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Abstract

Recently, language-guided global image editing draws

increasing attention with growing application potentials.

However, previous GAN-based methods are not only con-

fined to domain-specific, low-resolution data but also lack-

ing in interpretability. To overcome the collective difficul-

ties, we develop a text-to-operation model to map the vague

editing language request into a series of editing operations,

e.g., change contrast, brightness, and saturation. Each op-

eration is interpretable and differentiable. Furthermore,

the only supervision in the task is the target image, which

is insufficient for a stable training of sequential decisions.

Hence, we propose a novel operation planning algorithm

to generate possible editing sequences from the target im-

age as pseudo ground truth. Comparison experiments on

the newly collected MA5k-Req dataset and GIER dataset

show the advantages of our methods. Code is available at

https://github.com/jshi31/T2ONet.

1. Introduction

Image editing is ubiquitous in our daily life, especially

when posting photos on social media such as Instagram or

Facebook. However, editing images using professional soft-

ware like PhotoShop requires background knowledge for

image processing and is time-consuming for the novices

who want to quickly edit the image following their inten-

tion and post to show around. Furthermore, as phones and

tablets becoming users’ major mobile terminal, people pre-

fer to take and edit photos on mobile devices, making it

even more troublesome to edit and select regions on the

small screen. Hence, automatic image editing guided by

the user’s voice input (e.g. Siri, Cortana) can significantly

alleviate such problems. We research global image editing

via language: given a source image and a language edit-

ing request, generate a new image transformed under this

request, as firstly proposed in [34]. Such a task is chal-

lenging because the model has to not only understand the

language but also edit the image with high fidelity. Rule-

based methods [22, 21] transfer the language request into

sentence templates and further map the templates into a se-
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Figure 1. Language-Guided Global Image Editing: given the in-

put image I0 and the request, we predict a sequence of actions at

to edit the image progressively with a series of intermediate im-

ages It generated. And the final edited image is our output, which

should accord with the request. Operation Planning: the input im-

age I0 and target image Ig are given, and we plan a sequence of

action to make the final edited image reach the target image Ig .

quence of executable editing operations. However, they re-

quire additional language annotations and suffer from un-

specific editing requests. [30] directly maps the language to

operations with the capability to accept the vague editing re-

quest, yet still need the operation annotation for training. A

more prevalent track is the GAN-based method [34], which

models the visual and textual information by inserting the

image and language features into a neural network genera-

tor that directly outputs the edited image. However, GAN-

based models lack the interpretability about how an image

was edited through a sequence of common editing opera-

tions (e.g. tone, brightness). Thus, they fail to allow users

to modify the editing results interactively. Moreover, GANs

struggle with high-resolution images and is data-hungry.

To provide an interpretable yet practical method for

language-guided global image editing, in this paper, we pro-

pose a Text-to-Operation Network (T2ONet). The network

sequentially selects the best operations from a set of prede-

fined everyday editing operations to edit the image progres-

sively according to the language’s comprehension and the

visual editing feedback. As the operations are resolution-

independent, such method will not deteriorate the image

resolution. Fig. 1 shows the process of mimicking human

experts for professional photo editing and opens the possi-

bility for human-computer interactions in future work.
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One crucial difficulty for training our model is the lack

of supervision information for editing sequences—we do

not have access to intermediate editing operations and their

parameters. The only available supervision is the input im-

age’s tuple, the target image, and the language editing re-

quest. One possible solution is to train our model by Re-

inforcement Learning (RL). For example, the model can

try different editing sequences and get rewards by compar-

ing the edited images to the target images. However, it is

well-known that RL is highly sensitive to hyper-parameters

and hard to train when the action space is large (e.g. high-

dimensional continuous action). On the other hand, it is

demanding yet infeasible to collect annotations for all inter-

mediate operations and their parameters in practice. There-

fore, a novel training schema is expected to solve our task.

To overcome this difficulty, we devise a weakly-supervised

method to generate pseudo operation supervision. Inspired

from the classical forward search planning [29], we propose

an operation-planning algorithm to search the sequence of

operations with their parameters that can transform the in-

put image into the target image, as shown in Fig. 1. It works

as an inverse engineering method to recover the editing pro-

cedure, given only the input and the edited images. Such

searched operations and parameters serve as pseudo super-

vision for our T2ONet. Also, as the target image is used as

the pixel-level supervision, we prove its equivalence to RL.

Besides, we show the potential of the planning algorithm to

be extended to local editing and used to edit a new image

directly.

In summary, our contributions are fourfold. First, we

propose T2ONet to predict interpretable editing operations

for language-guided global image editing dynamically. Sec-

ond, we create an operation planning algorithm to obtain the

operation and parameter sequence from the input and target

images, where the planned sequences help train T2ONet

effectively. Third, a large-scale language-guided global

image editing dataset MA5k-Req is collected. Fourth,

we reveal the connection between pixel supervision and

RL, demonstrating the superiority of our weakly-supervised

method compared with RL and GAN-based methods on

AM5k-Req and GIER [30] datasets through both quantita-

tive and qualitative experimental results.

2. Related Work

Language-based image editing. Language-based image

editing tasks can be categorized into one-turn and multi-

turn editing. In one-turn editing, the editing is usually done

in one step with a single sentence [6, 26, 24, 18]. Dong et

al. [6] proposed a GAN-based encoder-decoder structure to

address the problem. Nam et al. [26] leverage the similar

generator structure but use a text-adaptive discriminator to

guide the generator in the more detailed word-level signal.

However, both [6, 26] simply use concatenation to fuse the

textual and visual modalities. Mao et al. [24] proposes the

bilinear residual layer to merge two modalities to explore

second-order correlation. Li et al. [18] further introduces a

text-image affine combination module to select text-relevant

area for automatic editing and use the detail correction mod-

ule to refine the attributes and contents. However, the above

works are built on the “black box” GAN model and inherit

its limitations. Shi et al. [30] introduces a new language-

guided image editing (LDIE) task that edits by using in-

terpretable editing operations, but its training requires the

annotation of the operation.

For multi-turn editing, the editing request is given iter-

atively in a dialogue, and the edit should take place before

the next request comes [7, 4]. However, only toy datasets

are proposed for this task.

Our task belongs to a variant of one-turn editing that fo-

cuses on global image editing, which is proposed in [34],

which also uses a GAN-based method by augmenting the

image-to-image structure [14] with language input. Differ-

ent from all the above, our method can edit with complex

language and image via understandable editing operations

without the need for operation annotations

Image editing with reinforcement learning. To en-

able interpretable editing, [13] introduces a reinforcement

learning (RL) framework with known editing operations

for automatic image retouching trained from unpaired im-

ages. However, it cannot be controlled by language re-

quests. Task planning. Task planning aims at schedul-

ing a sequence of task-level actions from the initial state

to the target state. Most related literature focuses on the

pre-defined planning domain through symbolic representa-

tion [25, 8, 17]. Our operation planning is reminiscent of

task planning[29]. However, it is hard to use symbolic rep-

resentation in our case because of high-dimensional states

and continuous action space.

Modular networks. The modular networks are widely

adopted in VQA [1, 11, 15, 10, 36, 23] and Visual Ground-

ing [12, 20, 37]. In the VQA task, the question is parsed

into a structured program, and each function in the program

is a modular network that works specifically for a sub-task.

The reasoning procedure thus becomes the execution of the

program. However, the parser has discrete output, and it is

usually trained with program semi-supervision [11, 15] or

with only the final supervision in an RL fashion [23]. LDIE

task has a similar setting that only the target image is given

as supervision, but we facilitate our model training by our

planning algorithm.

3. Method

We achieve the language-guided image editing by map-

ping the editing request into a sequence of editing opera-

tions, conditioned on both input image and language. We

propose T2ONet to achieve such mapping (Sec. 3.3). The
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Figure 2. Structure of the T2ONet. An LSTM encoder embeds the request, and the T2O-Cell progressively decodes the input image and

request into action and image series. At each step t, the T2O-Cell generates the next action at and image It+1 based on previous operation

ot−1, hidden state h
dec
t−1, and image It.

critical difficulty is that we only have the target image’s su-

pervision but no supervision of the sequence. To tackle this

difficulty, we introduce the idea of planning into the mod-

eling to obtain a feasible operation sequence as the pseudo

ground truth (Sec. 3.4). Finally, we talk about the training

process (Sec. 3.5) and the connection to RL (Sec. 3.6).

3.1. Problem Formulation

Starting with an input image I0 and a language request

Q, the goal is to predict an output image similar to the target

image Ig . In contrast to the GAN-based model, which out-

puts the edited image in one step, we formulate the editing

problem through a sequential prediction of action sequence

{at}
T
t=0 with length T +1 to edit the input image following

the language request. Applying at to It leads to It+1, and

the final action aT is END action that will not produce new

image, as shown in Fig. 2. In this way, the model generates

a sequence of images {It}
T
t=1, where IT is the final output

or target image. An action is defined as a = (o, α), where

o is the choice of discrete editing operations, and α is the

continuous parameter of the operation.

3.2. Operation Implementation

We adopt six operations: brightness, saturation, con-

trast, sharpness, tone, and color. Among them, brightness

and saturation is implemented by scaling H and S chan-

nels in the HSV space [9], controlled by a single re-scaling

parameter. Sharpness is implemented by augmenting the

image with spatial gradients, controlled by a single param-

eter. Contrast is also a single-parameter operation and im-

plemented following [13]. Tone is controlled by eight pa-

rameters that construct a pixel value mapping curve, follow-

ing [13]. Finally, color is similar to tone but is implemented

with three curves that operate on each of RGB channels,

each controlled by eight parameters. The details of the op-

eration implementation are in the Appx. H.

3.3. The Text­to­Operation Network (T2ONet)

We propose the T2ONet to map the language request and

the input image to a sequence of actions, which optimizes

the joint action distribution, where each new action is pre-

dicted based on its past actions and intermediate images:

P ({at}
T
t=0|I0, Q) = P (a0|I0, Q)×

T
∏

t=1

P (at|{aτ}
t−1
τ=0, {Iτ}

t
τ=0, Q). (1)

We denote state st as the condensed representation of
(

{aτ}
t−1
τ=0, {Iτ}

t
τ=0, Q

)

, then the objective is transformed

to: P ({at}
T
t=0|s0) =

∏T

t=0 P (at|st) . To realize the policy

function P (at|st), we adopt an Encoder-Decoder LSTM ar-

chitecture [5], shown in Fig. 2. The request Q = {xi}
L
i=1 is

encoded using a bi-directional LSTM upon the GloVe word

embeddings [28] into a series of hidden states {henc
i }

L
i=1

and the final cell state menc
L . Then, an LSTM decoder

is represented as hdec
t+1,m

dec
t+1 = f(hdec

t ,mdec
t , qt), where

qt = concat(Embedding(ot); vt). ot, h
dec
t , and mdec

t are

the predicted operation, the hidden state, and the cell state

at the t-th step, respectively (we omit mdec
t in Fig. 2 for

simplicity). Similar to word embedding, each operation is

embedded into a feature vector through a learnable opera-

tion embedding layer. vt = CNN(It) denotes the image

embedding via CNN at the t-th step. Then, the attention

mechanism [2] is applied to better comprehend the language

request βti =
exp ((hdec

t
)Thenc

i
)

∑
L

i′=1
exp ((hdec

t
)Thenc

i′
)
, ct =

∑

i=1 βtih
enc
i ,

st = tanh(Wc[ct;h
dec
t ]). The state vector st is now the

mixed feature of past images, operations, and the language

request. Since the parameter α is dependent on the op-

eration o, we further decompose the policy function as

P (at|st) = P (ot, αt|st) = P (ot|st)P (αt|ot, st), where

P (ot|st) is obtained through a Fully-Connected (FC) layer
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Algorithm 1: Operation Planning

Input: I0, Ig , max operation step N , threshold ǫ,
beamsize B, operation set O

1 p=[I0]
2 cost(I) = ||I − Ig||1
3 for t in 1 : N do

4 q ← [ ]
5 for I ∈ p do

6 for o ∈ O do

7 α∗ = argminα cost(o(I, α))
8 I∗ ← o(I, α∗)
9 q ← q ∪ I∗

10 end

11 end

12 q ← Sort(q), sortkey = cost(I∗)
13 p = q[: B]
14 for I ∈ p do

15 if cost(I) < ǫ then

16 Break All Loop

17 end

18 end

19 end

20 {ot}, {αt}, {It} ← Backtracking(p)
21 return {ot}, {αt}, {It}

to predict the operation ot, which is expressed as:

P (ot|st) = softmax(Wost + bo). (2)

For parameter prediction P (αt|ot, st), different operations

can have different parameter dimensions. Therefore, we

create an operation-specific FC layer for each operation to

calculate: αt = W
(o)
α st + b

(o)
α , where superscription (o)

is the indicator of the specific FC layer for operation o.

Hence, P (αt|ot, st) is modeled as a Gaussian distribution

N (αt;µαt
, σα):

P (αt|ot, st) = N (αt;W
(ot)
α st + b(ot)α , σα). (3)

Finally, the executor will apply the operation ot and its pa-

rameter αt to the image It to obtain the new image It+1.

The process from It to It+1 will repeat until the operation

is predicted as the “END” token.

3.4. Operation Planning

To provide stronger supervision for training policy func-

tion, we introduce the operation planning algorithm that can

reverse engineer high-quality action sequences from only

the input and target images. Concretely, given the input

image I0 and the target image Ig , plan an action sequence

{at}
T
0 to transform I0 into Ig . This task is similar to the

classical planning problem [8], and we solve it with the idea

Target Planning 

Sequence

Tone curve

(0.0259)

Color curve 

(0.0076)

Input

Input

(0.3381)L1 distance to target

Figure 3. Visualization of the operation planning trajectory. The

number The L1 distance is monotonically decreasing and can re-

cover highly similar result to the target.

of forward-search. Algorithm 1 shows the operation plan-

ning process. We define the planning model with action a,

image I as state, and state-transition function I ′ = o(I, α),
where o is the operation. The state transition function takes

image I and parameter α as input and outputs a new image.

The goal is to make the final image IT similar to Ig as within

an error ǫ, specified by the L1 distance ||IT − Ig||1 < ǫ. To

reduce redundant edits, we restrict each operation to be only

used once and limit the maximum edit step to N .

In algorithm 1, we wrap the goal into a cost function

and try to minimize the cost during each step. However,

the action a includes both discrete operation o and contin-

uous parameter α, which could be high-dimensional with

extremely large searching space. To make computing ef-

ficient, we only loop over all the discrete operation candi-

dates, but as the operation is chosen, we optimize the pa-

rameter to minimize the cost function. Such optimization

could significantly reduce the searching space for param-

eters. Since all operations here are differentiable, the op-

timization process could be 0th-, 1st-, and 2nd-order, e.g.,

Nelder-Mead [27], Adam [16], and Newton’s method, re-

spectively. At each step t, the algorithm visits every image

in the image candidate list of beam size B, and for each im-

age, the algorithm enumerates the operation list of size |O|.
Since it has at most N steps, the maximum time complexity

for operation planning is O(NB|O|). In practice, we con-

straint the planning for unrepeated operations. Fig. 3 shows

one trajectory of our planned sequence, as it stops at the

second step since the cost is lower than ǫ = 0.01. Different

operation sets and orders are studied in Sec. 4.5. We further

show two potential extensions of the operation planning al-

gorithm.

Extension1: Planning through a discriminator. The

cost(I) is not limited to ||IT − Ig||1, but can be the image

quality score yield by a pretrained discriminator D without

dependence of the target image. Then our operation plan-

ning can directly edit new images (see Sec. 4.6 for details).

Extension2: Planning for local editing. Although our pa-

per focuses on global editing, the operation planning can be

extended to planning local editing by searching the region

masks with an additional loop, detailed in Sec. 4.6.

3.5. Training

The planning algorithm 1 creates pseudo ground truth

operation {o∗t }
T
t=0 and parameter sequence {α∗

t }
T−1
t=0 to su-
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pervise our model. The operation is optimized by minimiz-

ing the cross-entropy loss (XE):

Lo = −
T
∑

t=0

log(P (o∗t |st)). (4)

Maximizing the log-likelihood for Eq. 3 equals to applying

MSE loss:

Lα =

T−1
∑

t=0

||αt − α∗

t ||
2
2. (5)

Additionally, to utilize the target image supervision, we ap-

ply the image loss as final L1 loss as:

LL1 = ||IT − Ig||1. (6)

The ablation study (Appx. A.1) proves the L1 loss is critical

for better performance. Although teacher forcing technique

is a common training strategy in sequence-to-sequence

model [32], where the target token is passed as the next in-

put to the decoder, teacher forcing does not work for LL1

since the intermediate pseudo-GT input blocks the gradient.

Therefore we train LL1 in a non-teacher forcing fashion and

Lo,Lα in the teacher forcing fashion, alternatively. Our fi-

nal loss is L = Lo + Lα + LL1.

More request-sensitive output. The model is expected

to be request-sensitive: produce diversified edits follow-

ing different requests, rather than simply improve the image

quality regardless of the requests. To improve the request-

sensitivity, we propose to sample the parameter αt from

N (αt;µαt
, σα) in Eq. (3) to train the image loss. In our

default setting, σα = 0, i.e. αt = µαt
. Our motivation

is that sampling the parameter will produce stochastic edit-

ing results, preventing the model from falling into one same

editing pattern or shortcuts regardless of the language. Also,

there exist multiple reasonable edits for one request, so the

LL1 still guarantees the stochastic output images to be rea-

sonable. We observe that increasing σα leads to higher

request-sensitivity (see Sec. 4.5). In fact, the next section

will discuss the above training scheme for image loss with

a close relation with RL.

3.6. Equivalence of Image Loss and DPG

To bridge the equivalence, we adapt an RL baseline from

[13]. Due to space limitations, the detailed introduction of

the baseline is in Appx. B.1, here we focus on the train-

ing for parameter α with RL and its connection to im-

age loss. Let the reward be rt = cost(It−1) − cost(It),
policy πo = P (o|s) in Eq. (2), πα = N (α;µα, σα),

the accumulated reward defined as Gt =
∑T−t

τ=0 γ
τrt+τ

(γ = 1 as [13]), the goal is to optimize the objective

J(π) = E(I0,Q)∼P (D),o∼πoα∼πα
G1. The continuous policy

πα is optimized by Deterministic Policy Gradient algorithm

(DPG) [31]. Different from the common setting [31, 13]

where the Q function is approximated with a neural network

to make it differentiable to action, we approximate Q as G
since our Gt+1 is already differentiable to αt, resulting in

the DPG for each episode as

∇θαJ(π) =
∑

E

T−1

t=0

∇αt
Gt+1∇θααt. (7)

Now, we show the equivalence between image loss and

DPG using the following theorem:

Theorem 1. The DPG for α in Eq. (7) can be rewritten as

∇θαJ(π) = −
∂cost(IT )

∂θα
. (8)

Proof. See Appx. B.2

Theorem 1 provides a new perspective that minimizing

the LL1 for the final image in T2ONet is actually equivalent

to optimizing the model with deterministic policy gradient

at each step.

4. Experiments

4.1. Datasets

MA5k-Req. To push the research edge forward, we create

a large-scale language-guided global image editing dataset.

We annotate language editing requests based on MIT-Adobe

5k dataset [3], where each source image has five different

edits by five Photoshop experts, leading to a new dataset

called MA5k-Req. 4,950 unique source images are se-

lected, and each of the five edits is annotated with one

language request, leading to 24,750 source-target-language

triplets. See Appx. J.1 for data collection details. We split

the dataset as 17,325 (70%) for training, 2,475 (10%) for

validation, and 4,950 (20%) for testing. After filtering the

words occurring less than 2 times, the vocabulary size is

918. Note that [34] also similarly creates a dataset with

1884 triplets for this task, but unfortunately, it has not been

released and is 10 times smaller than ours.

GIER. Recently, GIER dataset [30] is introduced with both

global and local editing. We only select the global edit-

ing samples, leading to a total of 4,721 unique image pairs,

where each is annotated with around 5 language requests,

resulting in 23,171 triplets. we splits them as 18,571 (80%)

for training, 2,404 (10%) for validation, and 2,196 (10%)

for testing. After filtering the words occurring less than 3

times, the vocabulary size is 2,102.

4.2. Evaluation Metrics

Similar to the L2 distance used in [34], we use L1 dis-

tance, Structural Similarity Index (SSIM), and Fréchet In-

ception Distance (FID) for evaluation. L1 distance directly

measures the averaged pixel absolute difference between

the generated image and ground truth image as the pixel
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MA5k-Req GIER

L1 ↓ SSIM↑ FID↓ σ×102↑ User↑ L1↓ SSIM↑ FID↓ σ×102↑ User↑

Target - - - - 3.5053 - - - - 3.6331

Input 0.1190 0.7992 12.3714 - - 0.1079 0.8048 49.6229 - -

Bilinear GAN [24] 0.1559 0.4988 102.1330 0.8031 1.9468 0.1918 0.4395 214.7331 1.2164 1.7988

Pix2pixAug [34] 0.0928 0.7938 14.5538 0.5401 3.0957 0.1255 0.7293 74.7761 1.2251 2.5148

SISGAN [6] 0.0979 0.7938 30.9877 0.1659 2.8032 0.1180 0.7300 140.1495 0.0198 2.1243

TAGAN [26] 0.1335 0.5429 43.9463 1.5552 2.5691 0.1202 0.5777 112.4168 0.6073 2.4970

GeNeVa [7] 0.0933 0.7772 33.7366 0.6091 3.0851 0.1093 0.7492 87.0128 0.5732 2.7278

RL 0.1007 0.8283 7.4896 1.6175 3.1968 0.2286 0.3832 132.1785 0.3978 1.8462

T2ONet 0.0784 0.8459 6.7571 0.7190 3.3830 0.0997 0.8160 49.2049 0.6226 2.8994

Table 1. Quantitative results on two test sets. σ
×102 means that the image variance has been scaled up 100 times.

range is normalized to 0-1. SSIM measures image similar-

ity through luminance, contrast, and structure. FID mea-

sures the Fréchet distance between two Gaussians fitted to

feature representations of the Inception network over the

generated image set and ground truth image set. To fur-

ther exam the model’s language-sensitivity, we propose the

image variance σ to measure the diversity of the generated

image conditioned on different requests. Similar to [19],

we apply 10 different language requests (see Appx. I) to the

same input image and output 10 different images. Then we

compute the variance over the 10 images of all pixels and

take the average overall spatial locations and color chan-

nels. Finally, we take the average of the average variance

over the entire test set. The variance can only measure the

diversity of generated images in different language condi-

tions but cannot directly tell the editing quality. So we still

resort to user study to further measure the editing quality.

User study setting. We randomly select 250 samples from

the two datasets, respectively, with each sample evaluated

twice. The user will see the input image and request and

blindly evaluate the images predicted by different methods

as well as the target image. Each user rates a score from

1 (worst) to 5 (best) based on the edited image quality (fi-

delity and aesthetics) and whether the edit accords with the

request. We collect the user rating through Amazon Me-

chanical Turk (AMT), involving 42 workers.

4.3. Implementation Details

For operation planning, we set the maximum step N =
6, tolerance ǫ = 0.01, and constraint that one operation is

only used once. We adopt Nelder-Mead [27] for parameter

optimization. The model is optimized by Adam [16] with

learning rate 0.001, β1 = 0.9, β2 = 0.999. More details are

elaborated in Appx. G.

4.4. Main Results

Operation planning. The set 5 in Tab. 2 shows the av-

eraged L1 distance of the planning result is 0.0136, which

is around only 3.5-pixel value error towards target images,

with pixel range 0-255. Fig. 3 shows the operation planning

can achieve the visually indistinguishable output compared

with the target. So we are confident to use the planned ac-

tion sequence as a good pseudo ground truth.

Comparison methods.

• Input: the evaluation between input and target image.

• Bilinear GAN [24], SISGAN [6], TAGAN [26]: these

three methods are trained by learning the mapping

between the caption and image without image pairs.

Since there is not image caption in our task but the

paired image and request, we drop the procedure of

image-caption matching learning but adapt them with

the L1 loss between input and target images.

• Pix2pixAug [34]: the pix2pix model [14] augmented

with language used in [34].

• GeNeVa [7]: a GAN-based dialogue guided image

editing method. We use it for single-step generation.

• RL: out RL baseline introduced in Sec. 3.6.

We also compared with ManiGAN [18], but its output is

very blurred as it is not designed for our task, and its net-

work lacks the skip connection structure to keep the resolu-

tion. So we just show its visualization in Appx. F.1.

Result analysis. The qualitative and quantitative compar-

ison are in Fig. 4 and Tab. 1, respectively. However, the

results of BilinearGAN, TAGAN are bad, and their visual

results have been omitted. For interested readers please re-

fer to Appx. F.1. Fig. 4 shows that SISGAN has obvious

artifacts, Pix2pixAug, and GeNeVa have less salient edit-

ing than ours, the RL tends to be overexposed in Fivek-Req

and does not work well on GIER. Our T2ONet generates

more aesthetics and realistic images, which are most sim-

ilar to targets. The much worse performance of Bilinear-

GAN, TAGAN, SISGAN might because their task is dif-

ferent from ours and their model ability is limited for com-

plex images. Tab. 1 demonstrates that our T2ONet achieves

the best performance on visual similarity metrics L1, SSIM,

and FID, but not the σ. Firstly, σ can measure the editing

diversity, as in Fig. 6; however, the σ and visual similarity

metric are usually a trade-off, as shown in Sec. 4.5. So al-

though RL has the highest σ under MA5k-Req, it sacrifices

L1 much more, and its visual results indicate that it tends
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Input

Target

Pix2pix

Aug 

GeNeVa

Make a bit more

brightness and a

bit sharpenRequest

Lighten the

input image

Remove the

fuzziness and

make the

colors more

vibrant.

Make more

brightness

and a bit

sharpen

Change the red

to blue including

the outline

Improve

color balance

Increase

color depth

a little bit

Can you

please lighten

and color

correct

SISGAN

RL 

T2ONet 

Figure 4. Visualization for comparison of our method T2ONet with other methods on MA5k-Req (left) and GIER (right).

Figure 5. L1 and variance trade-off by training with different pa-

rameter sample variance on the MA5k-Req test set.

to be overexposed. Second, the σ might be dominated by

noisy random artifacts, e.g., BilinearGAN in Fig. 4. There-

fore, we resort to user ratings for best judgment, which in-

dicates our method is the most perceptually welcomed.

Dataset Comparison. Tab. 1 also reflects the difference be-

tween the two datasets. Since GIER has a smaller data size

and contains more complex editing requests, GIER is more

challenging than MA5k-Req, which is verified by the fact

that the gap of the user rating between target and T2ONet is

much larger on GIER than on MA5k-Req.

Advantage over GAN. GAN-based methods also suffer

from high-resolution input and can be jeopardized by ar-

tifacts. However, our T2ONet is resolution-independent

without artifacts (see Appx. E.1).

Advantage over RL. With the more challenging GIER

dataset, it makes RL harder to explore the positive-rewarded

actions and fail. However, T2ONet still works well on

GIER with the help of the pseudo action ground truth from

Decrease the brightness

Increase the brightness a little

Increase the brightness a lot

Input
h = 0.01

(! = 1.1 × 10
!")

h = 0.1

(! = 2.1 × 10
!")

h = 0

(! = 0.7 × 10
!")

Figure 6. The same input edited with different language by models

trained with different h. Image variance σ for the whole test data

is also shown as a reference. The model trained with larger h has

more diversified output.

operation planning. We further show that the operation

planning can help RL in Appx. B.4.

4.5. Ablation Study

Due to space limit, the ablation study of different net-

work structures is moved to Appx. A.3 and the investigation

of alternative image loss is in Appx. A.1.

Trade-off between L1 and variance. We sample opera-
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operation set 1 2 3 4 5 input

planning (train) 0.0521 0.0358 0.0198 0.0197 0.0136 0.1202

T2ONet (test) 0.1315 0.0857 0.0832 0.0853 0.0770 0.1190

Table 2. L1 distance to target image over different operation lists

and operation orders on MIT-Adobe 5k dataset. Set 1 is planned

over only brightness operation. Set 2 is planned over single param-

eter operations including brightness, contrast, saturation, sharp-

ness. Set 3 is planned over the full operation list with the opera-

tion order fixed. Set 4 is planned over full operations with epsilon-

greedy search. Set 5 is planned over the full operation list. Inputs

represent the input image.

Input

Increase saturation of road, sky and mountains and make the sky more blue

Make a level on RGB a bit brightness

Target Plan on Discriminator Result

Figure 7. Planning through a discriminator.

tion parameter αt from N (αt;µαt
, σα) while training the

L1 loss. We set σα = Rh/3, where R is the half range

of the parameter, h is the gaussian width controller. Inter-

estingly, the L1 and variance of T2ONet can be traded-off

by adjusting σα. Fig. 5 manifests that the image variance

can be enlarged by increasing h, but in turn, resulting in

higher L1. The detailed result table is in Appx. A.2. More-

over, Fig. 6 shows that while all of the models are sensitive

to requests, the model trained with larger h produces more

diversified results.

Planning with different operation lists, operation orders

and planning methods. According to both the planning

and T2ONet editing performance in Tab. 2, set 1, 2, 5 shows

that the performance substantially increases as the operation

candidate list becomes larger. Planning with different single

operation and different max step N is studied in Appx. A.5.

Set 3 and 5 compare the difference between fixed and our

searched operation order. It shows the searched order is

slightly better than the fixed one for planning (might be-

cause the improvement space for planning is limited), but

it will bring a larger improvement for T2ONet. Set 4 and

5 indicate that the original version is better than alternative

ǫ-greedy policy [33], detailed in Appx. A.4.

4.6. Extensions of Planning Algorithm

Planning through a discriminator. We leverage a dis-

criminator D that takes as input a pair of images and a

request and outputs a score indicating the editing quality.

Such D is pretrained with adversarial loss on T2ONet (see

Appx. A.1 for detail). We define the new cost function as

Input Target Recovered Output

Figure 8. Planning on local editing.

cost(I) = 1−D(I0, I, Q), and apply it to Alg. 1. Interest-

ingly, such planning can still produce some visually pleas-

ing results, shown in Fig. 7. Although its quantitative re-

sults are worse than our default training performance, using

a pretrained image-quality discriminator to edit an image

brings a new perspective for image editing. Another advan-

tage is its flexibility such that the same discriminator can

be applied on a different set of operations while previous

methods require retraining.

Planning for local edit. Our operation planning can gener-

alize to local editing (e.g. “remove the man in the red shirt

on the left”). Given the input and target image, we can use

the pretrained panoptic segmentation network [35] to get a

set of segments in the input image. With our planning algo-

rithm (adding a new loop for segments, adding inpainting

as one operation), we can get the pseudo ground truth, in-

cluding the inpainting operation and its edited area, which

can train a local editing network like [30]. Its full algorithm

is described in the Appx. C.

5. Conclusion

We present an operation planning algorithm to reverse-

engineer the editing through input image and target im-

age, and can even generalize to local editing. A Text-to-

Operation editing model supervised by the pseudo opera-

tion sequence is proposed to achieve a language-driven im-

age editing task. We proved the equivalence of the image

loss and the deterministic policy gradient. Comparison ex-

periments manifest our method is superior to other GAN-

based and RL counterparts on both MA5k-Req and GIER

Images. The ablation study further investigates the trade-off

between L1 and request-sensitivity and analyzes the factors

that affect operation planning performance. Finally, we ex-

tend the operation planning to a discriminator-based plan-

ning and local edit.
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