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Abstract

Continual learning tackles the setting of learning differ-

ent tasks sequentially. Despite the lots of previous solutions,

most of them still suffer significant forgetting or expensive

memory cost. In this work, targeted at these problems, we

first study the continual learning process through the lens of

information theory and observe that forgetting of a model

stems from the loss of information gain on its parameters

from the previous tasks when learning a new task. From

this viewpoint, we then propose a novel continual learning

approach called Bit-Level Information Preserving (BLIP)

that preserves the information gain on model parameters

through updating the parameters at the bit level, which can

be conveniently implemented with parameter quantization.

More specifically, BLIP first trains a neural network with

weight quantization on the new incoming task and then es-

timates information gain on each parameter provided by

the task data to determine the bits to be frozen to prevent

forgetting. We conduct extensive experiments ranging from

classification tasks to reinforcement learning tasks, and the

results show that our method produces better or on par re-

sults comparing to previous state-of-the-arts. Indeed, BLIP

achieves close to zero forgetting while only requiring con-

stant memory overheads throughout continual learning1.

1. Introduction

Continual learning tackles the setting where an agent

learns different tasks sequentially. It is challenging since

the agent is usually not allowed to refer to the previously

learned tasks when learning a new one. Current artificial

neural networks generally fail as they tend to suffer severe

performance degradation on previously learned tasks after

learning new ones, which is known as catastrophic forget-

ting [23, 11]. A commonly acknowledged reason for this

problem is that model parameters drift when fitting the new

incoming task data.

Two types of methods have been developed to address

1Code: https://github.com/Yujun-Shi/BLIP

this hazard. The first type of methods, which are based

on model pruning technique [10, 29, 22, 21], first iden-

tify model parameters important for a task and then store

a task-specific mask to mark these parameters and prohibit

them from changing in subsequent learning to prevent for-

getting. During the evaluation stage, only the parameters

marked by the task-specific mask are applied on the given

task. While these methods usually enjoy relatively low for-

getting rate, they suffer from the drawback of linearly grow-

ing memory overheads resulted from task-specific masks

as continual learning proceeds. The other type, known as

“regularization-based methods” [14, 12, 36, 26, 16], impose

model regularization terms when training on the new task to

prevent model parameters from deviating away from previ-

ously learned ones and thus alleviate forgetting issue. They

do not involve any task-specific masks but usually suffer

more severe forgetting comparing to pruning-based ones.

The hard trade-off between forgetting prevention and mem-

ory efficiency for these two types of methods is because

they only consider preventing forgetting on the parameter-

level.

In this paper, we dive into the finer granularity of bit-

level instead of parameter-level to investigate and address

the forgetting problem in continual learning. To start with,

we study continual learning from information theory per-

spective, which is developed from the Bayesian inference

framework that interprets supervised learning as an infer-

ence process over the model parameters from the training

data. For a continual learning (inference) process, where

data seen by model accumulate as the model experiences

more tasks, the inference on each model parameter should

become increasingly certain. To quantify this expected in-

crease of certainty on model parameters given the streaming

data, we exploit information gain, which corresponds to the

reduction of entropy on parameters estimated after experi-

encing new task data. In this way, we consider continual

learning as a recursive process of gaining information on

model parameters, driven by the sequentially incoming task

data. From this viewpoint, forgetting can be understood as

loss of information provided by previous task data on model

parameters.
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Figure 1. Workflow of BLIP. Best viewed in color. We consider a simple scenario with one single parameter θ quantized to 10 bits to

illustrate our method. θt denotes the parameter after learning on task 1 to t, and θ0 is a randomly initialized value before training on any

task. IGt denotes information gain on θ after learning the task t. Bit representation of θ after learning each task is shown below. From the

higher bit positions to lower ones is more significant bits to less significant ones. Frozen bits are filled with color and the rest bits are free

bits. After learning each task, the information gain is calculated and then ⌈IGt⌉ bits are to be frozen in the bit representation. By repeating

this process, the information on previous tasks can be preserved, enabling continual learning for neural networks.

To more intuitively study information gain in continual

learning context, we quantize model parameters (e.g. to 20

bits) and view them in their bit representation, where values

are represented by series of bits. Initially, before learning

on any tasks, a model parameter is free to update, which

corresponds to all bits of the parameter being free-to-flip.

Shannon entropy, which is equivalent to the number of free-

to-flip bits, is 20 at this point. Next, after training on the

first incoming task, information gain brought by the first

task data, which is the reduction of Shannon entropy after

learning the first task, thus corresponds to how many bits

are now becoming certain.2 Leaving these bits to continue

to flip in the subsequent learning process means discarding

the information provided by this task, and forgetting thus

happens. This motivates us to freeze these certain bits and

prohibiting them from flipping in subsequent task iterations

to preserve information gain provided by the first task. By

applying the same information gain-guided bit freezing af-

ter learning each subsequent task, information provided by

each task can be preserved and forgetting can thus be pre-

vented in continual learning.

We accordingly develop a Bit-Level Information Pre-

serving (BLIP) method to tackle the forgetting issue in con-

tinual learning. Given an incoming task, BLIP first trains a

weight quantized neural network. Then, BLIP estimates the

information gain on the parameters brought by this task’s

data, which suggests how many bits to freeze. The frozen

bits are not allowed to flip in subsequent learning, preserv-

ing the information provided by this task. This process is

applied recursively with each new task to enable continual

2As will be explained in Sec. 4.4, bits becoming certain from more

significant bits (with higher bit positions) to less significant ones (with

lower bit positions).

learning without forgetting. We provide a simple overview

of its workflow in Fig. 1.

Unlike previous pruning-based methods, the memory

overheads of our method is constant as BLIP only keeps

track of how many bits to freeze in total for each parame-

ter, without requiring any task-specific masks. On the other

hand, our method is a more precise and stronger way of reg-

ularizing parameters compared to previous regularization-

based methods, which effectively prevents forgetting. We

validate our method across diverse settings of classification

tasks and reinforcement learning tasks, and well prove that

it performs on par with or better than previous state-of-the-

arts.

This work makes following contributions:

1) We study continual learning through the lens of informa-

tion theory and provide a new perspective on forgetting

from information gain.

2) We propose a novel approach called Bit-Level Informa-

tion Preserving (BLIP), which quantizes model param-

eters and directly preserves information gain on model

parameters brought by previously learned tasks via bit

freezing. Comparing to prior works, our method enjoys

advantages of both low forgetting rate and reasonable

memory overheads.

3) We conduct extensive experiments ranging from classi-

fication tasks to reinforcement learning tasks to demon-

strate the effectiveness of our method.

4) To the best of our knowledge, our work is the first to

explore weight quantization for continual learning.
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2. Related Work

Pruning Based Continual Learning These methods

rely on network pruning to preserve the previously learned

knowledge [10, 29, 22, 21, 7]. In the training stage, these

methods divide their model parameters into two sets: frozen

set and free set. Only free parameters can change to adapt

to learn the incoming task while frozen parameters stay un-

changed in order to protect the previously learned knowl-

edge. After learning on a task, pruning is applied to free

parameters to identify parameters that are important for this

task. A task-specific mask on model parameters is then

saved to mark the parameters frozen after learning this task.

During the evaluation stage, choosing which parameter to

use is conditioned on the given task and task-specific masks.

Regularization Based Continual Learning These

methods are mostly based on a Bayesian Inference frame-

work [14, 36, 26, 16, 7, 1]. Under this framework, posterior

distribution on model parameters after learning all previous

tasks is viewed as prior when learning a new task. From

this point of view, knowledge preserving can be achieved

by regularizing parameter posterior of the new task to avoid

deviating drastically from the prior (which is the posterior

given previous tasks). This is normally achieved by adding

penalty terms in the optimization objective.

Replay Based Continual Learning These methods save

representative examples of previous tasks in a replay buffer

of limited size [19, 5, 13, 27, 37, 9] or train a generative

model to generate samples of previous tasks [30, 31, 25, 32].

During training of a new incoming task, data in replay

buffer or produced by the trained generative model are then

used to constrain the model to perform consistently on pre-

vious tasks.

Dynamic Architecture Based Continual Learning

These methods [2, 35, 17] normally enlarge the model dy-

namically to adapt new incoming tasks. During inference,

different model components are applied conditioned on the

given or inferred task identity.

Parameter Quantization The parameter quantization

technique has been widely applied to accelerating the deep

neural networks [3, 38]. These works usually apply aggre-

sive quantization on model parameters (e.g. 1/2/4 bits) for

efficiency consideration, which causes performance degra-

dation on models. However, in our work, we quantize pa-

rameters simply to view them in their bit representations

and thus develop our method. Therefore, we only slightly

quantized the parameter (e.g. to 20 bits).

3. Preliminaries

Problem Setup and Assumptions We consider learn-

ing a total of T tasks sequentially with a deep neural

network model. Data of these T tasks are denoted by

{D1,D2, ...,DT } with Dt = {Xt,Yt} for t ∈ {1, 2, ..., T}.

Here Xt denotes the set of raw data and Yt denotes the

corresponding label set. Throughout the continual learning

process, when the model is learning task t, it is not allowed

to refer to D1, . . . ,Dt−1. In order to estimate the informa-

tion gain on model parameters provided by each task’s data,

we adopt the Bayesian inference framework, which inter-

prets model parameters as variables to be inferred given the

training data.

We assume posteriors on all model parameters are mu-

tually independent Gaussian distributed similar to previous

works [14, 12]. Therefore, without loss of generality, we

study a single scalar model parameter θ in the following to

illustrate our method.

Notations and Definitions We denote the posterior on

the model parameter θ after sequentially learning on task

1 to t as p(θ|D1,D2, . . . ,Dt) with the shorthand being

p(θ0:t). The value of θ after learning on tasks 1 to t is de-

noted as θ∗0:t. Loss on Dt when learning on task t is de-

noted as l(Dt, θ). The model prediction output on a data

sample x given the model parameter θ is denoted as pθ(x),
and pθ(y|x) denotes the prediction probability of x’s label

being y. Since we rely on Fisher information of θ to esti-

mate information gain and develop our method, we denote

Fisher information estimated overDt as Ft and the one over

D1 . . .Dt as F0:t
3. We denote the quantization function

by Q. The result of quantizing θ to N bits is denoted by

Q(θ,N). This means Q(θ,N) has a total of N bits in its

bit representation. Correspondingly, the Shannon entropy

on Q(θ,N) is defined as

H(Q(θ,N)) = −
2N
∑

i=1

P (Q(θ,N) = qi) log2 P (Q(θ,N) = qi),

(1)

where qi denotes Q(θ,N)’s i-th possible value.

4. Bit-Level Information Preserving

4.1. Motivation and Method Overview

Continual learning can be regarded as a continual infer-

ence process over model parameters given streaming task

data under Bayesian inference framework. As data seen by

the model accumulates, the inference certainty on model pa-

rameters shall gradually increase. In order to quantify such

increase of certainty, we introduce the concept of informa-

tion gain, which amounts to the reduction of entropy.

To better understand the intuition of information gain in

the context of continual learning, we study a model param-

eter θ quantized to N bits via Q, and view it in its bit repre-

sentation, whose value is represented by a series of binary

bits. Before learning any tasks, θ is free to update, which is

3
F0 corresponds to prior of Fisher information before learning any task,

which is a hyper-parameter in our method.
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equivalent to all N bits of Q(θ,N) being free-to-flip. Ap-

proximately speaking, each free-to-flip bit in Q(θ,N) flips

with an equal probability, and the Shannon entropy can thus

correspond to the total number of freely flipped bits, which

is N in this case.

After learning an incoming task, the posterior on θ be-

comes more peaky and concentrated, which corresponds to

some bits of Q(θ,N) becoming certain and being not able

to flip. As will be elaborated, information provided by this

task’s data on Q(θ,N) immediately indicates how many

bits of Q(θ,N) become certain from more significant bits

to less significant bits. To preserve information provided by

this task and thus prevent forgetting, a natural solution is to

freeze these certain bits and not allow them to flip.

Motivated by this intuition of information gain, we de-

velop our Bit-Level Information Preserving (BLIP) method,

which iteratively conducts information gain-guided bit

freezing to prevent forgetting in the continual learning.

Specifically, without loss of generality, we consider learn-

ing the t-th task to illustrate our method. We denote nt as

the number of bits frozen after learning the t-th task and

n0:t =
∑i=t

i=1 ni is the total number of bits frozen after

all previous t tasks. Before learning on task t, θ∗0:t−1 and

n0:t−1 are saved to do bit freezing, and F0:t−1 is saved to

help estimate information gain provided by task t data.

To learn task t, the proposed method quantizes the neu-

ral network weights and trains it on Dt. Throughout the

training process, the first n0:t−1 bits of Q(θ,N) are frozen

by BLIP to prevent forgetting on previous tasks and the rest

N − n0:t−1 bits can flip to adapt on Dt. After the training

is completed, BLIP estimates information gain provided by

Dt, which implies how many additional bits become cer-

tain. Finally, bits that become certain after learning Dt are

frozen in the subsequent learning to prevent forgetting on

task t.

We further elaborate on the details of above three steps

in the following subsections.

4.2. Training on Task t

To start with, we describe our model parameter quanti-

zation scheme and explain how to optimize θ on Dt while

keeping Q(θ,N)’s first n0:t−1 bits frozen.

Our quantization function Q is defined as follows:

Q(θ,N) =
⌊(2N min(max(θ,−1 + 1

2N+1 ), 1−
1

2N+1 ))⌉

2N
,

(2)

where ⌊·⌉ rounds the number to its nearest integer. For the

quantized model, we rely on Straight Through Estimator

(STE) [3], which approximates the gradient of the quanti-

zation function Q by
∂Q(θ,N)

∂θ
= 1, to optimize the model

parameter θ. Therefore, θ is directly updated with the gra-

dient descent by

θ := θ − α
∂l(Dt, θ)

∂Q(θ,N)
, (3)

where α is the learning rate.

Next, to keep the first n0:t−1 bits of Q(θ,N) unchanged,

we clip the value of θ after the above gradient descent up-

dates. Specifically, based on the definition of Q in Eqn. (2),

keeping Q(θ,N)’s first n0:t−1 bits frozen is equivalent to

restricting θ to be within an interval centered around ct−1 =
Q(θ∗0:t−1, n0:t−1) with the radius of 1

2n0:t−1 .

Therefore, the first n0:t−1 can be kept frozen by the fol-

lowing clipping operation:

θ := min(max(θ, ct−1 −
1

2n0:t−1
), ct−1 +

1

2n0:t−1
). (4)

The above gradient descent and clipping steps are ap-

plied repeatedly until the training loss l converges on Dt.

4.3. Estimating Information Gain

After training on Dt, we estimate the Information Gain

(IG) on Q(θ,N) provided by Dt, which is the reduction of

the Shannon entropy on Q(θ,N) after training on Dt:

IG(Q(θ,N),Dt) = H(Q(θ0:t−1, N))−H(Q(θ0:t, N)).
(5)

According to this definition and the definition of the Shan-

non entropy Eqn. (1), estimating information gain requires

the knowledge of p(θ0:t−1) and p(θ0:t), which are the pos-

terior on θ before and after learning on Dt respectively.

Unfortunately, the posterior on θ is intractable and has to

be approximated by Laplace’s approximation [20]. This ap-

proximation states that given a datasetD = {X ,Y}, p(θ|D)

can be approximated by N (θ∗D, (mFD(θ
∗
D))

− 1
2 ), where θ∗D

is θ’s value after learning on D, m is the number of samples

used to estimate Fisher information, and FD(θ) is Fisher

information estimated over D:

FD(θ) = Ex∼X ,y∼pθ(x)

[

(

∂ ln pθ(y|x)

∂θ

)2
]

. (6)

By assuming we use the same number of samples to

estimate Fisher information for each task, p(θ0:t−1) and

p(θ0:t) can be approximated by N (θ∗0:t−1, (mtF0:t−1)
− 1

2 )

and N (θ∗0:t, (m(t + 1)F0:t)
− 1

2 ) respectively. F0:t−1, as

mentioned before, is previously saved after learning task 1
to t, and only F0:t is unknown. To obtain F0:t, we first es-

timate Ft over Dt by Eqn. (6). Then, with F0:t−1 and Ft,

F0:t can be obtained by

F0:t =
tF0:t−1 + Ft

t+ 1
. (7)
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With the posterior approximation introduced above and

the definition of information gain Eqn. (5), the information

gain provided by Dt can be estimated by

IG(Q(θ,N),Dt) ≈
1

2
log2 m(t+ 1)F0:t −

1

2
log2 mtF0:t−1

=
1

2
log2

tF0:t−1 + Ft

tF0:t−1
.

(8)

Refer to appendix for detailed elaboration on Eqn. (8).

4.4. Information Gain­Guided Bit Freezing

With the estimated information gain, we now investigate

which bits shall be frozen to prevent forgetting on task t in

the subsequent learning. Approximately speaking, each free

bit of Q(θ,N) flip with equal probability, and the Shannon

entropy on Q(θ,N) is thus the number of bits free-to-flip

in total. Information gain, which is the reduction of the

Shannon entropy after learning Dt, is thus approximately

equivalent to how many more bits of Q(θ,N) become cer-

tain throughout the process. Leaving these certain bits to

continue to flip means discarding the information gain pro-

vided, which directly motivates us to freeze these certain

bits. Therefore, the number of additional bits to freeze nt

can be obtained by

nt = ⌈IG(Q(θ,N),Dt)⌉. (9)

In addition, since the posterior on θ is a Gaussian distribu-

tion and only becomes peaky and concentrated locally, bits

in Q(θ,N) become certain starting from more significant

bits (with higher bit positions) to less significant bits (with

lower bit positions). In practice, we also clip nt between 0
and N − n0:t−1 so that the number of bits frozen in total

does not surpass N . Therefore, by freezing the first nt bits

of the remaining N − n0:t−1 bits of Q(θ,N), our method

can specifically preserve the information gain provided by

Dt and thus prevent forgetting on task t.

In the end, the number of bits frozen in total n0:t, current

Fisher information F0:t, as well as current parameter value

θ∗0:t are then saved for the next task iteration. By recur-

sively preserving information gain provided by each task,

our method can mitigate forgetting in continual learning. A

detailed summary for our algorithm is shown in Alg. 1.

5. Experiments

In this section, we report experiment results of our

method. In Sec. 5.1, we introduce experimental setups.

Next, we demonstrate the effectiveness of our method in

continual image classification settings of various scales and

continual reinforcement learning in Sec. 5.2 and Sec. 5.3

respectively. Finally, in Sec. 5.4, based on our RL agent,

we visualize the bit freezing process throughout continual

learning to further see how BLIP works.

Algorithm 1 Bit-Level Information Preserving (BLIP)

1: θ← randomly init parameters

2: N ← pre-defined quantization bits

3: c← 0 , S ← 0 , F ← hyper parameter F0

4: L← loss function, α← learning rate

5: Q← quantization function

6: for t← 1 to T do

7: obtain task t dataset Dt = {X ,Y}
8: θ ← TRAIN(θ, c, S,D,L)

9: IG, Fpost ←ESTIMATEINFOGAIN(θ,X , F , t)

10: nt ← min (max(⌈IG⌉, 0), N − S)
11: c← Q(θ, S) , S ← S + nt , F ← Fpost

12: end for

13: function TRAIN(θ, c, S,D,L,Q, α)

14: while loss L not converged on D do

15: θ← θ − α∇θL(D,Q(θ))
16: θ← min(max(θ, c− 1

2S
), c+ 1

2S
)

17: end while

18: return θ

19: end function

20: function ESTIMATEINFOGAIN(θ,X , F , t)

21: Ft ← 0
22: for each data point x in X do

23: sample y ∼ pθ(x)

24: Ft ← Ft +
(

∂ log pθ(y|x)
∂θ

)2

25: end for

26: Ft ←
Ft

|X |

27: Fpost ← tF + Ft

28: IG← 1
2 log2

Fpost

tF

29: return IG , Fpost

30: end function

5.1. Experimental Setups

Evaluation Metrics We evaluate all methods with two

widely used metrics: average accuracy (ACC) and back-

ward transfer (BWT) [19]. ACC is the average accuracy

over all learned tasks at the end of the continual learning

process, while BWT quantifies how learning on new tasks

affects model performance on previously learned tasks. For-

mally, let the total number of learned tasks be T , and Ai,j

denote the accuracy on the j-th task after sequentially learn-

ing the first i tasks. ACC is defined as

ACC =
1

T

i=T
∑

i=1

AT,i, (10)

and BWT is defined as

BWT =
1

T − 1

i=T
∑

i=1

(AT,i −Ai,i). (11)
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Negative BWT implies forgetting on previous tasks while

positive means learning on new tasks can even help with the

performance on previous tasks. For each of the two metrics,

higher values indicate better performance.

Benchmarks and Models We target the setting of con-

tinual learning with disjoint tasks, where task identity is

given during both training and evaluation. The following

continual image classification benchmarks are used to eval-

uate our method: MNIST-5 [7, 8], PMNIST [14, 29], Al-

ternating Cifar10/100 [29], 20-Split mini-ImageNet [37, 6],

Sequence of 5 tasks [8]. Reinforcement Learning agents are

evaluated over a sequence of six Atari environments [24].

For MNIST-based settings, we adopt a two layer percep-

tron with 1,200 hidden units as [7]. For other classification

settings, we use AlexNet [15] for all methods. For the re-

inforcement learning setting, we use a PPO agent [28] with

three convolution layers and one fully connected layer.

Baselines For image classification tasks, we compare

our method with naive baselines of direct sequential fine-

tuning (FT), fine-tuning classifier with backbone fixed af-

ter the first task (FT-FIX), and previous methods including

EWC [14, 12], VCL [26] IMM [16], LWF [18], A-GEM [5],

HAT [29], UCB [7], and ACL [8]. Among these methods,

HAT and ACL incur linearly growing memory overheads

due to task specific parameters. A variant of ACL, which

is ACL with replay buffer (ACL-R), using replay buffer to

further boost forgetting prevention. In addition, UCB and

VCL are based on Bayesian neural networks [4], which

have much higher computation cost than normal networks

during training as several times of Monte-Carlo sampling

are needed over model parameters in one iteration of gradi-

ent descent. For IMM, we use its ”mode” version [16]. For

EWC, we use its online variant proposed in [12].

Hyperparameters For classification tasks, our code is

based on released implementations of [29]. Plain Stochastic

Gradient Descent with batch size 32 and initial learning rate

0.05 is used for optimization. Learning rate decays by a fac-

tor of 3 if validation loss plateaus for 5 consecutive epochs.

Training stops when learning rate is below 1 × 10−4 or we

have iterated over 200 epochs. For reinforcement learning,

the PPO agent is trained with initial learning rate 2.5×10−4,

entropy regularization coefficient 0.01. We sample totally

10 millions steps in each environment to train our agents.

Model parameters are quantized to 20 bits for BLIP. In ad-

dition, we ablate the choice for F0 in appendix.

5.2. Continual Learning for Image Classification

5.2.1 MNIST-5 and P-MNIST

We start with a relatively simple setting of MNIST-5 where

the ten MNIST classes are equally split into five separate

tasks for the model to learn sequentially. In addition, we

evaluate our method on another MNIST-based continual

learning setting, Permuted MNIST. In this setting, the first

Table 1. Results on MNIST-5. MO is memory overheads complex-

ity. Results denoted by (∗) are provided by [7].

Methods BWT(%) ACC(%) MO

VCL∗ -0.56 98.20 O(1)
IMM∗ -11.20 88.54 O(1)
EWC∗ -4.20 95.78 O(1)
HAT∗ 0.00 99.59 O(T )
UCB∗ 0.00 99.63 O(1)
BLIP 0.01 99.64 O(1)

Table 2. Results on PMNIST. Results denoted by (∗) are provided

by [7].

Methods BWT(%) ACC(%) MO

LWF∗ -31.17 65.65 O(1)
IMM∗ -7.14 90.51 O(1)
HAT∗ 0.03 97.34 O(T )
UCB∗ 0.03 97.42 O(1)
BLIP -0.21 97.31 O(1)

Table 3. Results on Alternating Cifar10/100.

Methods BWT(%) ACC(%) MO

FT -14.23 67.94 0

FT-FIX 0.00 43.78 0

LWF -40.88 44.27 O(1)
IMM -16.47 66.43 O(1)
EWC -5.5 72.11 O(1)
HAT -0.02 80.22 O(T )
BLIP -0.43 74.70 O(1)

task is the standard MNIST classification while the follow-

ing nine tasks are created by permuting pixels of MNIST

images with nine different schemes. Results on MNIST-5

and P-MNIST are shown in Tab. 1 and Tab. 2 respectively.

From these results, it can be seen that our method achieves

on par performance with state-of-the-art methods such as

UCB, HAT, and is significantly better than other methods in

terms of ACC and BWT. However, as mentioned, UCB and

HAT achieve these results with either much higher compu-

tation cost or undesired growing memory overheads during

training, while our method is free from these hazards.

5.2.2 Alternating Cifar10/100

Next, we evaluate our method on a more challenging setting

of Alternating Cifar10/100. Cifar10 and Cifar100 datasets

are both divided equally into five different tasks respec-

tively, with two classes in each Cifar10 task and twenty

classes in each Cifar100 task. The model is required to learn

sequentially the combined ten tasks. Our results are pre-

sented in Tab. 3. In this setting, one can observe that the gap

in terms of forgetting prevention between pruning-based

method (HAT) and regularization-based methods (LWF,

IMM, EWC) is very large. Our method BLIP, which suffers
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no memory overheads during evaluation, greatly surpasses

the compared regularization-based methods and makes a

significant step towards continual learning being free from

forgetting and growing memory overheads.

5.2.3 20-Split mini-ImageNet

To further show the effectiveness of our method in larger

scale scenario, we conduct experiments in the setting of

20-Split mini-ImageNet, where the 100 classes of mini-

ImageNet are equally split into 20 tasks. Results are shown

in Tab. 4. Our splitting scheme is exactly the same as [8].

Model size of each method is kept similar for fair com-

parison. From the results, we can see that BLIP achieves

the highest ACC. HAT has better BWT than BLIP by using

task-specific parameters while ACL-R boosts BWT with re-

play buffer.

Table 4. Experiment Results on 20-Split mini-ImageNet. RB is

size of replay buffer. Results are averaged over 5 random seeds;

mean ± std is reported. Results denoted by (†) are provided by

[8].

Methods BWT (%) ACC (%) RB (MB)

LWF -45.93 ± 1.05 29.30 ± 0.64 -

A-GEM† -15.23 ± 1.45 52.43 ± 3.10 110.1

HAT† -0.04 ± 0.03 59.45 ± 0.05 -

ACL† -3.71 ± 1.31 57.66 ± 1.44 -

ACL-R† 0.00 ± 0.00 62.07 ± 0.51 8.5

BLIP -1.05 ± 0.42 65.69 ± 0.87 -

Table 5. Experiment Results on Sequence of 5 tasks. MS is Model

Size. Results are averaged over 5 random seeds; mean ± std is

reported. Results denoted by (†) are provided by [8].

Methods BWT (%) ACC (%) MS (MB)

FT -34.16 ± 9.00 65.31 ± 7.18 16.97

FT-FIX 0.00 ± 0.00 71.57 ± 4.55 16.97

LWF -61.14 ± 5.92 42.93 ± 4.59 16.97

IMM -21.56 ± 5.46 73.39 ± 4.20 16.97

UCB† -1.34 ± 0.04 76.34 ± 0.12 16.4

ACL† -0.01 ± 0.15 78.55 ± 0.29 16.5

BLIP -0.13 ± 0.324 82.87 ± 1.43 16.97

5.2.4 Sequence of 5 tasks

To further demonstrate our method’s ability to learn sequen-

tially on more diverse domains, we evaluate it by learning

on Cifar10, notMNIST, MNIST, SVHN, FashionMNIST.

Our results are averaged over 5 random seeds as [8]. From

the results, one can observe that our method considerably

surpasses previous state-of-the-arts such as UCB and ACL

in terms of ACC. Because ACL relies on given task infor-

mation and saved task-specific modules, it can achieve bet-

ter BWT than BLIP. When doing a fair comparison with

other methods, BLIP can achieve much better BWT.

5.3. Continual Reinforcement Learning

Our continual reinforcement learning benchmark re-

quires the agent to sequentially learn to play the following

six Atari games: kung fu master, boxing, james bond, krull,

river raid, space invaders.

We first demonstrate our results on each task separately

in Fig. 3, where we plot rewards of trained agents on each

task from the point they start to train on the task to the end-

ing of the whole continual learning process. From this fig-

ure, we can see that the agent trained by FT suffers from

catastrophic forgetting as its reward on one task drastically

decreases after shifting to learning on the following tasks.

For the agent trained with EWC, although forgetting is al-

leviated and performance can be retained on the last four

tasks, its performance on the first two tasks can not sus-

tain through the continual learning process and decreases

dramatically. Different from these two, our method can re-

member to play all tasks in this continual learning setting.

Next, to compare the performance of each method in an

overall manner, we plot the accumulated reward, which is

the sum of rewards on all learned tasks at each environment

step, in Fig. 4. We normalize rewards on each task to the

scale of 0 to 1. Therefore, if an agent can both learn and

remember all six tasks well, its accumulated normalized

reward shall steadily increase from 0 to 6 in the continual

learning process. On the contrary, the accumulated normal-

ized reward should oscillate around 1 after training the first

task if an agent constantly forgets to perform on previously

learned tasks, which is the case for FT in the figure. As il-

lustrated, our method BLIP outperforms EWC in terms of

the accumulated normalized reward in the whole continual

learning process.

5.4. Visualizing Bit Freezing and Related Discussion

To further understand the underlying working mecha-

nism of BLIP through the whole continual learning pro-

cess, we visualize the corresponding bit freezing process

in Fig. 2. In this figure, we show how bits are gradually

frozen for parameters of our RL agent after learning each

task. As can be observed, more and more bits of model

parameters are frozen to anchor the learned knowledge as

continual learning proceeds. In addition, we can see less

bits are frozen after learning the last two tasks comparing to

the first four tasks, which means not many bits of the model

parameters have been effectively used to adapt to the last

two tasks. This corresponds to the phenomenon that BLIP

does not adapt well on the last two tasks in Fig. 3. We leave

solving this problem for future work.

Previous neurobiology evidences suggest that human

brain may mitigate forgetting by synaptic consolidation[34,

33], which is the process of strengthening synapses that

are crucial for certain knowledge or skills. In the context

of artificial neural networks, where synapses (connections
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Figure 2. Bit Freezing Visualization We visualize bit freezing process of our RL agent’s third convolution layer parameters during con-

tinual learning. Each pixel in a heat map represents the number of frozen bits of the corresponding entry (parameter) in weight matrix of

the convolution layer. Each parameter has a total of 20 bits. From darker blue to darker red denotes more bits being frozen. Visualization

of other layers are shown in appendix.
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Figure 3. Rewards on each task. Each task is trained for 10 million environment steps, and 60 million environment steps are thus used in

total. Tasks are learned left to right and top to bottom. Results are averaged over 3 random seeds.

0 1 2 3 4 5 6
Environment Steps (1e7)

0

1

2

3

4

Ac
cu

m
ul

at
ed

 N
or

m
al

ize
d 

Re
wa

rd

FT
EWC
BLIP

Figure 4. Accumulated Normalized Rewards.

between neurons) are implemented as weight parameters,

BLIP mimics the process of synaptic consolidation via bit

freezing. Concretely, as continual learning proceeds, more

bits are gradually frozen as shown in Fig. 2, which cor-

responds to the process of synapses being strengthened as

more skills and knowledge are learned.

6. Conclusion

In this work, we study continual learning through lens

of information theory and provide a new perspective on for-

getting from information gain. Based on this perspective,

we propose a novel approach called Bit-Level Information

Preserving, which dives into bit-level and directly preserves

information gain on model parameters provided by previ-

ously learned tasks via bit freezing. We conduct extensive

experiments to show that our method can successfully adapt

to continual classification settings of various scales as well

as continual reinforcement learning settings.

Acknowledgment

This work was partially supported by AISG-100E-

2019-035, MOE2017-T2-2-151, NUS ECRA FY17 P08

and CRP20-2017-0006.

16681



References

[1] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup

Moon. Uncertainty-based continual learning with adaptive

regularization. arXiv preprint arXiv:1905.11614, 2019. 3

[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.

Expert gate: Lifelong learning with a network of experts.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3366–3375, 2017. 3

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
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