoIPool and RoIAl-

gin, as MoIPool only utilizes the features within segment

proposals. We also find that shape-invariant MoIPool has

superior performance compared to shape-interpolation ver-

sion. As shape-invariant MoIPool maintains accurate con-

tour information of segment proposals.

The instance and semantic segmentation refinement.

We continue by evaluating the effect of segmentation refine-

ment. As shown in Tab. 2, segmentation refinement improve

overall performance with large gains. As the quality of

original mined masks heavily relies on segment proposals,

while the segmentation refinement leverages self-training to

improve predicted masks. We observe that the performance

can increase significantly with the guidance of bottom-up

evidence. It demonstrates that the bottom-up evidence is

positively correlated to object segmentation.

With the above ablation study, we perform panoptic seg-

mentation on the PASCAL VOC 2012 and MS COCO with

various ResNet backbones. To the best of our knowledge,

this is the first work reporting results for image-level super-

vised panoptic segmentation. Inspired by fully supervised

panoptic segmentation, we construct a strong baseline for

WSPS, which combines the output of independent WSIS

and WSSS tasks via a series of post-processing steps [3] that

merges their outputs. Specifically, we use the results from a

combination of WSIS algorithm, IRNet [47], and WSSS al-

gorithm, AffinityNet [58]. Note that both IRNet and Affin-

ityNet are competitive approaches in their target tasks. For

PASCAL VOC that has only one stuff category, we com-

pute all thing segmentation and treat the rest regions as stuff

segmentation. Tab. 4 and 5 show that JTSM significantly

outperforms the strong baseline models that use the same

setting, i.e., using image-level labels only for model train-

ing. The performance improvement for stuff, e.g., PQSt,

shows the validity of joint category mining, while the im-

provement for thing, e.g., PQTh, indicates the effectiveness

of MoIPool.

4.3. Weakly Supervised Instance Segmentation

We also report instance segmentation performance in

terms of AP and compare with other WSIS methods on
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Table 7: Comparison with the state-of-the-art methods on MS COCO instance segmentation.

Method Supervision Backbone mAP mAP0.50 mAP0.75 mAPS mAPM mAPL

Mask R-CNN [81] M ResNet101 35.7 58.0 37.8 15.5 38.1 52.4

WS-JDS [15] I VGG16 6.1 11.7 5.5 1.5 7.1 12.2

JTSM I ResNet18-WS 6.1 12.1 5.0 0.1 3.0 12.6

Table 8: Comparison with the state-of-the-art methods on PASCAL VOC 2007, 2012 and MS COCO object detection.

Method Supervision Bakcbone

PASCAL VOC 2007 PASCAL VOC 2012 MS COCO

mAP (%) CorLoc (%) mAP (%) CorLoc (%)
Avg. Precision, IoU:

0.5:0.95 0.5 0.75

Faster RCNN[84] B VGG16 69.9 – 67.0 – 21.2 41.5 –

WSDDN [8] I VGG16 34.8 53.5 – – 9.5 19.2 8.2

OPG [10] I VGG16 28.8 43.5 – – – – –

CSC C5 [11] I VGG16 43.0 62.2 37.1 61.4 12.9 23.8 13.2

WS-JDS [15] I VGG16 45.6 64.5 39.1 63.5 – – –

OICR [18] I VGG16 41.2 60.6 37.9 62.1 – – –

MELM [28] I VGG16 47.3 61.4 42.4 – – – –

Kosugi et al. [21] I VGG16 47.6 66.7 43.4 66.7 – – –

C-MIL [29] I VGG16 50.5 65.0 46.7 67.4 – – –

Pred Net [30] I VGG16 52.9 70.9 48.4 69.5 – – –

WSOD2 [85] I VGG16 53.6 69.5 47.2 71.9 10.8 22.7 –

Yanga et al. [19] I VGG16 48.6 66.8 – – – – –

C-MIDN [14] I VGG16 52.6 68.7 50.2 71.2 9.6 21.4 –

Ren et al. [24] I VGG16 54.9 68.8 52.1 70.9 12.4 25.8 10.5

UWSOD [26] I ResNet18-WS 45.0 63.8 46.2 65.7 3.1 10.1 1.4

JTSM I ResNet18-WS 53.4 71.4 51.5 72.5 9.4 21.3 7.9

PASCAL VOC 2012. In details, JTSM only mines thing

categories and ignores the segmantic branch. As shown

in Tab. 6 and 7, our JTSM largely outperforms previ-

ous state-of-the-art that also uses image-level supervision.

Some previous methods achieved high performance, thanks

to the specially designed inter-pixel relation module [47],

graph partition algorithm [50], salient detector [49], fully-

supervised model retraining [46, 47]. Unlike previous

methods [50, 47, 42], JTSM is end-to-end trainable. When

ResNet18-WS is used as backbone, JTSM achieves compa-

rable performance with previous state-of-the-art methods.

4.4. Weakly Supervised Object Detection

We evaluate the detection performance of the proposed

JTSM on all three datasets, in which we only used image-

level labels of thing categories. We also remove the segmen-

tation refinement branch, as panoptic mining branch already

outputs detection results. Comparisons with recent state-

of-the-art methods are listed in Tab. 8. With ResNet18-WS

backbone, JTSM reaches the state-of-the-artmAP of 53.4%
and 51.5% on VOC 2007 and VOC 2012. JTSM produces

9.4%mAP and 21.3%mAP0.5 on MS-COCO.

Although JTSM is not specially designed for object de-

tection, it shows surprising results and achieves state-of-the-

art performance for many metrics. We attribute the perfor-

mance gains to MoIPool, which enables to extract pixel-

accurate feature maps of arbitrary-shape regions.

5. Conclusion

In this paper, we propose a Joint Thing-and-Stuff Ming

(JTSM) framework to learn panoptic segmentation with

only image-level labels for the first time. To achieve this

goal, a novel mask of interest pooling (MoIPool) is pro-

posed to extract pixel-accurate feature maps of arbitrary-

shape regions, which outputs fix-size feature maps for all

semantic categories with the same representational power.

We further integrate the mined masks with bottom-up ob-

ject evidence to improve spatial coherence and contour lo-

calization. Finally, additional instance and semantic seg-

mentation are learned via self-train to refine panoptic seg-

mentation. Experimental results on PASCAL VOC and MS

COCO demonstrate the effectiveness of JTSM compared to

strong baselines. As a by-product, JTSM achieves compet-

itive results for weakly supervised object detection and in-

stance segmentation.
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[79] P Arbeláez, J Pont-Tuset, J Barron, F Marques, and J Malik.

Multiscale Combinatorial Grouping. In IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2014. 4, 6

[80] Ross Girshick. Fast R-CNN. In IEEE International Confer-

ence on Computer Vision (ICCV), 2015. 4, 7

[81] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In IEEE International Conference on

Computer Vision (ICCV), 2017. 4, 5, 7, 8

[82] Tien-Ju Yang, Maxwell D. Collins, Yukun Zhu, Jyh-Jing

Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Pa-

pandreou, and Liang-Chieh Chen. DeeperLab: Single-Shot

Image Parser. In IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2019. 6, 7

[83] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr

Dollár. Panoptic Feature Pyramid Networks. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 7

[84] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks. In Conference on Neural Infor-

mation Processing Systems (NeurIPS), 2015. 8

[85] Zhaoyang Zeng, Bei Liu, Jianlong Fu, Hongyang Chao, and

Lei Zhang. WSODˆ2: Learning Bottom-up and Top-down

Objectness Distillation for Weakly-supervised Object Detec-

tion. In IEEE International Conference on Computer Vision

(ICCV), 2019. 8

[86] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.

”GrabCut”: interactive foreground extraction using iterated

graph cuts. In ACM SIGGRAPH, 2004. 5

[87] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid Scene Parsing Network.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 6

[88] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
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