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Abstract

Generative Adversarial Networks (GANs) have demon-

strated unprecedented success in various image generation

tasks. The encouraging results, however, come at the price

of a cumbersome training process, during which the gen-

erator and discriminator are alternately updated in two

stages. In this paper, we investigate a general training

scheme that enables training GANs efficiently in only one

stage. Based on the adversarial losses of the generator and

discriminator, we categorize GANs into two classes, Sym-

metric GANs and Asymmetric GANs, and introduce a novel

gradient decomposition method to unify the two, allowing

us to train both classes in one stage and hence alleviate

the training effort. We also computationally analyze the ef-

ficiency of the proposed method, and empirically demon-

strate that, the proposed method yields a solid 1.5× accel-

eration across various datasets and network architectures.

Furthermore, we show that the proposed method is readily

applicable to other adversarial-training scenarios, such as

data-free knowledge distillation. The code is available at

https://github.com/zju-vipa/OSGAN .

1. Introduction

Generative Adversarial Networks (GANs), since their in-

troduction in [17], have produced unprecedentedly impres-

sive results on various image generation tasks. Thanks to

the adversarial nature of the two key components, genera-

tor and discriminator, the synthesized images delivered by

GANs turn out visually appealing and in many cases in-

distinguishable from real ones. Recently, many variants of

GANs have introduced and focused on different aspects of

the design, including image quality [30, 6, 12], training sta-

bility [43, 74, 46] and diversity [8, 68, 40]. Apart from

generating images as the end goal, GANs have also been

applied to other tasks, such as data-free knowledge distilla-
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Figure 1: Comparison of the conventional Two-Stage GAN

training scheme (TSGANs) and the proposed One-Stage

strategy (OSGANs). The former one relies on alternately

freezing the generator and the discriminant, while the latter

trains both simultaneously.

tion [44, 13, 60, 71] and domain adaption [14, 56].

The promising results delivered by GANs, however,

come at the price of a burdensome training process. As

shown in the upper row of Fig. 1, existing GANs rely on a

time-consuming two-stage training process, which we term

as Two-Stage GANs (TSGANs). In the first stage, fake im-

ages synthesized by the generator, together with the real

ones, are fed into the discriminator for training; during this

process, the discriminator is updated but the generator is

fixed. In the second stage, the discriminator delivers the

gradients derived from the loss function to the generator,

during which the generator is updated but the discriminator

is fixed. Within each adversarial round, therefore, both the

generator and the discriminator carry out the feed-forward

step for two times, while the discriminator implements a

backward-propagation step for another two times, which,
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as will be analyzed in our method section, involves many

repetitive computations.

Endeavors have been made towards alleviating the cum-

bersome training process of GANs. The work of [14], for

example, adopts an efficient adversarial training strategy for

unsupervised domain adaption, where learning the feature

extractor and classifier requires only one round of forward

inference and back-propagation. The approach of [48] also

exploits a single-step optimization to update the parameters

of the generator and discriminator in one turn, and showcase

its power in generating visually realistic images.

In spite of their enhanced efficiency, the approaches

of [14, 48] limit themselves applicable to only a subset

of GANs, for which their loss functions take a particu-

lar form. Specifically, within such GANs, the adversar-

ial loss terms in both the generator and discriminator are

identical; hence, we term such models as Symmetric GANs.

Nevertheless, many other popular GANs adopt loss func-

tions that hold different adversarial terms for the generator

and discriminator, and we term these models as Asymmet-

ric GANs. The speed-up optimization techniques employed

by [14, 48], unfortunately, are no longer competent to han-

dle such asymmetric models.

We propose in this paper a novel one-stage training

scheme, termed as One-Stage GANs (OSGANs), that gener-

alizes to both Symmetric and Asymmetric GANs. Our key

idea is to integrate the optimization for generator and dis-

criminator during forward inference, and decompose their

gradients during back-propagation to respectively update

them in one stage. For the Symmetric case, since the dis-

criminant loss hold a term that is identical to the generator

loss, we only need to compute the gradient of this term once

and adopt it for both losses. In this way, the updates of the

generator and discriminator may safely take place in one

forward and backward step.

Training Asymmetric GANs is more tricky since we can

no longer copy the gradients derived from the discriminator

to the generator. To this end, we carefully look into the com-

position of the discriminator’s gradients. We discover that,

the gradients derived from the different adversarial terms,

in reality, preserve their proportions within the total gradi-

ents from the last layer all the way back to the first layer

of discriminator. This interesting property of gradients, in

turn, provides us with a feasible solution to decompose the

gradients of the different adversarial terms and then to up-

date the discriminator and generator, enabling the one-stage

training of Asymmetric GANs. Finally, we unify the two

classes of GANs, and show that Symmetric GANs, in fact,

can be treated as a degenerate case of Asymmetric GANs.

Our contribution is therefore a general one-stage train-

ing scheme, readily applicable to various GAN variants in-

cluding both Symmetric and Asymmetric GANs. Computa-

tional analysis backed up with experimental results on sev-

eral datasets and network architectures demonstrate that, the

proposed OSGANs achieve a solid 1.5× speedup over the

vanilla adversarial training strategy.

2. Related Work

We briefly review here two lines of work related to ours,

including GANs and those one-stage or two-stage frame-

works for other vision tasks.

2.1. Generative Adversarial Networks

The pioneering work of GAN [17] introduces an adver-

sarial strategy, where generator is trained to synthesize fake

images to confuse discriminator and discriminator tries to

distinguish synthesized images from real one. When the

generator and discriminator converge to a competitive equi-

librium, the generator can finally synthesize realistic images

from latent variables.

The mainstream GAN research has been focused on im-

proving image quality [30, 6, 12], training stability [43, 74,

46] and diversity [8, 68, 40]. Recently, GANs have demon-

strated their promising results in various image-generation

tasks, such as super resolution [34, 65, 3, 62, 64], image

editing [76, 7, 75, 18, 20], image inpainting [49, 24, 51],

and image translation [26, 77, 63].

2.2. One­Stage and Two­Stage Framework

Recent object detection methods can be categorized into

one-stage and two-stage frameworks [36]. For two-stage

framework [16, 15, 54, 11], a category-agnostic region pro-

posal module is implemented to find the possible object

locations in the image, and then a category-specific clas-

sifier assigns class label for each location, where multi-

ple feed forwards are implemented. One-stage detection

methods [58, 38, 53, 33], on the other hand, unify the ob-

ject bounding box and class prediction in one feed forward,

which significantly reduce computation cost.

Similar to object detection, instance segmentation can

also be grouped into one-stage and two-stage pipeline. For

two-stage framework [50, 19, 37, 9, 10], the model first per-

forms object detection to obtain bounding box for each ob-

ject instance, and then implements binary segmentation in-

side each bounding box to obtain final results. With the

similar motivation as detection, one-stage instance segmen-

tation [66, 5] unifies instance mask prediction and category

prediction, which effectively improves inference efficiency.

Other tasks such as classification, however, have been

mainly relied on one-stage schemes [70, 73, 69, 27, 28].

The above one-stage methods focus on the improvement

of inference efficiency for their tasks, yet our proposed

method pays more attention to the improvement of training

efficiency for GANs.
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3. Method

In this section, we describe the proposed method for one-

stage GANs in detail. We first describe the two classes of

GANs, Symmetric GANs and Asymmetric GANs, and then

discuss the one-stage solutions for the above cases, respec-

tively. Finally, we analyze the speedup factor of the pro-

posed OSGANs.

3.1. One­Stage GANs

3.1.1 Background

The vanilla GAN proposed by [17] introduces a minmax

game between discriminatorD and generator G to guide the

generator to synthesize realistic images. The objective is

expressed as:

min
G

max
D

E
x∼pd

[logD(x)] + E
z∼pz

[log(1−D(G(z)))] , (1)

where x denotes real sample obtained from data distribu-

tion pd and z denotes latent variable sampled from Guas-

sian distribution pz . For convenience, we rewrite the above

objective as separated losses for D and G as follows:

LD = − logD(x)− log (1−D(G(z))) , (2)

LG = log (1−D(G(z))) ,

where LD and LG have the same adversarial term about

G(z): log (1−D(G(z))). Hence, we designate such GANs

as Symmetric GANs.

To alleviate the gradient vanishing problem of generator,

a non-saturating loss function [1] is proposed as follows:

LD = − logD(x)− log (1−D(G(z))) , (3)

LG = − log (D(G(z))) ,

where their adversarial terms about G (z) are different. We

term GANs with such losses as Asymmetric GANs. The

above adversarial learning scheme is just one instance.

Many other adversarial formulas can be found in the supple-

mentary material, such as WGAN [43] and LSGAN [42].

In general, the adversarial terms in GANs’ objec-

tive are the ones about fake sample G(z), such as

− log (1−D(G(z))) vs log (1−D(G(z))) in Eq. 2 and

− log (1−D(G(z))) vs − log (D(G(z))) in Eq. 3. There-

fore, for clarity of analysis, we split general LD into two

parts: the term about real sample Lr
D(x) and the term about

fake sample Lf
D
(x̂), where x̂ = G(z). * More discussions

can be found in the supplementary material. Finally, the

objective of general GANs can be written as follows:

LD(x, x̂) = L
r
D(x) + L

f
D
(x̂), (4)

LG(x̂) = LG(G(z)).

*There are other forms of GANs, whose LD can not be explicitly split

in this way. Yet still, our approach is applicable.

For brevity, we omit input x and x̂, such asLD, Lr
D, Lf

D
and

LG . Based on Eq. 4, we can formally distinguish Symmetric

GANs and Asymmetric GANs: for Symmetric GANs, we

have LG = −Lf
D

, while for Asymmetric GANs, we have

LG 6= −L
f
D

.

3.1.2 Symmetric OSGANs

For Symmetric GANs (e.g. Eq.2), LG and LD contain the

same loss term about fake sample x̂: Lf
D

. Their gradients

w.r.t. x̂ can be denoted as ∇x̂LD = ∇x̂L
f
D

and ∇x̂LG =

−∇x̂L
f
D

, respectively. We can obtain ∇x̂LG from ∇x̂LD

by just multiplying ∇x̂LD with −1 and then compute the

gradients w.r.t. parameters of G from ∇x̂LG . In a word,

we can update the parameters of G with ∇x̂LD, which is

computed during the training of D. This method simplifies

the training of Symmetric GANs from two stages to one

stage.

3.1.3 Asymmetric OSGANs

For Asymmetric GANs (e.g. Eq.3), due to LG 6= −L
f
D

, the

gradients ∇x̂LG can not be directly obtained from ∇x̂LD

as Symmetric GANs.

An intuitive idea to solve this problem is to integrate LG

and LD into one, e.g. LD ← LD + LG , so that we can

obtain ∇x̂LG from ∇x̂LD. Since the sign of ∇x̂L
f
D

and

∇x̂LG is generally reversed, we adopt

L = LD − LG = Lr
D + Lf

D
− LG , (5)

instead of L = LD+LG to avoid the gradient counteraction

between Lf
D

and LG . We denote Lf = Lf
D
− LG to collect

the loss terms about fake sample. By doing so, however, an-

other issue is introduced: how to recover∇x̂LG from mixed

gradients ∇x̂Lf .

To tackle this problem, we investigate back-propagation

about the discriminator network. We find an interesting

property of the mainstream neural modules. The relation

between the gradients of loss L w.r.t. the input ∇inL, and

the gradient of loss L w.r.t. its output ∇outL can be pre-

sented as the follows:

∇inL = P · F (∇outL) ·Q, (6)

where P and Q are matrices that depend on the module

or its input; F(·) is a function that satisfies the equation

F(y1+ y2) = F(y1)+F(y2). The neural modules include

convolutional module, fully-connected module, non-linear

activation operation, and pooling. Although both non-linear

activation and pooling are non-linear operations, the rela-

tion between their gradients of loss function w.r.t. input and

output meets Eq. 6. More details are discussed in the sup-

plementary material.

3352



Based on Eq. 6, we can obtain the relation between the

gradients of LG and LD for fake sample x̂i in discriminator

as follows:

∇x̂i
LG

∇x̂i
LD

= · · · =
∇x̂l

i
LG

∇x̂l
i
LD

= · · · =
∇x̂L

i
LG

∇x̂L
i
LD

= γi, (7)

where L is the total number of layers, γi is an instance-

wise scalar for x̂i,
* and x̂l

i denotes features of l-th layer in

discriminator.

In other words, γi remains a constant for sample x̂l
i cross

different layers, despite each sample holds a different γi.
On the one hand, we only need to compute γi for the last

layer, and computing ∇x̂L
i
LG/∇x̂L

i
LD to obtain γi for all

layers is in practice very efficient. On the other hand, it

varies with different samples and therefore needs to be re-

computed for each sample. Since γi is the ratio between

two scalars ∇x̂L
i
LG and ∇x̂L

i
LD, the cost of this tiny com-

putation can be omitted during training.

Combining ∇x̂l
i
Lf = ∇x̂l

i
Lf
D
− ∇x̂l

i
LG and Eq. 7, we

can proportionally decompose ∇x̂l
i
LG and ∇x̂l

i
Lf
D

from

mixed gradients: ∇x̂l
i
Lf :

∇x̂l
i
Lf
D
=

1

1− γi
∇x̂l

i
Lf , (8)

∇x̂l
i
LG =

γi
1− γi

∇x̂l
i
Lf .

In other words, we can obtain ∇x̂l
i
LG and ∇x̂l

i
Lf
D

by

scaling ∇x̂l
i
Lf . For the convenience of computation, we

apply the above scaling operation to loss functionLf , which

is equivalent to Eq. 8. Hence, we can obtain the instance

loss functions for discriminator and generator:

Lins
D = Lr

D +
1

1− γi

(

Lf
D
− LG

)

, (9)

Lins
G =

γi
1− γi

(

Lf
D
− LG

)

,

where both Lins
D and Lins

G contain the same loss term

(Lf
D
− LG). In this way, Asymmetric GAN is transformed

into a symmetric one. Hence, a similar one-stage training

strategy adopted in Symmetric OSGANs can be applied.

The difference is that the gradients from Lins
D needs to be

scaled by γi instead of −1, since ∇x̂l
i
Lins
G = γi · ∇x̂l

i
Lins
D .

A numerical detail needs to considered in Eq. 9: if

(1 − γi) is very close to zero, a numerical instability issue

occurs. Due to the competition between Lf
D

and LG , the

signs of ∇xl
i
Lf
D

and ∇xl
i
LG tend to be reversed. Hence, γi

is a negative number, which ensures the numerical stability.

*The derivation can be found in the supplementary material. In fact, γi
is a tensor with the same size as x̂l

i
, in which all elements have the same

value. For brevity, we regard it as a scalar.

Algorithm 1 One-Stage GAN Training Framework

Input: Training data X = {xj}
N
j=1

.

Output: The parameters of generator G.

1: Initialize the parameters of G and D;

2: for number of training iterations do

3: Sample z ∼ N (0, 1) to generate fake data x̂i by G;

4: Sample real data xj from X ;

5: Feed x̂i and xj into D to compute LG and LD;

6: Compute∇x̂L
i
LG and∇x̂L

i
LD to obtain γi by Eq. 7;

7: Compute Lins
D by Eq. 9;

8: Back propagate ∇x̂L
i
Lins
D to obtain ∇x̂i

Lins
D ;

9: Obtain ∇x̂i
Lins
G = γi · ∇x̂i

Lins
D by Eq. 7;

10: Update G and D simultaneously using Adam.

11: end for

Let us now take a further look into the relation between

solutions for Symmetric OSGANs and Asymmetric OS-

GANs. Based on Eq. 7, when LG = −Lf
D

is met, we have

γi = −1. Combining γi = −1 and Eq. 9, we can obtain

Lins
D = Lr

D + Lf
D

and Lins
G = −Lf

D
, which has the same

form as Symmetric OSGAN. In other words, our method is

a general solution for both Symmetric GANs and Asymmet-

ric GANs. The overall algorithm for our proposed approach

can be summarized as Algorithm 1.

3.2. Efficiency Analysis

In this section, we computationally analyze the effi-

ciency of OSGANs and TSGANs. To this end, we inves-

tigate three perspectives: (1) the training time for real sam-

ples and fake ones in one batch, (2) the time for forward

inference and back-propagation, (3) the time for parameter

gradient computation and back-propagation.

For the training time, we assume that the batch size of

real samples and fake ones is equal, which is a widely

adopted setting in practice. Hence, the time for real sam-

ples is equal to the time for fake ones, which works on both

forward inference and back-propagation:

Tforw(xr) = Tforw(xf ), (10)

Tback(xr) = Tback(xf ).

For the forward and backward time, we focus on the

cost on modules, such as convolutional and fully-connected

ones, which take up the majority of time. We find the time

cost on forward inference and back-propagation for these

modules is approximately equal, which will be discussed in

the supplementary material. For simplicity, the above time

is represented as T (x):

Tforw(x) = Tback(x) = T (x). (11)

For linear modules, such as convolutional and fully-

connected layers, due to the equal number of floating point
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Figure 2: Efficiency comparison between TSGANs (left) and OSGANs (right). For TSGANs, in the first stage, D is trained

to classify the fake and real samples, where G forwards one time and D forwards and backwards one time for real and fake

samples, respectively. In the second stage, G is trained to confuse D, where both G and D backward and forward one time.

For OSGANs, G and D are trained simultaneously, where both of them only need forward and backward one time.

operations, the time consumed on parameter gradient com-

putation and backward is nearly identical. We write:

Tpara(x) = Tback(x) = T (x). (12)

To estimate the low bound of speedup ratio for our

method, we assume all modules in G and D contain learn-

able parameters, for which the gradients need computing.

Under this assumption, the efficiency is analyzed as follow.

As shown in Fig. 2, for TSGANs, in the first stage,

discriminator is trained to discriminate the fake samples

synthesized by generator and the real ones. The gener-

ator takes T g
forw(z) to generate samples. And the dis-

criminator takes T d
forw(xr) + T

d
forw(xf ) on forward in-

ference, T d
back(xr) + T

d
back(xf ) on back-propagation and

T d
para(xr)+T

d
para(xf ) on parameter gradients computation.

Combined with Eq. 10, Eq. 11 and Eq. 12, the time for the

first stage is

Tstage1(z, x) = T
g(z) + 6T d(x), (13)

where both T g(z) and T d(x) denote the time cost by gen-

erator and discriminator on forward inference and back-

propagation, respectively.

In the second stage, the generator takes T g
forw(z),

T g
back(z) and T g

para(z) on forward inference, back-

propagation and parameter gradients computation, respec-

tively. The discriminator takes T d
forw(xf ) and T d

back(xf )
on forward inference and back-propagation, respectively.

Combined with Eq. 10 and Eq. 11, the time for the second

stage is

Tstage2(z, x) = 3T g(z) + 2T d(x). (14)

Overall, the total time for TSGANs is therefore

Ttwo(z, x) = Tstage1(z, x) + Tstage2(z, x)

= 4T g(z) + 8T d(x). (15)

In the same way, the time for OSGANs is

Tone(z, x) = 3T g(z) + 6T d(x). (16)

Combining Eq. 15 and Eq. 16, we can obtain the training

speedup ratio of OSGANs against TSGANs in the worst

case:

S =
Ttwo(z, x)

Tone(z, x)
=

4T g(z) + 8T d(x)

3T g(z) + 6T d(x)
=

4

3
. (17)

4. Experiments

In this section, we conduct experiments to evaluate the

effectiveness of our proposed training method. First, we

introduce the experimental settings, including the datasets

we used, evaluation metrics and the implementation details.

We then show experimental results on popular generation

benchmarks including quantitative analysis. Afterwards,

we compare the training efficiency between one-stage train-

ing and two-stage one. Finally, we adopt our one-stage

training strategy on data-free adversarial distillation.

4.1. Experimental Settings

4.1.1 Datasets

CelebFaces Attributes Dataset (CelebA) [39] is a large-

scale face attributes dataset, which consists of more than

200K celebrity images. In the experiment, the images are
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CelebA LSUN Churches FFHQ

Method FID KID FID KID FID KID

DCGAN [52] (sym, two) 23.78±0.12 0.019±0.001 46.09±0.25 0.043±0.002 40.56±0.32 0.040±0.001

DCGAN (sym, one) 22.66±0.09(↓) 0.018±0.001(↓) 38.99±0.21(↓) 0.037±0.001(↓) 29.38±0.24(↓) 0.026±0.001(↓)
CGAN [45] (sym, two) 39.85±0.27 0.035±0.000 / / / /

CGAN (sym, one) 30.97±0.33(↓) 0.013±0.000(↓) / / / /

WGAN [43] (sym, two) 33.30±0.23 0.028±0.001 36.29±0.14 0.034±0.002 35.66±0.13 0.032±0.001

WGAN (sym, one) 27.23±0.18(↓) 0.021±0.001(↓) 35.58±0.30(↓) 0.033±0.002(↓) 39.77±0.14(↑) 0.036±0.001(↑)

DCGAN [1]† (asym, two) 25.34±0.20 0.022±0.001 33.35±0.40 0.030±0.001 31.50±0.15 0.031±0.001

DCGAN† (asym, one) 24.20±0.17(↓) 0.019±0.001(↓) 25.41±0.30(↓) 0.024±0.001(↓) 31.19±0.21(↓) 0.028±0.001(↓)
LSGAN [41] (asym, two) 23.00±0.17 0.019±0.001 22.63±0.16 0.021±0.001 30.29±0.23 0.029±0.001

LSGAN (asym, one) 19.31±0.18(↓) 0.015±0.001(↓) 22.39±0.37(↓) 0.019±0.001(↓) 29.11±0.12(↓) 0.026±0.001(↓)
GeoGAN [35] (asym, two) 21.92±0.13 0.018±0.001 18.85±0.41 0.016±0.001 30.55±0.21 0.031±0.001

GeoGAN (asym, one) 21.52±0.14(↓) 0.017±0.001(↓) 18.92±0.24(↑) 0.017±0.001(↑) 30.63±0.26(↑) 0.032±0.001(↑)
RelGAN [29] (asym, two) 20.91±0.15 0.018±0.001 24.95±0.19 0.023±0.002 35.81±0.18 0.033±0.001

RelGAN (asym, one) 20.79±0.18(↓) 0.015±0.001(↓) 25.09±0.25(↑) 0.024±0.001(↑) 35.72±0.16(↓) 0.031±0.001(↓)
FisherGAN [47] (asym, two) 27.88±0.29 0.024±0.001 29.25±0.32 0.026±0.001 52.65±0.16 0.050±0.001

FisherGAN (asym, one) 27.10±0.19(↓) 0.021±0.001(↓) 29.23±0.18(↓) 0.025±0.001(↓) 51.63±0.18(↓) 0.049±0.001(↓)
BGAN [23] (asym, two) 31.12±0.19 0.027±0.001 35.06±0.31 0.035±0.001 41.35±0.17 0.038±0.001

BGAN (asym, one) 25.34±0.17(↓) 0.022±0.001(↓) 34.42±0.21(↓) 0.035±0.001(↓) 42.64±0.13(↑) 0.039±0.001(↑)
SNGAN [46] (asym, two) 34.95±0.24 0.033±0.001 33.51±0.16 0.034±0.001 52.46±0.24 0.050±0.001

SNGAN (asym, one) 34.34±0.12(↓) 0.033±0.001(↓) 31.23±0.17(↓) 0.031±0.001(↓) 51.03±0.36(↓) 0.048±0.001(↓)

Table 1: Comparative results of OSGANs and TSGANs. All results are averaged over five runs and error bars correspond to

the standard deviation. Specifically, “sym” and “asym” respectively denote Symmetric GANs and Asymmetric GANs, while

“one” and “two” respectively denote one-stage and two-stage strategy. † adopts asymmetric adversarial loss in [1]; ↓ and ↑
respectively denote our strategy outperforms and underperforms the two-stage one.

roughly aligned according to the two eye locations and then

resized and cropped into 64× 64 size.

LSUN churches [72] is a dataset that contains more

than 126K church outdoor images. Flickr-Faces-HQ

(FFHQ) [31] is a face dataset, which consists of 70K im-

ages and covers large variation in term of age, ethnicity, im-

age background and accessory. For training convenience,

all images of the above dataset are resized and cropped into

64× 64 resolution.

Both CIFAR10 and CIFAR100 [32] are composed of

60,000 colour images with 32×32 size, where 50,000 im-

ages are used as training set and the rest 10,000 images are

used as test set. The CIFAR10 dataset contains 10 classes,

and the CIFAR100 contains 100 classes. Random cropping

and random horizontal flipping are applied to the training

images to augment the dataset.

4.1.2 Implementation Details

The proposed method is implemented using PyTorch v1.5

on a Quadro P5000 16G GPU. The batch size for both real

images and fake one is set to 128. In all experiments, Adam

optimization algorithm is adopted for both G andD. For the

convenience of experiments, we adopt the network architec-

ture used by DCGANs as the backbone. Given that Eq. 6

does not work on batch normalization [25], we replace the

batch normalization in D with group normalization [67] so

as to meet Eq. 6.

4.1.3 Evaluation Metrics

To evaluate the performance of GANs, three popular evalu-

ation metrics are available.

Fréchet Inception Distance (FID) [21] is used to evaluate

the distance between features from real images and the ones

from generated images, which is computed as follows:

FID = ‖µr − µg‖+tr
(

Cr + Cg − 2 (CrCg)
1/2

)

, (18)

where µr and µg are the empirical means for real and gen-

erated samples, Cr and Cg are the empirical covariance for

real and generated samples, respectively.

Kernel Inception Distance (KID) [4] mitigates the over-

fitting problem, which may occur in FID. It is computed by

KID = E
xr,xg

[

k (xr, x
′
r)−2k (xr, xg)+k

(

xg, x
′
g

)]

, (19)

where xr and xg are features for real and generated samples,

respectively. k (x, y) =
(

1

dx
Ty + 1

)3
.

Inception Score (IS) [57] is proposed to measure the

realistic level of a generated image. As discussed in [2]

and [55], applying the IS to generative models trained on

datasets other than ImageNet gives misleading results. The

IS should only be used as a “rough guide” to evaluate gen-

erative models. Hence, in the following comparative exper-

iments, we will focus on FID and KID.
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Figure 3: Results synthesized by TSGANs (“two”) and OSGANs (“one”) on CelebA and LSUN Churches.

4.2. One­Stage Adversarial Training

To verify the effectiveness of one-stage adversarial train-

ing, we compare the performance on several representative

GANs, each of which is trained with one-stage strategy and

two-stage one, respectively. The comparative results, in-

cluding those obtained by symmetric GANs and asymmet-

ric GANs, are shown in Tab. 1,

Symmetric GANs trained with one-stage training strat-

egy, in reality, outperform their two-stage counterparts, ex-

cept for WGAN on FFHQ. We analyze a possible reason

as follows. In two-stage training, the gradients of genera-

tor are computed after the training of discriminator. This

asynchronous gradient computation may lead to inefficient

optimization, where the earlier optimization information is

lost during the training of generator. The one-stage train-

ing, on the other hand, effectively bypasses the problem by

synchronously updating the generator and discriminator.

Variants of Asymmetric GANs with different asymmet-

ric adversarial objectives are evaluated. On DCGAN, LS-

GAN, FisherGAN and SNGAN, our one-stage strategy con-

sistently outperforms their two-stage counterparts on all

datasets. The performance of one-stage GeoGAN, Rel-

GAN and BGAN is on par with their corresponding two-

stage one. This can be in part explained by that, due to the

adversarial-objective difference between generator and dis-

criminator, the effect of optimization information loss is not

so evident. Overall, our one-stage strategy training achieves

performance comparable to those of the existing two-stage

ones. Some visualization results are shown in Fig. 3. More

results can be found in the supplementary material.

4.3. Efficiency Analysis

In this section, we empirically evaluate the efficiency

of OSGANs against TSGANs. As shown in Fig. 4, both

Symmetric GAN (DCGAN-sym) and Asymmetric GAN

(DCGAN-asym and LSGAN-asym) are compared with the

corresponding TSGANs, respectively. Due to small value

of KID, we take logarithm of KID for better visualization.

For Symmetric DCGAN, one-stage training strategy

tends to be more stable than two-stage one. For Sym-

metric GAN, the end-to-end training strategy significantly

smooths the gradients for optimization, which leads to a

more stable training process. One-stage Symmetric DC-

GAN outperforms the two-stage one on all datasets, while

it achieves a speedup ratio sometimes greater than 1.5 (e.g.

458.7/267.5 ≈ 1.7). We believe that one-stage training

adopts the synchronous update for the generator and dis-

criminator, which can significantly avoid the early gradient

saturation in two-stage strategy.

For asymmetric DCGAN, one-stage strategy achieves

faster convergence speed and better performance than two-

stage one on CelebA and LSUN Churches (speedup ratio:

286.1/180.5 ≈ 1.6). For asymmetric LSGAN, one-stage

training consistently converges faster than the two-stage one

on all datasets (speedup ratio: 286.4/186.0 ≈ 1.5). In the

meantime, one-stage training has smaller fluctuation than

the two-stage one. More results can be found in the supple-

mentary material.

4.4. Application: Knowledge Distillation

We also investigate the effectiveness of our training strat-

egy on adversarial knowledge distillation task [59, 61].

Both DFAD [13] and ZSKT [44] adopt an adversarial train-

ing strategy to implement knowledge distillation without

real data, where teacher is ResNet34 and the student is

ResNet18. Specifically, in each adversarial round, the stu-

dent learns to imitate the prediction of the teacher by five

iterations, while the generator tends to synthesize harder
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Figure 4: Comparison of training efficiency between OSGANs and TSGANs. All experiments are terminated when their

performance reaches plateau.

samples with larger loss values by one iteration. In other

words, it adopts a two-stage adversarial training strategy.

Using our proposed method, the adversarial distillation

achieves competition within one stage. There is only one

update on generator and student network in each round,

respectively. Experimental results are shown in Tab. 2,

demonstrating that our proposed method achieves perfor-

mance on par with the original two-stage one, sometimes

even better. Especially on CIFAR100, our method outper-

forms DFAD and ZSKT by a large margin, significantly re-

ducing the performance gap between knowledge distillation

using full dataset and data-free knowledge distillation.

CIFAR10 CIFAR100

Method #Params Accuracy #Params Accuracy

Teacher 21.3M 0.955 21.3M 0.775

KD [22] 11.2M 0.939 11.2M 0.733

ZSKT [44] (two) 11.2M 0.921 11.2M 0.662

DFAD [13] (two) 11.2M 0.933 11.2M 0.677

Ours(one) 11.2M 0.934 11.2M 0.700

Table 2: Comparative results of one-stage adversarial

knowledge distillation and two-stage one. Here, “one” and

“two” denote one-stage and two-stage strategy, respectively.

5. Conclusion

In this paper, we investigate a general one-stage train-

ing strategy to enhance the training efficiency of GANs.

We categorize GANs into two classes, Symmetric GANs

and Asymmetric GANs. For Symmetric GANs, the gra-

dient computation of generator is obtained from the back-

propagation of discriminator during the training. The pa-

rameters of both generator and discriminator can therefore

be updated in one stage. For Asymmetric GANs, we pro-

pose a gradient decomposition method, which integrates

the asymmetric adversarial losses during forward inference,

and decomposes their gradients during back-propagation to

separately update generator and discriminator in one stage.

We analyze the relation between the above solutions and

unify them into our one-stage training strategy. Finally, we

computationally analyze the training speedup ratio for OS-

GANs against TSGANs. Experimental results demonstrate

that OSGANs achieve more than 1.5× speedup over TS-

GANs, and meanwhile preserve the results of TSGANs.
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