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Figure 1: Fingerspelling detection and recognition in video of American Sign Language. The goal of detection is to find in-

tervals corresponding to fingerspelling (here indicated by open/close parentheses), and the goal of recognition is to transcribe

each of those intervals into letter sequences. Our focus in this paper is on detection that enables accurate recognition. In this

example (with downsampled frames), the fingerspelled words are PIRATES and PATRICK, shown along with their canonical

handshapes aligned roughly with the most-canonical corresponding frames. Non-fingerspelled signs are labeled with their

glosses. The English translation is “Moving furtively, pirates steal the boy Patrick.”

Abstract

Fingerspelling, in which words are signed letter by let-

ter, is an important component of American Sign Language.

Most previous work on automatic fingerspelling recogni-

tion has assumed that the boundaries of fingerspelling re-

gions in signing videos are known beforehand. In this pa-

per, we consider the task of fingerspelling detection in raw,

untrimmed sign language videos. This is an important step

towards building real-world fingerspelling recognition sys-

tems. We propose a benchmark and a suite of evaluation

metrics, some of which reflect the effect of detection on the

downstream fingerspelling recognition task. In addition, we

propose a new model that learns to detect fingerspelling

via multi-task training, incorporating pose estimation and

fingerspelling recognition (transcription) along with detec-

tion, and compare this model to several alternatives. The

model outperforms all alternative approaches across all

metrics, establishing a state of the art on the benchmark.

1. Introduction

Sign languages, such as American Sign Language

(ASL), are natural languages expressed via movements of

the hands, face, and upper body. Automatic processing of

sign languages would assist communication between deaf

and hearing individuals, but involves a number of chal-

lenges. There is no standard written form for sign lan-

guages. Automatic transcription of sign language into a

written language such as English is in general a translation

task. In addition, sign language gestures are often coarticu-

lated and do not appear in their canonical forms [22, 25].

In this paper, we focus on fingerspelling (Figure 1), a

component of sign language in which words are signed

letter by letter, with a distinct handshape or trajectory

corresponding to each letter in the alphabet of a writ-

ten language (e.g., the English alphabet for ASL finger-

spelling). Fingerspelling is used for multiple purposes, in-

cluding for words that do not have their own signs (such as

many proper nouns, technical terms, and abbreviations) [39]

but also sometimes for emphasis or expediency. Finger-

spelling accounts for 12% to 35% of ASL, where it is

used more than in other sign languages [40]. As impor-

tant content words are commonly fingerspelled, automatic

fingerspelling recognition can enable practical tasks such as

search and retrieval in ASL media.

Compared to translation between a sign language and a

written language, fingerspelling recognition involves tran-

scription into a restricted set of symbols, with a mono-

tonic alignment with the written form. Linguistically, fin-

gerspelling is distinct from other elements of ASL, such

as lexical signs and classifiers [23, 3], so fingerspelling is

likely to benefit from a separate model. The role that fin-

gerspelling transcription is likely to play in ASL to English

translation is similar to that of transliteration in written lan-

guage translation [10]. For all of these reasons, we believe

that even as more general ASL processing methods are de-

veloped, it will continue to be beneficial to have dedicated

fingerspelling detection and recognition modules.

Fingerspelling recognition has been widely studied [42,

16, 44, 37, 26, 45]. However, in most prior work, it is

assumed that the input sequence contains fingerspelling

only, sometimes extracted from longer sequences of sign-

14166



ing via human annotation. Replacing human annotation

with fully automatic detection of fingerspelling – identify-

ing time spans in the video containing fingerspelling – is a

hurdle that must be cleared to enable truly practical finger-

spelling recognition “in the wild”.

Fingerspelling detection has not been widely studied be-

fore. In principle it can be treated as a special case of action

detection [52, 6, 55, 11]. However, in contrast to typical

action detection scenarios, the actions in the fingerspelling

“class” are highly heterogeneous and many fingerspelling

handshapes are also used in non-fingerspelled signs. In ad-

dition, considering the goal of using the detector as part of a

complete sign language processing system, a fingerspelling

detector should be evaluated based on its effect on a down-

stream recognition model, a step not normally included in

evaluation of action recognition. This makes common de-

tection metrics, like average precision (AP) for action de-

tection, less informative for fingerspelling detection.

Our design of a detection model is motivated by two

observations. The first is that articulated pose, in particu-

lar handshape, plays a role in the distinctiveness of finger-

spelling from other types of sign. At the same time, pose

estimation, while increasingly successful in some domains,

may be insufficiently accurate for directly informing finger-

spelling recognition, as shown in [45] and in our experi-

ments. Instead we incorporate pose estimation as part of

training our model, but do not rely on explicit pose esti-

mates at test time. The second observation concerns the

goal of optimizing fingerspelling detection as a means to an

end of improving downstream recognition. We address this

by including a fingerspelling recognizer in model training.

Our results show that this multi-task learning approach pro-

duces a superior detector compared to baselines that omit

the pose and/or recognition losses.

Ours is to our knowledge the first work to demonstrate

the effect of fingerspelling detection on fully automatic fin-

gerspelling recognition in the wild. Beyond this novelty, our

contributions are as follows. First, we propose an evaluation

framework for fingerspelling detection that incorporates the

downstream recognition task into the metrics, and introduce

a benchmark based on extending a publicly available data

set. Second, we investigate a number of approaches for fin-

gerspelling detection, adapted from fingerspelling recogni-

tion and action detection, and develop a novel multi-task

learning approach. Our model outperforms baseline detec-

tion approaches across all evaluation metrics, establishing a

state of the art for the proposed benchmark.

2. Related Work

Early work on sign language recognition mostly focused

on recognition of isolated signs. Recent work has in-

creasingly focused on continuous sign language recogni-

tion, which transforms image sequences to glosses (for gen-

eral sign language) or letter sequences (for fingerspelling),

and translation. Approaches commonly separate between

an image feature extraction component and a sequence

modeling component. The former has moved from em-

ploying human-engineered features such as HoG [26, 28]

to convolutional networks [29, 31, 46]. Approaches for

the sequence modeling component have included Hidden

Markov Models (HMM) [31, 30, 27], semi-Markov condi-

tional random fields [26], connectionist temporal classifica-

tion (CTC) [46, 45, 8], and encoder-decoder models [20, 4],

which are largely borrowed from speech recognition.

Much of the prior work has been limited to data collected

in a controlled environment. There has been a growing in-

terest in sign language recognition “in the wild” (naturally

occurring sign language media), which includes challeng-

ing visual conditions such as lighting variation, visual clut-

ter, and motion blur, and often also more natural signing

styles [14, 15, 1, 24, 32, 33, 46, 45]. Two recently released

datasets of fingerspelling in the wild [46, 45] include data

from 168 signers and tens of thousands of fingerspelling

segments; these are the testbeds used in our experiments.

Prior work on fingerspelling detection [54, 50, 49, 53]

employs visual features from optical flow or pre-defined

hand keypoints. For sign language data collected in the

wild, the quality of pose estimates is usually low, making

them a poor choice as input to a detector (as we show in

our experiments). Tsechpenakis et al. [50, 49] proposed

a statistical procedure to detect changes in video for fin-

gerspelling detection; however, these were tested anecdo-

tally, in controlled environments and simplified scenarios.

Related work on detection of sign language segments (in

video containing both signing and non-signing) uses recur-

rent neural networks (RNN) to classify individual frames

into signing/non-signing categories [38]. We compare our

approach to baselines that use ideas from this prior work.

Prior work [38, 54] has largely treated the detection task

as frame classification, evaluated via classification accu-

racy. Though sequence prediction is considered in [50, 49],

the model evaluation is qualitative. In practice, a detection

model is often intended to serve as one part of a larger sys-

tem, producing candidate segments to a downstream recog-

nizer. Frame-based metrics ignore the quality of the seg-

ments and their effect on a downstream recognizer.

Our modeling approach is based on the intuition that

training with related tasks including recognition and pose

estimation should help in detecting fingerspelling segments.

Multi-task approaches have been studied for other related

tasks. For example, Li et al. [34] jointly train an object de-

tector and a word recognizer to perform text spotting. In

contrast to this approach of treating detection and recogni-

tion as two parallel tasks, our approach further allows the

detector to account for the performance of the recognizer.

In sign language recognition, Zhou et al. [56] estimate hu-
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man pose keypoints while training the recognizer. However,

the keypoints used in [56] are manually annotated. Here we

study whether we can distill knowledge from an external

imperfect pose estimation model (OpenPose).

3. Task and metrics

We are given a sign language video clip with N frames

I1, ..., IN containing n fingerspelling segments {x∗
i }1≤i≤n

(∗ denotes ground truth), where x∗
i = (s∗i , t

∗
i ) and s∗i , t

∗
i

are the start and end frame indices of the ith segment. The

corresponding ground-truth letter sequences are {l∗i }1≤i≤n.

Detection task The task of fingerspelling detection is

to find the fingerspelling segments within the clip. A

detection model outputs m predicted segment-score pairs

{(x̂i, fi)}1≤i≤m where x̂i and fi are the ith predicted seg-

ment and its confidence score, respectively.

AP@IoU A metric commonly used in object detec-

tion [36] and action detection [21, 19] is AP@IoU. Pre-

dicted segments, sorted by score fi, are sequentially

matched to the ground-truth segment x∗
j with the highest

IoU (intersection over union, a measure of overlap) above

a threshold δIoU . Once x∗
j is matched to a x̂i it is removed

from the candidate set. Let k(i) be the index of the ground-

truth segment x∗
k(i) matched to x̂i; then formally,

k(i) = argmax
j:IoU(x̂i,x∗

j
)>δIoU , j 6=k(t)∀t<i

IoU(x̂i, x
∗
j ). (1)

Precision and recall are defined as the proportions of

matched examples in the predicted and ground-truth seg-

ment sets, respectively. Varying the number of predic-

tions m gives a precision-recall curve p(r̃). The aver-

age precision (AP) is defined as the mean precision over

Nr + 1 equally spaced recall levels [0, 1/Nr, ..., 1]
1, where

the precision at a given recall is defined as the maxi-

mum precision at a recall exceeding that level: AP =

1
Nr

Nr∑

i=1

max
r̃:r̃≥i/Nr

p(r̃). AP@IoU can be reported for a range

of values of δIoU .

Recognition task The task of recognition is to transcribe

x̂ = (ŝ, t̂) into a letter sequence l̂. The recognition accuracy

of a predicted sequence l̂ w.r.t. the ground truth l
∗ is defined

as Acc(l∗, l̂) = 1−D(l∗, l̂)/|l∗|, where D is the edit (Lev-

enstein) distance and |l| is the length of a sequence. Note

that Acc can be negative.

Prior work has considered recognition mainly applied to

ground-truth segments x∗; in contrast, here we are con-

cerned with detection for the purpose of recognition. We

match a predicted x̂j to a ground-truth x∗
i and then evaluate

the accuracy of l̂j w.r.t. l∗i . Thus, in contrast to a typical ac-

tion detection scenario, here IoU may not be perfectly cor-

related with recognition accuracy. For example, a detected

1
Nr is set to 100 as in [36].

segment that is too short can hurt recognition much more

than a segment that is too long. We propose a new metric,

AP@Acc, to measure the performance of a fingerspelling

detector in the context of a given downstream recognizer.

AP@Acc This metric uses the letter accuracy of a recog-

nizer to match between predictions and ground-truth. It also

requires an IoU threshold to prevent matches between non-

overlapping segments. As in AP@IoU, predicted segments

are sorted by score and sequentially matched:

k(i) = argmax
j:IoU(x̂i,x

∗

j )>δIoU , j 6=k(t) ∀t<i

Acc(l∗j ,Rec(Iŝi:t̂i
))>δacc

Acc(l∗j , Rec(Iŝi:t̂i)), (2)

where Rec(Is:t) is the output (predicted letter sequence)

from a recognizer given the frames Is:t. We can report

AP@Acc for multiple values of δacc.

Maximum Sequence Accuracy (MSA) Both AP@IoU

and AP@Acc measure the precision of a set of detector pre-

dictions. Our last metric directly measures just the perfor-

mance of a given downstream recognizer when given the

detector’s predictions. We form the ground-truth letter se-

quence for the entire video I1:N by concatenating the let-

ters of all ground-truth segments, with a special “no-letter”

symbol ∅ separating consecutive letter sequences:

L
∗ = ∅, l∗1, ∅, . . . , ∅, l

∗
n, ∅. (3)

Note that ∅ is inserted only where non-fingerspelling frames

exist. For instance, the video in Figure 1 would yield

L
∗ = PIRATES∅PATRICK. We similarly obtain a full-

video letter sequence from the predicted segments. We sup-

press detections with score fi below δf and apply local non-

maximum suppression, resulting in a set of non-overlaping

segments x̂1, . . . , x̂n. Each of these is fed to the recognizer,

producing l̂i = Rec(Iŝi:t̂i). Concatenating these in the

same way as in (3) gives us the full-video predicted letter

sequence L̂(δf ). We can now treat L∗ and L̂ as two letter

sequences, and compute the transcription accuracy. Maxi-

mum sequence accuracy (MSA) is defined as

MSA = max
δf

Acc(L∗, L̂(δf )). (4)

Like AP@Acc, MSA depends on both the detector and

the given recognizer Rec. By comparing the MSA for a

given detector and for an “oracle detector” that produces

the ground-truth segments, we can obtain an indication of

how far the detector output is from the ground-truth.

4. Models for fingerspelling detection

Figure 2 sketches several baseline models and our pro-

posed model, described below.

4.1. Baseline models

Baseline 1: Frame-based detector This model clas-

sifies every frame as positive (fingerspelling) or negative
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Figure 2: Detection models. (a) Baselines 1 and 2. The frame labels are binary labels and augmented letter labels, re-

spectively, for baselines 1 and 2. Lframe−seq is a per-frame cross-entropy loss for baseline 1 and modified CTC loss for

baseline 2. (b): Baseline 3, modified R-C3D; Ldet is the standard detection loss. (c) Our multi-task model trained with a

combination of detection loss, recognition loss using a recognizer that takes in the ground-truth segments; letter error loss

using a recognizer that takes in the detections; and pose estimation loss computed relative to pose pseudo-labels.

(non-fingerspelling), and is trained using the per-frame

cross-entropy loss, weighted to control for class imbalance.

Each frame is passed through a convolutional network to ex-

tract visual features, which are then passed to a multi-layer

bidirectional long short-term memory RNN (LSTM) to take

temporal context into account, followed by a linear/sigmoid

layer producing per-frame class posterior probabilities.

To convert the frame-level outputs to predicted segments,

we first assign hard binary frame labels by thresholding the

posteriors by p̄. Contiguous sequences of positive labels are

taken to be the predicted segments, with a segment score f
computed as the average posterior of the fingerspelling class

for its constituent frames. We repeat this process for de-

creasing values of p̄, producing a pool of (possibly overlap-

ping) segments. Finally, these are culled using thresholding

on f and non-maximum suppression limiting overlap, pro-

ducing a set of x̂s as the final output.

Baseline 2: Recognition-based detector Instead of

classifying each frame into two classes, this baseline ad-

dresses the task as a sequence prediction problem, where

the target is the concatenation of true letter sequences sepa-

rated by ∅ indicating non-fingerspelling segments, as in (3).

The frame-to-letter alignment in fingerspelling spans is usu-

ally unknown during training, so we base the model on con-

nectionist temporal classification (CTC) [17]: We generate

frame-level label softmax posteriors over possible letters,

augmented by ∅ and a special blank symbol, and train by

maximizing the marginal log probability of label sequences

that produce the true sequence under CTC’s “label collaps-

ing function” that removes duplicate frame labels and then

blanks (we refer to this as the CTC loss).

In this case we have a partial alignment of sequences and

frame labels, since we know the boundaries between ∅ and

fingerspelling segments, and we use this information to ex-

plicitly compute a frame-level log-loss in non-fingerspelling

regions. This modification stabilizes training and improves

performance. At test time, we use the model’s per-frame

posterior probability of fingerspelling, 1− p(∅), and follow

the same process as in baseline 1 (frame-based) to convert

the per-frame probabilities to span predictions.

Baseline 3: Region-based detector This model directly

predicts variable-length temporal segments that potentially

contain fingerspelling, and is adapted from R-C3D [52], a

3D version of the Faster-RCNN [43]. The model first ap-

plies a 2D ConvNet on each frame; additional 3D convolu-

tional layers are applied on the whole feature tensor to cap-

ture temporal information. Unlike [52], we did not directly

apply an off-the-shelf 3D ConvNet such as C3D [48], since

its large stride may harm our ability to capture the delicate

movements and often short sequences in fingerspelling.

A region proposal network is applied to the feature ten-

sor, predicting shifts of potential fingerspelling segments

with respect to (temporal, 1D) anchors, and a binary label

indicating whether the predicted proposal contains finger-

spelling. The detector is trained with a loss composed of

two terms for (binary) classification and (positional) regres-

sion, Ldet = Lcls + Lreg . See [52] for further details. At

test time, we use greedy non-maximum suppression (NMS)

on fingerspelling proposals to eliminate highly overlapping

and low-confidence intervals. Since fingerspelling detection

is a binary classification task, we do not use a second stage

classification subnet as in the original RC3D [52].
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4.2. Our approach: A multitask model

Our model is based on the region-based detector, with

the key difference being that fingerspelling recognition and

pose estimation are incorporated into training the model.

Recognition loss is computed by passing the finger-

spelling segments to a recognizer. Our intuition is that in-

cluding the recognition task may help the model learn richer

features for fingerspelling, which may improve its ability to

distinguish between fingerspelling and non-fingerspelling.

The recognizer here plays a role similar to the classification

subnet in RC3D. But since we don’t assume that frame-

letter alignment is available at training time, we directly

build a sub-network for letter sequence prediction (the or-

ange “REC” in Figure 2).

The recognition sub-network follows the attention-based

model proposed for fingerspelling recognition in [45], using

only the ground-truth segment for the recognition loss. The

recognition loss Lrec is computed as the CTC loss summed

over the proposed regions predicted by the detector:

Lrec =

n∑

i=1

Lctc(Rec(Is⋆
i
:t⋆

i
), l∗i ) (5)

where n is the number of true fingerspelling segments.

Letter error rate loss Though Lrec should help learn

an improved image feature space, the performance of the

detector does not impact the recognizer directly since Lrec

uses only the ground-truth segments. Ldet encourages the

model to output segments that are spatially close to the

ground truth. What’s missing is the objective of making

the detector work well for the downstream recognition. To

this end we add a loss measuring the letter error rate of a

recognizer applied to proposals from the detector:

Ller = −
m∑

i=1

p(x̂i)Acc(l∗k(i), Rec(Iŝi:t̂i)), (6)

where as before, k(i) is the index of the ground-truth seg-

ment matched (based on IoU) to the ith proposal x̂i =
(si, ti), m is the number of proposals output by the detec-

tor, and Acc is the recognizer accuracy. The loss can be

interpretated as the expectation of the negative letter accu-

racy of the recognizer on the proposals given to it by the

detector. Since Acc, which depends on the edit distance, is

non-differentiable, we approximate the gradient of (6) as in

REINFORCE [51]:

∇Ller ≈ −
M∑

i=1

p(x̂i)Acc(l∗k(i), Rec(Iŝi:t̂i)∇ log p(x̂i),

(7)

where the sum is over the M highest scoring proposals, and

p(x̂i) is the normalized score fi/
∑M

i=1 fi.
Pose estimation loss Since sign language is to a large

extent based on body articulation, it is natural to consider

incorporating pose into the model. However, we can not as-

sume access to ground-truth pose even in the training data.

Instead, we can rely on general-purpose human pose esti-

mation models, such as OpenPose [5], trained on large sets

of annotated images.

Prior work on sign language has used pose estimates ex-

tracted from an external model as input to models for sign

language-related tasks [24, 38, 41, 32, 7]. On the con-

trolled studio data used in that work, the quality of extracted

keypoints is reliable. On more challenging real-world data

like ChicagoFSWild/ChicagoFSWild+ [45], we find the de-

tected keypoints from OpenPose to be much less reliable,

presumably in part due to the widespread motion blur in the

data (see Figure 5 for examples). Indeed, as we show in our

experiments, using automatically extracted poses as input to

the model does not significantly improve performance.

Instead of relying on estimated pose at test time, we treat

the estimated pose as a source of additional supervision for

our model at training time. We use keypoints from Open-

Pose as pseudo-labels to help distill knowledge from the

pre-trained pose model into our detection model. As pose is

used only as an auxiliary task, the quality of those pseudo-

labels has less impact on detection performance than does

using pose as input at test time.

The pose estimation sub-network takes the feature maps

extracted by the model (shared with the detector and recog-

nizer) and applies several transposed convolutional layers to

increase spatial resolution, producing for frame It a set of

heat maps bt,1, . . . ,bt,P for P keypoints in the OpenPose

model. We also use OpenPose to extract keypoints from It;
each estimated keypoint p is accompanied by a confidence

score σt,p. We convert these estimates to pseudo-ground

truth heatmaps b
∗
t,1, . . . ,b

∗
t,P . The pose loss is the per-

pixel Euclidean distance between the predicted and pseudo-

ground truth maps:

Lpose =

T∑

t=1

P∑

p=1

‖bt,p − b
∗
t,p‖

2 · 1σt,p>τ , (8)

where the threshold on the OpenPose confidence is used to

ignore low-confidence pseudo-labels.

Putting it all together, the loss for training our model is

L = Ldet + λrecLrec + λlerLler + λposeLpose, (9)

with tuned weights λler, λrec, λpose controlling the relative

importance of different loss components.

Second stage refinement Since we expect reasoning

about fine-grained motion and handshape differences to be

helpful, we would like to use high-resolution input images.

However, since the input video clip covers hundreds of

frames, the images need to be downsampled to fit into the

memory of a typical GPU.
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To mitigate the issue of low resolution in local regions,

we “zoom in” on the original image frames using the atten-

tion map produced by the reocognizer sub-network. This

idea is based on the iterative attention approach of [45].

As large attention values indicate higher importance of the

corresponding region for fingerspelling, cropping the ROI

surrounding a location with high attention values helps in-

crease the resolution of that part while avoiding other irrel-

evant areas. To achieve this, we first complete training of

the whole model described above. Suppose the image se-

quence of original resolution is Io1:N , the lower-resolution

frame sequence used in the first round of training is Ig1:N ,

and the trained model is H. We run inference on Ig1:N with

the recognition sub-network Hrec to produce a sequence of

attention maps A1:N . We use A1:N to crop Io1:N into a se-

quence of local ROIs I l1:N . Specifically, at timestep n, we

put a bounding box bn of size R|In| centered on the peak of

attention map An, where R is the zooming factor. We av-

erage the bounding boxes of the 2a+ 1 frames centered on

the nth frame to produce a smoother cropping “tube” bs1:N :

bsn =
1

2a+ 1

a∑

i=−a

(bn+i) (10)

The local ROIs I l1:N are cropped from Io1:N with bs1:N .

Finally, we perform a second stage of training with both

Ig1:N and I l1:N as input. At each timestep n, the backbone

conv layers are applied on Ign and I ln to obtain global and

local feature maps, respectively. The two feature maps are

concatenated for detection and recognition. The pseudo-

ground truth pose maps are estimated on I
(g)
t and I

(l)
t sepa-

rately. The overall loss for the second-stage training is

Lfinal =Ldet + λrecLrec + λlerLler

+ λpose(L
(g)
pose + L(l)

pose)
(11)

The key difference between our approach and the iterative

attention of [45] is that we do not drop the input images, but

rather use the newly generated ROIs as extra input. In fin-

gerspelling detection, both global context (e.g., upper body

position) and local details (e.g., handshape) are important.

5. Experiments

5.1. Setup

We conduct experiments on ChicagoFSWild [46] and

ChicagoFSWild+ [45], two large-scale ASL fingerspelling

datasets collected in the wild. Though the datasets were

introduced for fingerspelling recognition (with the bound-

aries given), the URLs of the raw ASL videos and the fin-

gerspelling start/end timestamps are provided. We split

each video clip into 300-frame chunks (∼12s) with a 75-

frame overlap between chunks. The longest fingerspelling

sequence in the data is 290 frames long. We use the same

training/dev/test data split as in the original datasets (see ad-

ditional data statistics in the supplementary material). The

image frames are center-cropped and resized to 108× 108.

We take the convolutional layers from VGG-19 [47] pre-

trained on ImageNet [9] as our backbone network, and fine-

tune the weights during training. For baselines 1 and 2, an

average pooling layer is applied on the feature map, giving

a 512-dimensional vector for each frame, which is fed into

a one-layer Bi-LSTM with 512 hidden units. In baseline 3

and our model, the feature map is further passed through a

3D conv + maxpooling layer (with temporal stride 8). In

the region proposal network, the lengths of the anchors are

fixed at 12 values ranging from 8 to 320, which are chosen

according to the typical lengths of fingerspelling sequences

in the data. The IoU thresholds for positive/negative an-

chors are respectively 0.7/0.3. The predicted segments are

refined with NMS at a threshold of 0.7. The magnitude of

optical flow is used as a prior attention map as in [45]. We

use the same recognizer (Rec) for (5) and (6). The pose

sub-net is composed of one transposed convolutional layer

with stride 2. We use OpenPose [5] to extract 15 body key-

points and 2 × 21 hand keypoints (both hands) as pseudo

pose labels. Keypoints with confidence below τ = 0.5 are

dropped. For second-stage refinement, the moving averag-

ing of bounding boxes in (10) uses 11 frames (a = 5) and

the frame sequence is downsampled by a factor of 2 to save

memory. The loss weights (λs) are tuned on the dev set.

To evaluate with AP@Acc and MSA, we train a

reference recognizer with the same architecture as the

recognition-based detector on the fingerspelling training

data. The recognizer achieves an accuracy (%) of 44.0/62.2

on ground-truth fingerspelling segments on ChicagoF-

SWild/ChicagoFSWild+. The accuracy is slightly worse

than that of [45] because we used a simpler recognizer.

In particular, we skipped the iterative training in [45],

used lower-resolution input, and did not use a language

model. We consider δIoU ∈ {0.1, 0.3, 0.5} and δacc ∈
{0, 0.2, 0.4}; δIoU is fixed at 0 for AP@Acc.

5.2. Results

Main results Table 1 compares models using the three

proposed metrics. The values of AP@Acc and MSA de-

pend on the reference recognizer. For ease of compari-

son, we also show the oracle results when the same rec-

ognizer is given the ground-truth fingerspelling segments.

Overall, the relative model performance is consistent across

metrics. Methods that combine detection and recognition

outperform those that do purely detection (baseline 2 vs. 1,

our model vs. baseline 3). In addition, region-based meth-

ods (baseline 3 and our model) outperform frame-based

methods (baseline 1 & 2), whose segment predictions lack

smoothness. We can see this also by examining the frame-
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Table 1: Model comparison on the ChicagoFSWild and

ChicagoFSWild+ test sets. BMN refers to boundary match-

ing network [35]. The right column (GT) shows results

when the “detections” are given by ground-truth finger-

spelling segments.

ChicagoFSWild Base 1 Base 2 Base 3 BMN Ours GT

AP@
IoU

AP@0.1 .121 .310 .447 .442 .495 1.00

AP@0.3 .028 .178 .406 .396 .453 1.00

AP@0.5 .012 .087 .318 .284 .344 1.00

AP@
Acc

AP@0.0 .062 .158 .216 .209 .249 .452

AP@0.2 .028 .106 .161 .157 .181 .349

AP@0.4 .006 .034 .069 .070 .081 .191

MSA .231 .256 .320 .307 .341 .452

(b). ChicagoFSWild+ Base 1 Base 2 Base 3 BMN Ours GT

AP@
IoU

AP@0.1 .278 .443 .560 .580 .590 1.00

AP@0.3 .082 .366 .525 .549 .562 1.00

AP@0.5 .025 .247 .420 .437 .448 1.00

AP@
Acc

AP@0.0 .211 .323 .426 .433 .450 .744

AP@0.2 .093 .265 .396 .401 .415 .700

AP@0.4 .029 .152 .264 .260 .277 .505

MSA .267 .390 .477 .470 .503 .630

level performance of the three baselines.2 Their frame-level

average precisions are 0.522 (baseline 1), 0.534 (baseline

2), and 0.588 (baseline 3), which are much closer than the

segment-based metrics, showing how frame-level metrics

can obscure important differences between models. More

details on precision and recall can be found in the supple-

mentary material. The trends in results are similar on the

two datasets. For the remaining analysis we report results

on the ChicagoFSWild dev set.

In addtion to baselines adapted from related tasks, Ta-

ble 1 includes a comparison to a recent method developed

for action detection: the boundary matching network [35].

We also compared to the multi-stage temporal convolutional

network [12] (details in the supplementary). Neither ap-

proach is better than ours on the fingerspelling benchmark.

Analysis of evaluation metrics The AP@Acc results

are largely invariant to δIoU (see supplementary material)

and we report results for δIoU = 0 (i.e., matching ground

truth segment to detections based on accuracy, subject to

non-zero overlap). We also examine the relationship be-

tween sequence accuracy and the score threshold of each

model (Figure 3). Our model achieves higher sequence ac-

curacy across all thresholds. The threshold producing the

best accuracy varies for each model. The average IoUs

of the four models for the optimal threshold δf are 0.096,

0.270, 0.485, and 0.524 respectively.

Ablation study Our model reduces to baseline 3 when

all loss terms except the detection loss are removed. Table 2

2For the region-based model (baseline 3) we take the maximum proba-

bility of all proposals containing a given frame as that frame’s probability.

Figure 3: De-

pendence of se-

quence accuracy

on score thresh-

old δf .

shows how model performance improves as more tasks are

added. The gain due to the recognition loss alone is smaller

than for the frame-based models (base 1 vs. base 2). The

recognition sub-network contributes more through the LER

loss, which communicates the recognition error to the de-

tector directly. The second-stage refinement does not al-

ways boost AP@IoU; the gain is more consistent in the

accuracy-based metrics (AP@Acc, MSA). The zoom-in ef-

fect of the second-stage refinement increases the resolution

of the hand region and improves recognition, though the

IoU may remain similar. The downsampling in the second-

stage refinement also leads to some positioning error, re-

flected in the slight drop in AP at IoU=0.5, though a minor

temporal shift does not always hurt recognition.

Examples Figure 4 shows examples in which our model

correctly detects fingerspelling segments while baseline 3

fails. Fingerspelling can include handshapes that are vi-

sually similar to non-fingerspelled signs (Figure 4a). Fin-

gerspelling recognition, as an auxiliary task, may improve

detection by helping the model distinguish among fine-

grained handshapes. The signer’s pose may provide addi-

tional information for detecting fingerspelling (Figure 4b).

Figure 4c shows an example where the signing hand is a

small portion of the whole image; baseline 3 likely fails due

Figure 4: Example segments detected by different models.

Bottom row: ROIs used in second-stage refinement. GT:

Ground-truth segment. The sequence is downsampled.
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Table 2: Impact of adding loss components to our model

training. Results are on the ChicagoFSWild dev set.

Base 3 + rec +LER +pose +2nd stage

AP@
IoU

AP@0.1 .496 .505 .531 .539 .551

AP@0.3 .466 .479 .498 .500 .505

AP@0.5 .354 .362 .392 .399 .393

AP@
Acc

AP@0.0 .285 .290 .299 .302 .313

AP@0.2 .222 .231 .245 .255 .267

AP@0.4 .094 .097 .103 .107 .112

MSA .359 .365 .378 .383 .386

to the low resolution of the signing hand. The second-stage

refinement enables the model to access a higher-resolution

ROI, leading to a correct detection.

Error analysis Qualitatively, we notice three common

sources of false positives: (a) near-face sign, (b) numbers,

and (c) fingerspelling handshape used in regular signing

(see Figure 6). Such errors can potentially be reduced by

incorporating linguistic knowledge in the detector, which is

left as future work. We also observe that short fingerpelling

segments are harder to detect. See the supplementary mate-

rial for the performance breakdown according to length.

Other input modalities Our model is trained on RGB

images. Motion and pose are two common modalities used

in sign language tasks [24, 38, 54], so it is natural to ask

whether they would be helpful instead of or in addition to

RGB input. We use magnitude of optical flow [13] as the

motion image and the pose heatmap from OpenPose as the

Figure 5: Pose estimation failure cases.

(a),

(b),

(c),

Figure 6: False positive detections. The glosses in (a), (b),

(c) are respectively “PEOPLE”, “2018”, “THAT-[C..}”.

Table 3: Comparison among modalities for the region-

based detector (baseline 3) on the ChicagoFSWild dev set.

RGB+Pose(in): both RGB and pose image used as input.

RGB+Opt(in): both RGB and optical flow used as input.

RGB+Pose(out): detector trained jointly with pose estima-

tion (our model).

AP@IoU RGB Pose Opt

RGB+Opt

(in)
RGB+Pose

(in)
RGB+Pose

(out)

AP@0.1 .496 .368 .476 .503 .501 .505

AP@0.3 .466 .332 .438 .472 .470 .478

AP@0.5 .354 .237 .315 .357 .346 .366

pose image. Raw RGB frames as input outperform the other

two modalities, although each of them can be slightly help-

ful when concatenated with the RGB input (see Table 3).

The pose image is less consistently helpful, likely because

pose estimation is very challenging on our data and Open-

Pose often fails to detect the keypoints especially in the

signing hand (see Figure 5). However, treating pose esti-

mation as a secondary task, as is done in our model, suc-

cessfully “distills” the pose model’s knowledge and outper-

forms the use of additional modalities as input. We note

that using all three modalities can boost performance fur-

ther. Using both RGB and motion images as input while

jointly estimating pose, the detector achieves .523/.495/.367

for AP@IoU(0.1/0.3/0.5), improving over the best model in

Table 3. However, optimizing performance with multiple

modalities is not our main focus, and we leave further study

of this direction to future work.

6. Conclusion

We study the task of sign language fingerspelling detec-

tion, motivated by the goal of developing it as an upstream

component in an automatic recognition system. We propose

a benchmark, based on extending a previously released fin-

gerspelling recognition dataset, and establish a suite of met-

rics to evaluate detection models both on their own merits

and on their contribution to downstream recognition. We

investigate approaches adapted from frame classification,

fingerspelling recognition and action detection, and demon-

strate that a novel, multi-task model achieves the best results

across metrics. Beyond standard detection loss, this model

incorporates losses derived from recognition and pose esti-

mation; we show that each of these contributes to the supe-

rior performance of the model.

Our results provide, for the first time, a practical recipe

for fully automatic detection and recognition of finger-

spelling in real-world ASL media. While our focus has

been on fingerspelling, we expect that the techniques, both

in training and in evaluation of the methods, will be helpful

in the more general sign language detection and recognition

domain, which remains our goal for future work.
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