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Figure 1: Given a few sparse and unstructured input multi-view images, our goal is to synthesize a novel view from a given target camera pose. Our

method estimates target-view depth and source-view visibility in an end-to-end self-supervised manner. Compared with the previous state-of-the-art, such

as Choi et al. [4] and Riegler and Koltun [24], our method produces superior novel view images of higher quality and with finer details, better conform to

the ground-truth.

Abstract

We address the problem of novel view synthesis (NVS)

from a few sparse source view images. Conventional image-

based rendering methods estimate scene geometry and syn-

thesize novel views in two separate steps. However, erro-

neous geometry estimation will decrease NVS performance

as view synthesis highly depends on the quality of estimated

scene geometry. In this paper, we propose an end-to-end

NVS framework to eliminate the error propagation issue.

To be specific, we construct a volume under the target view

and design a source-view visibility estimation (SVE) module

to determine the visibility of the target-view voxels in each

source view. Next, we aggregate the visibility of all source

views to achieve a consensus volume. Each voxel in the

consensus volume indicates a surface existence probability.

Then, we present a soft ray-casting (SRC) mechanism to find

the most front surface in the target view (i.e., depth). Specif-

ically, our SRC traverses the consensus volume along view-

ing rays and then estimates a depth probability distribution.

We then warp and aggregate source view pixels to synthe-

size a novel view based on the estimated source-view visi-

bility and target-view depth. At last, our network is trained

in an end-to-end self-supervised fashion, thus significantly

alleviating error accumulation in view synthesis. Experi-

mental results demonstrate that our method generates novel

views in higher quality compared to the state-of-the-art.

1. Introduction

Suppose after taking a few snapshots of a famous sculp-

ture, we wish to look at the sculpture from some other dif-

ferent viewpoints. This task would require us to generate

novel-view images from the captured ones and is generally

referred to as “NVS”. However, compared with previous so-

lutions, our setting is more challenging, because the num-

ber of available real views is very limited, and the underly-

ing 3D geometry is not available. Moreover, the occlusion

along target viewing rays and the visibility of target pixels

in source views are hard to infer.

Conventional image-based rendering (IBR) methods [4,

24, 10, 42, 23] first reconstruct a proxy geometry by a multi-

view stereo (MVS) algorithm [12, 47, 48, 46]. They then

aggregate source views to generate the new view according
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to the estimated geometry. Since the two steps are separated

from each other, their generated image quality is affected by

the accuracy of the reconstructed 3D geometry.

However, developing an end-to-end framework that

combines geometry estimation and image synthesis is non-

trivial. It requires addressing the following challenges.

First, estimating target view depth by an MVS method will

be no longer suitable for end-to-end training because they

need to infer depth maps for all source views. It is time-

and memory-consuming. Second, when source view depths

are not available, the visibility of target pixels in each source

view is hard to infer. A naive aggregation of warped input

images would cause severe image ghosting artifacts.

To tackle the above challenges, we propose to estimate

target-view depth and source-view visibility directly from

source view images, without estimating depths for source

views. Specifically, we construct a volume under the target

view camera frustum. For each voxel in this volume, when

its projected pixel in a source view is similar to the projected

pixels in other source views, it is likely that the voxel is

visible in this source view. Motivated by this, we design

a source-view visibility estimation module (SVE). For each

source view, our SVE takes the warped source view features

as input, compares their similarity with other source views,

and outputs visibility of the voxels in this source view.

Then, we aggregate the estimated visibility of the vox-

els in all source views, obtaining a consensus volume. The

value in each voxel denotes a surface existence probability.

Next, we design a soft ray-casting (SRC) mechanism that

traverses through the consensus volume along viewing rays

and finds the most front surfaces (i.e., depth). Since we do

not have ground truth target-view depth as supervision, our

SRC outputs a depth probability instead of a depth map to

model uncertainty.

Using the estimated target-view depth and source-view

visibility, we warp and aggregate source view pixels to gen-

erate the novel view. Since the 3D data acquisition is ex-

pensive to achieve in practice, we do not have any explicit

supervision on the depth or visibility. Their training signals

are provided implicitly by the final image synthesis error.

We then employ a refinement network to further reduce ar-

tifacts and synthesize realistic images. To tolerate the visi-

bility estimation error, we feed our refinement network the

aggregated images along with warped source view images.

2. Related Work

Traditional approaches. The study of NVS has a

long history in the field of computer vision and graph-

ics [9, 15, 28, 5]. It has important applications in robot navi-

gation, film industry, and augmented/virtual reality [31, 33,

32, 30, 11]. Buehler et al. [2] define an unstructured Lu-

migraph and introduce the desirable properties for image-

based rendering. Fitzgibbon et al. [7] solve the image-based

Figure 2: Given a set of unstructured and disordered source views, we aim

to synthesize a new view from a position not in the original set. For a

3D point lies in a target viewing ray, when its projected pixels on source

view images are consistent with each other, it is of high probability that a

surface exists at the corresponding location. The color of this surface can

be computed as a visibility-aware combination of source view pixel colors.

rendering problem as a color reconstruction without explicit

3D geometry modelling. Penner and Zhang [23] propose

a soft 3D reconstruction model that maintains continuity

across views and handles depth uncertainty.

Learning-based methods. Recently, learning-based ap-

proaches have demonstrated their powerful capability of

rendering new views. Several works have been proposed to

train a neural network that learns geometry implicitly and

then synthesizes new views [53, 39, 20, 22, 6, 51]. Most

of those methods can synthesize arbitrarily new views from

limited input views. However, their performance is limited

due to the lack of built-in knowledge of scene geometry.

Scene representations. Some end-to-end novel view

synthesis methods model geometry by introducing spe-

cific scene representations, such as multi-plane images

(MPI) [52, 18, 38, 43, 8] and layered depth images

(LDI) [29, 44, 34, 44]. MPI represents a scene by a set

of front-parallel multi-plane images, and then a novel view

image is rendered from it. Similarly, LDI depicts a scene in

a layered-depth manner.

Deep networks have also been used as implicit functions

to represent a specific scene by encapsulating both geom-

etry and appearance from 2D observations [19, 49, 37, 21,

36, 41]. Those neural scene representations are differen-

tiable and theoretically able to remember all the details of

a specific scene. Thus, they can be used to render high-

quality images. However, since these neural representations

are used to depict specific scenes, models trained with them

are not suitable to synthesize new views from unseen data.

Image-based rendering. Image-based rendering tech-

niques incorporate geometry knowledge for novel view syn-

thesis. They project input images to a target view by an es-

timated geometry and blend the re-projected images [4, 24,

10, 42, 23]. Thus, they can synthesize free-viewpoint im-

ages and generalize to unseen data. However, as geometry

estimation and novel view synthesis are two separate steps,

these techniques usually produce artifacts when inaccurate
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Figure 3: An overall illustration of the proposed framework. We first extract multi-scale features (Phase I) from source images and warp them to the

target view. We then design a source-view visibility estimation (SVE) module (Phase II) to estimate the visibility of target voxels in each source view. By

aggregating visibility features from all source views, we construct a consensus volume to represent surface existence at different voxels. Next, we design an

LSTM-based soft ray-casting (SRC) mechanism (Phase III) to render the depth probability from the consensus volume. By using the estimated source-view

visibility and target-view depth, we warp and aggregate source view images. We finally apply a refinement network (Phase IV) to further reduce artifacts in

the aggregated images and synthesize realistic novel views.

geometry or occlusions occur. Choi et al. [4] estimate a

depth map in the target view by warping source view prob-

ability distributions computed by DeepMVS [12]. To tol-

erate inaccurate depths, aggregated images as well as orig-

inal patches extracted from source view images are fed to

their proposed refinement network. Riegler and Koltun [24]

leverage COLMAP [26, 27] to reconstruct 3D meshes from

a whole sequence of input images and obtain target view

depths using the estimated geometry.

3. Problem Statement

Our goal is to synthesize a novel view It, given target

camera parameters Kt, Rt, T t, from a set of input images,

Isi , i = 1, 2, ..., N . We assume there is sufficient overlap

between the source views such that correspondences can be

established. We estimate source view camera intrinsic and

extrinsic by a well-established structure-from-motion (SfM)

pipeline, e.g.COLMAP [26]. Fig. 2 illustrates the situation.

Mathematically, we formulate this problem as:

It∗ = argmax
It

p
(
It|Is1 , I

s
2 , ..., I

s
N

)
, (1)

where p(·) is a probability function.

Due to the expensive accessibility of 3D data (e.g.,

depths) and a limited number of input views, it is hard to

compute accurate 3D geometry from input source views.

Therefore, our intuition is to develop an end-to-end frame-

work that combines geometry estimation and image synthe-

sis, to eliminate the error propagation issue. We achieve

this goal by estimating target-view depth and source-view

visibility for target pixels directly under the target view.

We assume a uniform prior on the target view depth, and

reformulate Eq. (1) as a probability conditioned on depth d:

It∗ = argmax
It

dmax∑

d=dmin

p
(
It|d

)
p (d)

=

dmax∑

d=dmin

[
argmax

It
p
(
It|d

)]
p(d),

(2)

where dmin and dmax are statistical minimum and maximum

depths of a target view respectively. As the source view

images are given, we omit them in this equation.

Following conventional methods, we compute the target

view color It with the highest probability given depth d as

a visibility-aware combination of source view colors:

argmax
It

p
(
It|d

)
=

N∑

i=1

w
d
iC

d
i , (3)

where C
d
i ∈ R

H×W×3 is a collection of re-projected tar-

get pixels in source view i by inverse warping [16], wd
i ∈

R
H×W is the blending weight of source view i, and it is

computed from the visibility of target pixels in each source

view:

w
d
i = exp

(
V

d
i

)
/

N∑

i=1

exp
(
V

d
i

)
, (4)

where V
d
i ∈ R

H×W is the visibility of target pixels in

source view i given the target-view depth d.

In the next section, we will provide technical details on

how to estimate the source-view visibility V
d
i and target-

view depth probability distribution p(d).
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4. The Proposed Framework

We aim to construct an end-to-end framework for novel

view synthesis from a few sparse input images. By doing so,

inaccurately-estimated geometry can be corrected by image

synthesis error during training. We achieve this goal by esti-

mating target-view depth and source-view visibility directly

under the target view. Fig. 3 depicts the proposed pipeline.

Start from a blank volume in the target-view camera frus-

tum. Our goal is to select pixels from source-view images

to fill in the voxels of this volume. After that, we can ren-

der the target view image from this colored volume. In this

process, the visibility of the voxels in each source view, and

the target-view depth, are two of the most crucial issues.

4.1. A multi­scale 2D CNN to extract features

When a voxel of this volume is visible in a source view,

its projected pixel in this source view should be similar to

the projected pixels in other source views. This is the under-

lying idea for the source-view visibility estimation. How-

ever, the pixel-wise similarity measure is not suitable for

textureless and reflective regions. Hence, we propose to ex-

tract high-level features from source view images for the

visibility estimation by a 2D CNN.

Our 2D CNN includes a set of dilation convolutional lay-

ers with dilation rates as 1, 2, 3, 4 respectively. Its output is

a concatenation of extracted multi-scale features. This de-

sign is to increase the receptive field of extracted features

and retain low-level detailed information [45], thus increas-

ing discriminativeness for source view pixels.

Denote Fi ∈ R
H×W×D×C as the warped features of

source view i, where D is the sampled depth plane number

in the target view. For target-view voxels at depth d, we

compute the similarity between corresponding features in

source view i and other source views as:

S
d
i =

N∑

j=1,j 6=i

Sim
(
F

d
i ,F

d
j

)
/(N − 1), (5)

where Sim(·, ·) is a similarity measure between its two in-

puts, and we adopt cross-correlation in this paper.

4.2. Source­view visibility estimation (SVE) module

In theory, deep networks are able to learn viewpoint in-

variant features. However, we do not have any explicit su-

pervision on the warped source-view features. The compu-

tation of source-view visibility for the voxels is too com-

plex to be modeled by Eq. (5). Hence, we propose to learn

a source-view visibility estimation (SVE) module to predict

the visibility of the voxels in each source view.

Our SVE module is designed as an encoder-decoder ar-

chitecture with an LSTM layer at each stage. The LSTM

layer is adopted to encode sequential information along the

Figure 4: Illustration of our soft ray-casting mechanism. Our SRC tra-

verses through the surface probability curve along target viewing rays from

near to far, increases the depth probability of the first opaque element, and

decreases depth probabilities of later elements no matter they are opaque

or not.

depth dimension. Our SVE module takes into account self-

information (Fd
i ), local information (Sd

i ) and global infor-

mation (
∑N

i=1
S
d
i /N ) to determine the visibility of the vox-

els in each source view. Mathematically, we express it as:

V
d
i ,B

d
i , state

d
f = f

([
F

d
i ,S

d
i ,

N∑

i=1

S
d
i /N

]
, state

d−1

f

)
, (6)

where [·] is a concatenation operation, V
d
i ∈ R

H×W is

the estimated visibility for target-view voxels at depth d in

source view i, Bd
i ∈ R

H×W×8 is the associated visibility

feature, f(·) denotes the proposed SVE module, stated−1

f

is the past memory of our SVE module before depth d and

statedf is the updated memory at depth d.

4.3. Soft ray­casting (SRC) mechanism

By aggregating visibility from all source views, we ob-

tain a surface existence probability for each voxel in the tar-

get view. As shown in Fig. 4, the surface probability curve

along a target viewing ray might be multi-modal, where

a smaller peak indicates that a surface is visible by fewer

source views and a larger peak suggests that its correspond-

ing surface is visible by a large number of source views.

To increase the representative ability, we aggregate the

visibility features, instead of visibility, of source views to

compute a consensus volume:

C =

N∑

i=1

Bi/N, (7)

where C ∈ R
H×W×D×8 is the obtained consensus volume.

Then, we design a soft ray-casting (SRC) mechanism to

render the target view depth from the consensus volume.

Our SRC is implemented in the form of an LSTM layer.

Similar to our SVE module, the LSTM layer is to encode

sequential relationship along the depth dimension.

The LSTM layer traverses though the consensus volume

along target viewing rays from near to far. When meeting

the most front surface, it outputs a large depth probability
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value for the corresponding voxel. For the later voxels, the

LSTM layer sets their probability values to zero. Denote

the LSTM cell as r(·). At each depth d, it takes as input the

current consensus feature Cd and its past memory stated−1

r ,

and outputs the depth probability p(d) along with the up-

dated memory statedr :

state
d
r , p(d) = r(Cd, state

d−1

r ). (8)

4.4. Refinement network

Using the estimated source-view visibility and target-

view depth probability, we aggregate the source images and

obtain It∗ by Eq. (2). We then employ a refinement network

to further reduce artifacts on the aggregated image.

Our refinement network is designed in an encoder-

decoder architecture with convolutional layers. To tolerate

errors caused by the visibility estimation block, the encoder

in our refinement network is in two branches: one for the

aggregated image It∗ and another for a warped source view

Iwarp
i =

∑D

d=1
C

d
i p(d). Its outputs are a synthesized target

view image Îti along with a confidence map mi:

Îti ,mi = Refinement(It∗, I
warp
i ). (9)

The final output of our refinement network is computed as:

Ĩt =
N∑

i=1

miÎti . (10)

4.5. Training objective

We employ the GAN training scheme to train our frame-

work. For brevity, we omit the adversarial loss in this pa-

per. Interested readers are referred to Isola et al. [13]. For

the target image supervision, we adopt the perceptual loss

of Chen and Koltun [3]:

Lper =
∥∥∥Ĩt − It

∥∥∥
1

+
∑

l

λl

∥∥∥φl(Ĩt)− φl(I
t)
∥∥∥
1

, (11)

where φ(·) indicates the outputs of a set of layers from a

pretrained VGG-19 [35], and ‖·‖
1

is the L1 distance. The

settings for coefficients λl are the same as Zhou et al. [52].

Self-supervised training signal for our SRC and SVE.

Generally, it is difficult for our SRC to decide which is the

most front surface in a viewing ray, especially when the

surface probability curve is multi-modal. We expect this

soft determination can be learned statistically from training.

Particularly, when the estimated depth is incorrect, the color

of warped pixels from source-view images will deviate from

the ground truth target view color. This signal would pun-

ish the LSTM and helps it to make the right decisions. The

same self-supervised training scheme is applied to our SVE

module. We illustrate the estimated depth for a target pixel

in Fig. 4, and an example of the visibility-aware aggregated

image in Fig. 7.

5. Experiments

Dataset and evaluation metric. We conduct exper-

iments on two datasets, Tanks and Temples [14], and

DTU [1]. Camera movements in the two datasets include

both rotations and translations.

On the Tanks and Temples, we use the training and

testing split provided by Riegler and Koltun [24]. In this

dataset, 17 out of 21 scenes are selected out as the train-

ing set. The remaining four scenes, Truck, Train, M60, and

Playground, are employed as the testing set. We apply the

leave-one-out strategy for training, namely, designating one

of the images as target image and selecting its nearby N
images as input source images. For testing, different from

Riegler and Koltun [24] which uses whole sequences as in-

put, we select N nearby input images for each target view.

For the DTU dataset, it is employed to further demon-

strate the generalization ability of trained models. We do

not train on this dataset and use the validation set provided

by Yao et al. [47]. The validation set includes 18 scenes.

Each of the scenes contains 49 images. We apply the same

leave-one-out strategy as on the Tanks and Temples dataset.

Following recent NVS works [4, 24, 17, 8], we adopt the

commonly used SSIM, PSNR and LPIPS [50] for quality

evaluation on synthesized images.

Implementation details. For the Tanks and Temples,

we experiment on image resolution of 256 × 448. For the

DTU dataset, the input image resolution is 256 × 320. We

use a TITAN V with 12GB memory to train and evaluate

our models. We train 10 epochs on the Tanks and Tem-

ples dataset with a batch size of 1. It takes 20 hours for

training using 6 input images, and 0.35s per image (av-

erage) for evaluation. We apply inverse depth sampling

strategy with depth plane number D = 48. For outdoor

scenes, i.e., the Tanks and Temples, we set dmin = 0.5m and

dmax = 100m. For constrained scenes, i.e., the DTU dataset,

we employ the minimum (425mm) and maximum (937mm)

depth in the whole dataset. The source code of this paper

is available at https://github.com/shiyujiao/

SVNVS.git.

5.1. Comparison with the state­of­the­art

We first compare with two recent and representative IBR

methods, Extreme View Synthesis (EVS) [4] and Free View

Synthesis (FVS) [24], with six views as input. We present

the quantitative evaluation in the first three rows of Tab. 1.

Qualitative comparisons on the Tanks and Temples are pre-

sented in Fig. 5.

Both EVS and FVS first estimate depth maps for source

views. In their methods, the visibility of target pixels in

source views is computed by a photo-consistency check

between source and target view depths. EVS aggregates

source views simply based on the source-target camera dis-

tance. Their aggregation weights do not have the ability to
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(a) EVS [4] (b) FVS [24] (c) Ours (d) Ground Truth

Figure 5: Qualitative visualization of generated results on the Tanks and Temples dataset with six views as input. The four examples are from scene Truck,

Train, M60, Playground respectively.

Table 1: Quantitative comparison with the state-of-the-art. Here, “Whole” denotes using the whole sequence as input; “*” indicates that results are from

Zhang et al. [49]; and “† ” represents that results are from Riegler and Koltun [24].

Input

View

Number

Tanks and Temples
DTU

Truck Train M60 Playground

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

EVS[4] 6 0.301 0.588 17.74 0.434 0.434 15.38 0.314 0.585 16.40 0.243 0.702 21.57 0.32 0.645 17.83

FVS[24] 6 0.318 0.638 15.82 0.447 0.502 13.71 0.486 0.548 11.49 0.417 0.586 14.95 0.47 0.530 10.45

Ours 6 0.233 0.708 21.33 0.386 0.542 18.81 0.250 0.732 19.20 0.245 0.710 22.12 0.303 0.721 19.20

Ours

2 0.294 0.627 19.20 0.475 0.464 17.44 0.303 0.667 18.14 0.350 0.604 19.98 0.362 0.625 17.54

4 0.254 0.682 20.41 0.430 0.495 17.82 0.283 0.698 19.37 0.275 0.663 21.31 0.359 0.646 17.84

6 0.233 0.708 21.33 0.386 0.542 18.81 0.250 0.732 19.20 0.245 0.710 22.12 0.303 0.721 19.20

NeRF[19] Whole 0.513* 0.747* 20.85* 0.651* 0.635* 16.64* 0.602* 0.702* 16.86* 0.529* 0.765* 21.55* – – –

FVS[24] Whole 0.11† 0.867† 22.62† 0.22† 0.758† 17.90† 0.29† 0.785† 17.14† 0.16† 0.837† 22.03† – – –

tolerate visibility error caused by in-accurate depth. Thus,

the synthesized images by EVS suffer severe ghosting arti-

facts, as shown in Fig. 5(a). FVS employs a COLMAP to

reconstruct the 3D mesh. When input images densely cover

a scene, the reconstructed geometry is exceptionally good,

and the synthesized images are of high-quality, as shown

in the last row of Tab. 1. However, when the number of

input images are reduced, i.e., 6, the reconstructed mesh

by COLMAP is of poor quality, and the depth-incorrect re-

gions in the synthesized images are blurred, as indicated

in 5(b). In contrast, our method does not rely on the accu-

racy of estimated source-view depths or reconstructed 3D

mesh. Instead, we directly recover target-view depth and

source-view visibility from input images. Thus, our synthe-

sized images show higher quality than the recent state-of-

the-art.

Generalization ability. To further demonstrate the gen-

eralization ability, we employ the trained models of the

three algorithms to test on the DTU dataset. Quantitative re-

sults are presented in the last column of Tab. 1. Our method

consistently outperforms the recent state-of-the-art algo-

rithms. We present two visualization examples in Fig. 6.

More qualitative results are provided in the supplementary

material.

Different input view number. We further conduct ex-

periments on reducing the number of input views of our

method. Quantitative results are presented in the bottom

part of Tab. 1. Increasing the input view number improves

the quality of synthesized images. This conforms to our

general intuition that image correspondences can be easily

established and more disoccluded regions can be observed

when more input views are available.

Comparison with NeRF. For completeness, we present

the performance of NeRF [19] with the whole sequence as
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(a) EVS [4] (b) FVS [24] (c) Ours (d) Ground Truth

Figure 6: Qualitative visualization of generated results on the DTU dataset with six views as input. The two examples are from scene scan3 and scan106,

respectively.

input in the penultimate row of Tab. 1. The major differ-

ence between NeRF and our method is the different prob-

lem settings. NeRF is more suitable to view synthesis on a

specific scene with many images as input. When the scene

is changed, NeRF needs to be re-trained on the new scene.

In contrast, we expect our network to learn common knowl-

edge from its past observations (training data) and be able

to apply the learned knowledge to unseen scenes without

further fine-tuning. Thus, our approach is a better choice

when the trained model is expected to generalize, and the

number of input images is small.

Comparison with Szeliski and Golland [40]. We found

our work shares the same spirit with a classical work [40].

Both works construct a virtual camera frustum under the

target view and aim to estimate the color and density (depth

probability in our work) for each of its elements. Szeliski

and Golland [40] first compute an initial estimation by find-

ing agreement among source views. Next, they project

the estimation to the source views, compute the visibil-

ity of source views, and then refine the estimation itera-

tively. Benefited from learning-based techniques, our ap-

proach encodes the visibility estimation as a single forward

step (compared to iterative refinement in Szeliski and Gol-

land [40]) and can handle more complex scenarios, such as

textures and reflective regions, as shown in the qualitative

visualizations of this paper and supplementary material.

5.2. Ablation study

In this section, we conduct experiments to verify the ef-

fectiveness of each component in the proposed framework.

Source-view visibility estimation. We first remove

the visibility-aware source view aggregation (indicated by

Eq. (2)) from our framework, denoted as “Ours w/o visi-

bility”. Instead, we feed the warped source images to our

refinement network directly and equally. We expect the

refinement network to learn the visibility-aware blending

weights for source view images automatically. The results

are presented in the first row of Tab. 2. It can be seen that

the performance drops significantly compared to our whole

pipeline. This indicates that it is hard for the refinement

network to select visible pixels from source views.

We present a visualization example of our visibility-

aware aggregated result in Fig. 7. As shown in Fig. 7(a),

directly warped source images contain severe ghosting ar-

tifacts due to occlusions, i.e., disoccluded regions in tar-

get view are filled by replicas of visible pixels from a

source view. By using the proposed SVE module to esti-

mate the visibility of source views, our aggregated result,

Fig. 7(b), successfully reduces the ghosting artifacts and is

much more similar to the ground truth image, Fig. 7(c).

Soft ray-casting. We first remove the soft ray-casting

mechanism from our whole pipeline, expressed as “Ours

w/o ray-casting”. Instead, we use the surface probability,

i.e., the red curve in Fig. 4, as the depth probability to warp

and aggregate source views. As indicated by the second row

of Tab. 2, the results are significantly inferior to our whole

pipeline. Furthermore, we replace the SRC as the conven-

tional over alpha compositing scheme, denoted as “Ours w

over compositing”. The results are presented in the third

row of Tab. 2. It can be seen that our SRC is necessary and

cannot be replaced by the over alpha compositing scheme.

Both SRC and over alpha compositing are neural render-

ers in NVS. Over-compositing uses opacity to handle occlu-

sions, while our method does not regress opacity for vox-

els. Our input curve to SRC is obtained by majority voting

from source views. A smaller peak in the curve indicates

that a surface is visible by fewer source views and a larger

peak suggests that a surface is visible by more source views.

Due to the fixed weight embedding in over-compositing, the

smaller peak at a nearer distance will be ignored while the

larger peak will be highlighted. By using LSTM, our SRC

can be trained to decide which peak is the top-most surface.

Refinement network. We further ablate the refine-

ment network. In doing so, we remove the warped source
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(a) Warped Source-View Images in Target View

(b) Aggregated Image

(c) Ground Truth

Figure 7: Qualitative illustration on our visibility-aware aggregation. (a) Warped source images in target view. There are severe ghosting

artifacts due to occlusions. (b) Aggregated image by using our visibility-aware blending weights. (c) Target view ground truth image.

Table 2: Necessity of each module in the proposed framework.

Tanks and Temples
DTU

Truck Train M60 Playground

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

Ours w/o visibility 0.271 0.660 20.35 0.437 0.482 17.93 0.322 0.656 16.83 0.277 0.665 21.40 0.367 0.641 17.03

Ours w/o ray-casting 0.761 0.643 20.04 0.665 0.487 17.83 0.766 0.654 17.45 0.737 0.649 20.98 0.397 0.649 18.71

Ours w over compositing 0.308 0.695 21.19 0.445 0.531 18.14 0.321 0.709 19.32 0.334 0.689 21.57 0.409 0.684 19.02

Ours w/o warped sources 0.250 0.697 20.89 0.402 0.534 18.58 0.263 0.729 19.31 0.254 0.704 22.51 0.322 0.705 19.65

Ours w/o refinement 0.237 0.675 20.99 0.380 0.533 18.28 0.220 0.717 20.13 0.244 0.689 22.88 0.239 0.765 21.44

Our whole pipeline 0.233 0.708 21.33 0.386 0.542 18.81 0.250 0.732 19.20 0.245 0.710 22.12 0.303 0.721 19.20

view images from the refinement network input, denoted

as “Ours w/o warped sources”. As shown by the results in

Tab. 2, there is only a small performance drop compared to

our whole pipeline. This indicates that our visibility-aware

aggregated images are already powerful enough to guide the

refinement network to synthesize realistic images.

We further remove the refinement network from our

whole pipeline, denoted as “Ours w/o refinement”. The re-

sults are presented in the penultimate row in Tab. 2. For the

test scenes on the Tanks and Temples dataset, the perfor-

mance drops compared to our whole pipeline. While for the

results on the DTU dataset, “Ours w/o refinement” achieves

significantly better performance. This is due to the huge

color differences between the training (outdoor) and test-

ing(indoor) scenes. In practice, we suggest the users first

visually measure the color differences between the training

and testing scenes and then choose a suitable part of our ap-

proach. We found that a concurrent work [25] provides a

solution to this problem. Interested readers are referred to

this work for detailed illustration.

Limitations. The major limitation of our approach is

the GPU memory. The required GPU memory increases

with the depth plane sampling number and the input view

number. By using a 12GB memory GPU, our approach can

handle a maximum of 6 input views and 48 depth plane

numbers. The advantage of inverse depth plane sampling

is that it can recover near objects precisely. The downside

is that it handles worse for scene objects with fine structures

at distance, because the depth planes at distance is sampled

sparsely and the correct depth of some image pixels cannot

be accurately searched. Another limitation of our method is

that we have not incorporated temporal consistency into our

method when synthesizing a sequence of new views. There

might be shifting pixels between the synthesized images,

especially for thin objects. We expect these limitations can

be handled in future works.

6. Conclusion

In this paper, we have proposed a novel geometry-based

framework for novel view synthesis. Different from con-

ventional image-based rendering methods, we combine ge-

ometry estimation and image synthesis in an end-to-end

framework. By doing so, inaccurately estimated geometry

can be corrected by image synthesis error during training.

Our major contribution as well as the central innovation is

that we estimate the target-view depth and source-view vis-

ibility in an end-to-end self-supervised manner. Our net-

work is able to generalize to unseen data without further

fine-tuning. Experimental results demonstrate that our gen-

erated images have higher-quality than the recent state-of-

the-art.
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zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In Advances in

Neural Information Processing Systems, pages 1121–1132,

2019. 2

[38] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,

Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing

the boundaries of view extrapolation with multiplane images.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 175–184, 2019. 2

[39] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning

Zhang, and Joseph J Lim. Multi-view to novel view: Syn-

thesizing novel views with self-learned confidence. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 155–171, 2018. 2

[40] Richard Szeliski and Polina Golland. Stereo matching with

transparency and matting. International Journal of Com-

puter Vision, 32(1):45–61, 1999. 7

[41] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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