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Figure 1: Example results of LiftedGAN. Column (a) shows three random samples from the latent space of a pre-trained StyleGAN2 network.

Columns (b)-(d) show the results of LiftedGAN. The proposed method lifts a pre-trained StyleGAN2 to a 3D generator by predicting

additional depth information, which allows it to not only generate realistic face images, but also provides 3D control of the output, such as

rotation and relighting. Our method does NOT need any annotation nor 3DMM model for training.

Abstract

We propose a framework, called LiftedGAN, that disen-

tangles and lifts a pre-trained StyleGAN2 for 3D-aware face

generation. Our model is “3D-aware” in the sense that

it is able to (1) disentangle the latent space of StyleGAN2

into texture, shape, viewpoint, lighting and (2) generate 3D

components for rendering synthetic images. Unlike most pre-

vious methods, our method is completely self-supervised, i.e.

it neither requires any manual annotation nor 3DMM model

for training. Instead, it learns to generate images as well

as their 3D components by distilling the prior knowledge

in StyleGAN2 with a differentiable renderer. The proposed

model is able to output both the 3D shape and texture, allow-

ing explicit pose and lighting control over generated images.

Qualitative and quantitative results show the superiority

of our approach over existing methods on 3D-controllable

GANs in content controllability while generating realistic

high quality images.

1. Introduction

Generative Adversarial Networks (GANs), such as Style-

GAN [13, 14] have been demonstrated to generate high

quality face images with a wide variety of styles. However,

since these models are trained to generate random faces, they

do not offer direct manipulation over the semantic attributes

such as pose, expression etc. in the generated image. A

number of studies have been devoted to achieving control

over the generation process in order to be able to adjust pose

and other semantic attributes in the generated face images.

Among all these attributes, 3D information, such as pose,

is the most desirable due to its applicability in face recog-

nition [26] and face synthesis [32]. To achieve this, most

existing approaches attempt to disentangle the latent feature

space of GANs by leveraging external supervision on the

semantic factors such as pose labels [26, 25], landmarks [9]

or synthetic images [2, 33, 15], while some others [17] have

explored an unsupervised approach for 3D controllability in

the latent space. Although these feature manipulation based

methods have shown ability to generate faces with high

visual quality under assigned poses, it is unclear whether

important content, such as identity, is indeed preserved when

we change the pose parameters. Potential errors could arise

from the generation process when the manipulated features

are parsed by the network parameters (see Section 5.2).

In contrast to solutions that only output 2D images, build-

ing generative models with explicit 3D shapes could give
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a stricter control of the content. For general 3D objects, a

thread of recent studies train 3D generative models from

2D images, but they mostly work on rendered images with

coarse shapes [6, 7, 16], e.g. cars. For faces, which contain

many fine-grained details, existing solutions for 3D image

generation [20, 23] have suffered from collapsed results un-

der large pose variations due to the difficulty of learning

reasonable shapes.

In this paper, we propose a framework that shares the

advantages of both 2D and 3D solutions. Given a pre-trained

StyleGAN2, we distill it into a 3D-aware generator, which

not only outputs the generated image, but its view points,

light direction and 3D information, such as surface normal

map. Compared with 3D generative models, our approach is

able to output rendered images with higher quality, close to

2D generative models. Compared with 2D solutions based on

feature manipulation, our model allows a stricter 3D control

over the content by maneuvering the view point and shading

of textured meshes, as in 3D generators. Qualitative and

quantitative results show the superiority of our approach over

existing methods in preserving identity as well as generating

realistic high quality images.

The main contributions of the paper can be summarized

as follows:

• A framework for 3D-aware face image generation, called

LiftedGAN, which distills the knowledge from a pre-

trained StyleGAN2.

• A self-supervised method for disentangling and distilling

the 3D information in the latent space of StyleGAN2.

• A generator that outputs both high quality face images

and their 3D information, allowing explicit control over

pose and lighting.

2. Related Work

2.1. Pose-Disentangled 2D GANs

Recent progress in Generative Adversarial Networks has

enabled generation of high-quality realistic images. This has

resulted in a body of work to disentangle different factors

of the generated images from GANs. These publications

can be categorized into two types. The first type explicitly

adds additional modules or loss functions during training

to ensure the disentanglement of pose information. For ex-

ample, Tran et al. [26] and Tian et al. [25] use pose labels

while Hu et al. [9] and Zhao et al. [33] use landmarks and

a 3DMM model, respectively to guide the training of an

image-translation GAN for rotating input faces. For the

generation task, Deng et al. [2] use a 3DMM model during

GAN training to guide the learning of a disentangled pose

factor. CONFIG [15] mixes real face images and synthe-

sized images from a graphic pipeline with known parameters

for training the GAN. HoloGAN [17], on the other hand,

proposes to use a 3D feature projection module in the early

Study Generative Shape Lighting Supervision

Tulsiani et al. [27] X Multi-view images

Kanazawa et al. [12] X Keypoints, Silhouette

Gadelha et al. [4] X X Silhouette

Henderson et al. [5, 6, 7] X X Viewpoint, Silhouette

Lunz et al. [16] X X None

Wu et al. [28] X X None

Zhang et al. [31] X X Viewpoint

Pan et al. [18] X X None

Szabo et al. [23] X X None

CONFIG [15] X X Synthetic data

HoloGAN [17] X X None

StyleRig [24] X X 3DMM

DiscoFaceGAN [2] X X 3DMM

Ours X X X None

Table 1: Difference between our work and related work. The first half shows

relevant work on unsupervised and weakly-supervised 3D reconstruction.

The second half are relevant studies on 3D-controllable face generation.

stage of the generator to enable the rotation of the output

face images. The second type, on the other hand, tries to

manipulate a pre-trained GAN network to change the 3D

information of the output. This is built upon the foundation

that recent GANs [13, 14] provide a naturally disentangled

latent space for generation. Similar to training-based meth-

ods, these studies use labels [21] or a 3DMM [24] to achieve

the disentanglement of the pre-trained latent space. Shen et

al. [22] have also proposed an unsupervised method to fac-

torize the latent space of GANs. A clear drawback of all

these methods is that they could not explicitly output the

3D shape of the object in the generated images, which is

essential for strict 3D control over the content.

2.2. Unsupervised 3D Reconstruction and Genera-
tion from 2D Images

In contrast to the 2D-based solutions above, several stud-

ies have explored the possibility of reconstructing and gener-

ating 3D shapes from unlabeled 2D images. Here, “un-

labeled” means that neither 3D shape nor view label is

available during the training of the model. Such unsuper-

vised reconstruction methods typically use a special cue to

guide the learning of the 3D shape. For example, Tulsiani et

al. [27] use the muiti-view consistency as the supervision;

Kanazawa et al. [12] use the consistency between objects

under the same category to learn the reconstruction model.

Wu et al. [28] use the symmetry property of the objects to

learn detailed shape and albedo from natural images. Han-

derson et al. [5, 6, 7] exploit the shading information from

the synthesized images to reconstruct 3D meshes, which

is further extended to a generative model by using a VAE

structure. Most generative models, on the other hand, use

a GAN-structure where adversarial loss provides the sig-

nal for 2D images rendered from the generated 3D shapes.

Gadelha et al. [4] apply the discriminator to the silhouette of

the generated voxels to train the generator. Lunz et al. [16]
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use a commercial renderer to guide a neural renderer to out-

put images with shading for the discriminator. However,

both methods utilize voxels, which cannot recover the fine-

grained details nor the colors of the 3D surfaces. Recently,

Szabo et al. [23] proposed to use vertex position maps as the

3D representation to directly train the GAN with textured

mesh outputs. However, given the large degrees of freedom

of such representation and the noisy signals from adversarial

training, the output shapes of their work suffer from strong

distortion. Concurrent with our work, Zhang et al. [31] and

Pan et al. [18] have utilized StyleGAN to generate multi-

view synthetic data for 3D reconstruction tasks. Zhang et

al. [31] conduct manual annotation on offline-generated data

while Pan et al. [18] propose to iteratively synthesize data

and train the reconstruction network. Different from their

work, our work builds a 3D generative model by simulta-

neously learning to manipulate StyleGAN2 generation and

estimate 3D shapes.

3. Methodology

The main idea of our method is to train a 3D generative

network by distilling the knowledge in StyleGAN2. The

StyleGAN2 network is composed of two parts, a multi-layer

perceptron (MLP) that maps a latent code z 2 Z to a style

code w 2 W and a 2D generator G2D that synthesizes a

face image from the style code w. Our goal is to build a 3D

generator that disentangles the generation process of G2D

into different 3D modules, including texture, shape, lighting

and pose, which are then utilized to render a 2D face image.

3.1. 3D Generator

As shown in Figure 2, the 3D generator, denoted as G3D

is composed of five additional networks: DV , DL, DS , DT

and M . Given a randomly sampled style code ŵ, the network

DV is an MLP that maps ŵ to a 6-dimensional viewpoint

representation V , including translation and rotation. DL is

another MLP that decodes ŵ into a 4-dimensional output

L: the x-y direction of the light, ambient light and diffuse

light intensity. The style manipulation network M is a core

module in our work. It serves to transfer a style code ŵ to a

new style code with specified light and view. In particular

for 3D generator, it is used to create w0 = M(ŵ, L0, V0)
where L0 and V0 are default parameters of neutralized light-

ing and viewpoint. Thus, StyleGAN2 G2D(w0) outputs a

neutralized face serving as texture map, as shown in Figure 2.

This neutralized face is then de-lighted by L0 under a Lam-

bertain model to obtain the albedo map A, where we divide

the texture values by light intensity. DS and DT are two de-

convolution networks that map the disentangled style code

w0 to the shape representation S and a transformation map

T , which are further explained in Section 3.1.1. Finally, a

differentiable renderer R is used to output a rendered image

Iw = R(A,S, T, V, L).

3.1.1 Shape Representation

Prior work on 3D generation [23, 7] use 3D position maps

to represent the mesh of the target object. The advantage

of such an approach is that it could possibly disentangle the

foreground and background. However, specifically for face,

whose contour is often ambiguous given the irregular shape

of hair, we found that forcing a separated foreground could

easily lead to collapsed shapes on the boundary, which is

also observed in [23]. Therefore instead, we use a depth

map with a transformation map to represent the shape. The

depth map is associated with the texture map to represent

their positions, while the transformation map decides how

much each pixel should be transformed when we rotate the

face. Formally, during face manipulation, for each pixel

(i, j), whose original position and target position is given by

p
(old)
i,j and p

(tgt)
i,j , the new target position of the pixel using

the transformation map would be:

p
(new)
i,j = (1� Ti,j)p

(old)
i,j + Ti,jp

(tgt)
i,j , (1)

where Ti,j is the corresponding value of pixel (i, j) on the

transformation map T . All the foreground will be assigned

with Ti,j = 1, while border pixels are forced to have 0
transformation freedom. The usage of transformation map

allows us to dynamically transform the pixels to obtain a

complete image without disentangling the background. See

Figure 4 (d) for example effect of transformation map.

3.2. Loss Functions

Unlike other GAN-based methods [23], our method does

not need any adversarial training. Since the relationship

between the style space W and the image space are fixed

by G2D, we can directly use G2D as a teacher model to

supervise the G3D for learning the image mapping. Then,

we further use the symmetric constraint and multi-view data

created by G2D to enable the learning of 3D shape.

3.2.1 Reconstruction Loss

Let ŵ be a randomly sampled code and Îw = G2D(w) is a

proxy image output by StyleGAN2. The rendered image is

given by Iw = R(A,S, T, V, L). The reconstruction loss for

each sample is then defined as:

Lrec =
�

�

�
Iw � Îw

�

�

�

1
+ �percLperc(Iw, Îw), (2)

where the second term refers to the perceptual loss [11] using

a pre-trained VGG-16 network. Inspired by Wu et al. [28],

we also add an symmetric reconstruction loss Lflip to recon-

struct the proxy image Îw. Lflip has the same formulation

as Lrec except that it uses flipped albdeo and shape maps

during the rendering. We found such a symmetric regular-

ization to be very helpful to construct a frontalized face as

texture map.
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Figure 2: Overview of the proposed training framework for learning 3D generator. The framework mainly involves two pathways. First, for each randomly

sampled image from StyleGAN2, we train the 3D generator to disentangle its latent code into 3D components and reconstruct the 2D image with symmetric

constraint. Second, we randomly perturb the generated 3D face to obtain regularization from different views. This is achieved by simultaneously training the

3D components along with the style manipulation network, which creates pseudo ground-truth via the 2D generator to regularize the 3D face. The purple

blocks in the figure indicate modules from the pre-trained StyleGAN2 and are not updated. The blue blocks are the modules to be trained. The texture images

are relighted for rendering.
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Figure 3: Example images for Section 3.2.2. The first row shows generated

images of StyleGAN2 by manipulating the same style code with style

manipulation network M . The second row shows rotated images with the

differentiable render. The generated images of StyleGAN2 provides pseudo

ground-truth for multi-view supervision. Note that during training, we only

perturb once for each image.

3.2.2 Generator as Multi-view Supervision

The proxy images generated by G2D provide supervision

for learning the mapping from latent space to image space.

However, learning 3D shapes remains an ill-posed prob-

lem. Although we employ the symmetric reconstruction

loss [28], we found it insufficient to regularize the output

shape, possibly due to the larger area of background and

higher resolution of our training data. Here, since we already

have a pre-trained generator, we utilize the G2D as a multi-

view data generator to provide supervision for rotated-views

of the 3D face. This approach is inspired by recent findings

that StyleGAN2 is able to generate different views of a target

sample by changing its style code [21, 22, 31].

Formally, for each rendered sample Iw =

R(A,S, T, V, L), we randomly sample a different view

point V 0 and lighting L0 to render a rotated and relighted

face image I 0w = R(A,S, T, V 0, L0). The objective here is

to maximize the likelihood of this rotated face, log p(I 0w)
for any random V 0 and light L0 to make sure it look like

a real face. Assuming the 2D generator is well trained to

approximate the real data distribution, we could use the

generator to estimate this likelihood. However, directly

optimizing the likelihood is non-trivial, since it involves

marginalizing over the latent space of G2D. Here, given

the style manipulation network M , for each perturbed

image I 0w we have a corresponding w0 = M(ŵ, V 0, L0),
where we manipulate the original face in the latent space.

If both the network M and the shape decoder DS have

well learned, I 0w and w0 should match each other after

perturbation. Thus, we optimize the joint probability

p(I 0w, w
0) = pG2D

(I 0w|w
0)p(w0), which is equivalent to

minimizing the following loss function:

L0

perturb == � log pG2D
(I 0w|w

0)� log p(w0)

= d(I 0w, G2D(w0)) + �
kw0 � µwk

2

2�2
w

(3)

Here, the prior p(w0) is approximated by a Gaussian dis-

tribution N (w;µw,�
2
wI), where empirical mean µw and

standard deviation �w of randomly generated style codes

are used. Equation (3) can be understood as follows: for a

randomly perturbed image R(A,S, T, V 0, L0), we use Style-

GAN2 to synthesize proxy images G2D(w0) to provide

pseudo ground-truth for the target view and lighting while
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we train the network M to learn geometric warping and re-

lighting in the latent space. The second term regularizes the

transferred w to be close to the prior distribution to ensure

the quality of generated images. We note that log p(I 0w, w
0)

can also be regarded as an approximation of the variational

lower bound of log p(I 0w) (see supplementary). Thus, we are

indirectly forcing each perturbed image to look realistic.

In practice, we found that directly optimizing Equation (3)

would flatten the output shape. Given the outputs of G2D,

we observe that the problem is caused by (1) pose difference

between the generated image G2D(w) and the target V 0, (2)

the incapability of G2D to synthesize images with diverse

lighting. Thus, inspired by Pan et al. [18], we implement

Equation (3) as two parts. The original I 0w is only used for

optimizing the style manipulation network w0 while A, S

and T are optimized with re-estimated Ṽ 0 = DV (w
0) and

L̃0 = DL(w
0). The loss is given by:

Lperturb = L
(a)
perturb + L

(b)
perturb

L
(a)
perturb = d(I 0w, G2D(zperturb)) + �

kw0 � µwk
2

2�2
w

L
(b)
perturb = d(R(A,S, T, Ṽ 0, L̃0), Îw0) + �LVcyc

LLV cyc
,

(4)

where
LLV cyc

=
�

�

�
Ṽ 0 � V 0

�

�

�

2

+
�

�

�
L̃0 � L0

�

�

�

2

, (5)

I 0w = R(A,S, T, V 0, L0) and Îw0 = G2D(w0) are used as

proxy images that are not updated. Our method shares the

similar concept with Zhang et al. [31] and Pan et al. [18],

which use StyleGAN2 to create synthetic training data. How-

ever, different from them, we do not need any manual anno-

tation [31] nor iterative training [18]. All the modules are

trained in an end-to-end manner. An illustration of Equa-

tion 4 can be found in Figure 2. Figure 3 shows example

proxy images generated by StyleGAN2 and rendered images

with re-estimated parameters.

3.2.3 Regularization Losses

We also add a few regularization losses to constrain the out-

put of our model. First, assuming that the identity shouldn’t

change after viewpoint perturbation, we regularize the iden-

tity variance loss:

Lidt = kf(Iw0
)� f(I 0w)k

2
, (6)

where Iw0
is the texture map and f is a pre-trained face

recognition network. Since the recognition network is not

guaranteed to be pose invariant, we only apply this to images

that are rotated within a certain range.

Second, in order to better utilize the shading informa-

tion, we regularize the albedo maps, which is acquired by

delighting the canonical face image:

LregA = kKAk⇤ . (7)

Here KA 2 R
B⇥HW is the albedo matrix that is composed

of filtered and vectorized albedo maps and k·k
⇤

denotes

the nuclear norm. Laplacian kernel is used for filtering the

gray-scaled albedo maps to only keep the high-frequency

information. The nuclear norm is a soft approximation of

low-rank regularization, which enforces different albedo

maps in a batch to have smaller laplacians while encouraging

consistency across samples.

The overall loss function for training the 3D generator is:

LG3D
= �recLrec + �flipLflip + �perturbLperturb (8)

�idtLidt + �regALregA (9)

4. Implementation Details

We implement all the modules in this paper using Pytorch

1.5. The mesh rasterizer in Pytorch3D [19] is used for dif-

ferentiable rendering. The StyleGAN2 [14] is trained on

FFHQ dataset [13] with a Pytorch re-implentation 1. The

training images are cropped and resized to 256x256 with the

MTCNN face detector [29]. The 2D StyleGAN2 is then used

to train the 3D generator in the second stage. The hyper-

parameters �rec, �perc, �flip, �perturb, �, �LVcyc
, �idt and

�regA are set to 5.0, 1.0, 0.8, 2.0, 0.5, 2.0, 1.0 and 0.01, re-

spectively. These hyper-parameters are chosen based on the

qualitative results of generated samples during training. Due

to the space limit, more implementation details, including

the network architectures are provided in the supplementary

material.

5. Experiments

5.1. Qualitative Results

Figure 4 shows a few examples of controlling the pose

of the generated face image. The first row shows the results

of manipulating the style code by network M , while the

following rows show the results of our 3D generator. It

could be seen that although latent manipulation is able to

change the viewpoint of a specific face, it fails to generalize

to larger poses, that are rarely seen in the training data. In

contrast, the 3D generator, after distilling the 3D shape, is

able to generalize to larger poses. More comparison between

the style manipulation and 3D generator can be found in

the supplementary material. The last row shows the side

view to see how the face is rotated. With the self-predicted

transformation map, only the foreground is moving while

the background remains relatively static.

Figure 5 shows an example generated image with differ-

ent lighting conditions. By computing the normal map from

the generated shape, we are able to generate face images

with arbitrary lighting conditions, even those that were not

seen in the original training dataset. In the second row of

1https://github.com/rosinality/stylegan2-pytorch
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Figure 4: Rotation of generated faces. Row (a) shows the results of

manipulating the style code with network M . Row (b) and row (c)

show the manipulation results of the 3D generator. Row (d) shows

the rotation process from a side view.

(a) Original (b) Left (c) Top (d) Right (e) Bottom

Figure 5: Example generated faces with different lighting. Column

(a) shows a randomly sampled image and its normal map. Columns

(b)-(d) show relighted images and their corresponding shading by

changing the source direction of light.

Figure 5, we show how the lighting from left, top, right

and bottom creates the shading map, which results in the

relighted images in the first row.

A successful generative model should be able to provide

smooth interpolated results between disparate samples to

indicate that the model is not simply memorizing training

samples [13]. In Figure 6, we show interpolated results be-

tween two faces. It could be seen that, by inheriting the

style-image mapping from the 2D generator, our model is

able to smoothly move from one face to another while gen-

erating realistic faces. This indicates that our model could

potentially be used to generate a diverse set of faces with

more effective samples compared to the original training set.

5.2. Comparison with Related Work

Figure 8 shows some generation results of state-of-the-art

work on 3D-controllable GANs. Szabo et al. [23] used a
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Figure 6: Example generation results between interpolated latent

codes. Our model is able to achieve a smooth change between two

disparate samples, indicating its potential to generate a diverse set

of controllable face images.

purely GAN-based model, where the discriminator is the

main source of supervision. Therefore, they are able to gen-

erate realistic rendered images. However, their 3D shapes

suffer from strong distortion, potentially due to the unstable

nature of adversarial loss. This could be clearly observed

from the side view of their 3D shapes. In comparison, our 3D

shapes are realistic even from side views. Similarly, Holo-

GAN [23] is another unsupervised method based on adver-

sarial loss. But since their 3D transformation is applied im-

plicitly in the feature space, it is not able to provide explicit

shapes of the generated images, and hence it fails to gener-

ate faces of poses that are not in the original training data.

StyleRig [24], CONFIGNet [15] and DiscoFaceGAN [2]

are three recent methods that attempt to disentangled 2D

GAN with the supervision of 3DMM or other 3D engines.

The difference is, StyleRig tries to disentangle a pretrained

StyleGAN, as our method, while CONFIGNet and Disco-

FaceGAN train a new generator from scratch with additional

data generated by 3D models. Similar to HoloGAN, they

only output the images but no other 3D components. From

Figure 8, it can be seen that our model, though unsupervised,

is able to generalize to larger yaw degrees than most of the

baselines, which are rarely seen in the training data. More

results can be found in the supplementary.

We further quantitatively compare our approach with

three open-sourced methods: HoloGAN [17], DiscoFace-

GAN [2] and CONFIGNet [15] in Figure 7. For each method,

we randomly generate 1, 000 faces, each with multiple out-

puts under specified poses. Then a state-of-the-art face

matcher, ArcFace [1] is used to compute the similarity be-

tween the generated frontal face and non-frontal faces. As

can be seen in Figure 7, in spite of the good visual quality

of all methods, the identity is hardly preserved after the face

rotation except DiscoFaceGAN, which is trained with the su-

pervision of a 3DMM. In comparison, our method is able to

maintain the identity information better than most methods

even without any supervision.
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Figure 7: Quantitative comparison of the proposed LiftedGAN with state

of the art works on 3D-controllable generative models. We compute the

averaged identity similarity under different rotation angles using a face

recognition method (ArcFace).

(a) Szabo et al. [23] (b) StyleRig [24]

(c) HoloGAN [17]

(d) DiscoFaceGAN [2]

(e) CONFIGNet [15]

(f) Ours

Figure 8: Qualitative comparison with state-of-the-art methods on

3D-controllable GANs. Note that all these faces are generated by

randomly sampling from latent space, therefore we cannot compare

the manipulation over the same face. The example faces in (c)-(f)

are supposed to have a yaw degree of -60,-30,15,0,15,30,60.

5.3. Ablation Study

In this section, we ablate over different loss functions

to see their effect on the generated results. In particular,

we remove symmetric reconstruction loss, perturbation loss,

albedo consistency loss and identity regularization loss, re-

spectively, to re-train a model for comparison. The eval-

uation is conducted from two perspectives. First, Fréchet

inception distance (FID) [8] is used to evaluate the image

quality, where we compare between the original 2D training

data and randomly sampled images from our 3D Generator.

Method
Image 3D

FID Depth Yaw Pitch Row

StyleGAN2 (G2D) 12.72 - - - -

Wu et al. [28] - 0.472 2.78 4.55 0.75

LiftedGAN w/o Lflip 28.69 0.623 9.37 5.34 0.91

LiftedGAN w/o Lperturb 21.30 0.548 2.68 5.03 1.02

LiftedGAN w/o Lidt 30.63 0.498 1.82 4.66 1.15

LiftedGAN w/o LregA 27.34 0.467 1.89 4.81 1.06

LiftedGAN (proposed) 29.81 0.435 1.86 4.77 1.07

Table 2: Quantitative Evaluation of the ablation study. LiftedGAN refers

to our method while StyleGAN2 refers to the output of base 2D GAN

used for training. The 3D evluation is conducted on samples generated

by StyleGAN2. The depth error is the `2 distance between normalized

depth maps and the angle errors are reported in degrees. FID represents the

Fréchet inception distance.
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Figure 9: Qualitative results of ablation study.

Second, we also wish to evaluate how precise the estimated

3D shapes are. However, since our models are generative

methods, for whose output we do not have ground-truth 3D

annotations, it is hard to directly evaluate the 3D outputs.

Therefore instead, we compute the estimated 3D shapes of

1, 000 generated images of StyleGAN2 with a state-of-the-

art 3D reconstruction model [3] as pseudo ground-truth and

compare them to the estimated shapes of our model. In detail,

we evaluate both depth map error and angle prediction error.

For depth map, since different camera parameters are used

for our method and the estimated labels, we first normalize

the depth map in terms of mean and standard deviation be-

fore computing their `2 distance on overlapped areas. The

view angles are normalized by subtracting average angle.

To provide a reference, we also train a state-of-the-art unsu-

pervised face reconstruction model [28] on the StyleGAN2

generated faces and test it on the same set of images. The

quantitative and qualitative results are shown in Table 2 and

Figure 9, respectively. Without the symmetric reconstruc-

tion loss, we found that the model is not able to output a
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Figure 10: Example results of style transfer. Row (a) shows a randomly

sampled image and its different views. Rows (b)-(d) show the results of

transferring the style to images in row (a) while changing the pose of the

generated face. The first column in rows (b)-(d) shows the input images

used to extract the style. The input images are first embedded into the

latent space of StyleGAN2 by optimizing the latent code, then intermediate

features are combined to change the texture as in [14].

reasonable shape, even though it is still able to rotate the

face to a certain degree. The perturbation loss is helpful for

learning detailed and realistic face shapes, especially from

a side view. The albedo consistency loss and identity loss

has a similar effect of regularizing the output shape, as can

be seen in Table 2. We also notice that applying the pertur-

bation loss cause a higher FID, we believe this is caused by

the identity change in the style-manipulated faces created by

StyleGAN2, whose supervision removes some details on the

generated 3D faces. The problem could be potentially solved

by adding additional regularization loss to the StyleGAN2

manipulation output, which we leave for future work.

5.4. Additional Experiments

Structure vs. Style The original StyleGAN2 is famous

for being able to control and transfer the style of generated

images [13, 14]. However, this notion of “style” is rather

ambiguous: it could mean coarse structure (e.g. pose), fine-

grained structure (e.g. expression), or color style. This is

because the style control is learned in an unsupervised man-

ner by AdaIN modules [10] at different layers. Since our

work explicitly disentangles the 3D information, it implies

that the 3D geometry and other styles could be decoupled

in our generator. Figure 10 shows a few examples of trans-

ferring different styles to a generated face while controlling

the pose of that face. It could be seen that style transfer
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Figure 11: Results of controlled generation on cat heads.

only affects the texture color and local structures, while the

overall structure of the image is consistent across different

poses, as controlled by the user.

Other Objects Except the identity preservation loss, our

method is designed to be object-agnostic. So it would be

interesting to see whether our method works on other ob-

jects as well. However, as shown in Section 5.3, symmetric

constraint still plays a important role in the current method.

Thus, we conduct the experiment on another symmetric ob-

ject, cat face [30], with the same settings except dropping

the identity preservation loss. As shown in Figure 11, the

proposed method generalizes to other symmetric objects in

terms of both controlling StyleGAN2 images and learning

an additional 3D generator.

6. Conclusions

We propose a method to distill a pre-trained StyleGAN2

into a 3D-aware generative model, called LiftedGAN. Lift-

edGAN disentangles the latent space of StyleGAN2 into

pose, light, texture and a depth map from which face im-

ages can be generated with a differentiable renderer. During

training, the 2D StyleGAN2 is used as a teacher network to

generate proxy images to guide the learning of the 3D gener-

ator. The learning process is completely self-supervised, i.e.

it neither requires 3D supervision nor 3D morphable model.

During inference, the 3D generator is able to generate face

images of selected pose angles and lighting conditions. Com-

pared with 3D-controllable generative models that are based

on feature manipulation, our model gives explicit shape in-

formation of generated faces and hence preserves the content

better during face rotation. Compared with 3D generative

models, our model provides more realistic face shapes by

distilling the knowledge from StyleGAN2. Potential future

includes: (1) combining our method with the training of

StyleGAN2 to obtain a more disentangled 2D generator and

(2) extending the method to more object domains.
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