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Abstract

Detecting aligned 3D keypoints is essential under many

scenarios such as object tracking, shape retrieval and

robotics. However, it is generally hard to prepare a high-

quality dataset for all types of objects due to the ambiguity

of keypoint itself. Meanwhile, current unsupervised detec-

tors are unable to generate aligned keypoints with good cov-

erage. In this paper, we propose an unsupervised aligned

keypoint detector, Skeleton Merger, which utilizes skeletons

to reconstruct objects. It is based on an Autoencoder archi-

tecture. The encoder proposes keypoints and predicts acti-

vation strengths of edges between keypoints. The decoder

performs uniform sampling on the skeleton and refines it

into small point clouds with pointwise offsets. Then the acti-

vation strengths are applied and the sub-clouds are merged.

Composite Chamfer Distance (CCD) is proposed as a dis-

tance between the input point cloud and the reconstruction

composed of sub-clouds masked by activation strengths. We

demonstrate that Skeleton Merger is capable of detecting

semantically-rich salient keypoints with good alignment,

and shows comparable performance to supervised methods

on the KeypointNet dataset. It is also shown that the detec-

tor is robust to noise and subsampling. Our code is avail-

able at https://github.com/eliphatfs/SkeletonMerger.

1. Introduction

Being able to fully understand an object is arguably the

ultimate goal of computer vision. For 3D point clouds, de-

tecting semantic keypoints is currently the most promising

and widely adopted approach. [25, 21] Keypoints are cru-

cial to the success of many vision applications such as ob-

ject tracking, shape registration and in robotics [15, 24, 3,

5]. In many actual cases where objects from the same cate-

gory are compared, we desire keypoints to be not only accu-

rately located but also aligned within a certain category for
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Figure 1. Examples of detected aligned keypoints and the cor-

responding skeletons from our detector. Skeleton is shown in

purple lines. Objects are from ModelNet40 [27] and ShapeNet-

CoreV2 [4] datasets.

performing high-level vision tasks such as 3D object recog-

nition and reconstruction. [29]

However, to decide whether a point contains semantics

requires high-level intelligence, as ‘semantics’ itself is am-

biguously defined. Different people would present different

understandings of semantic points. Therefore, very limited

human annotated quality data are available so far [31]. Con-

sequently, supervised methods can only deal with very lim-

ited range of objects covered in the datasets despite their

success on many other tasks.

Most unsupervised methods, either traditional hand-

crafted ones [19, 33] or deep learning-based [12], take ad-

vantage of geometric properties to detect keypoints. While

stable, these keypoints are often not rich in semantics, and

the coverage of keypoints on the input point cloud is gener-

ally low, especially under a small number of points, which

limits their performance in downstream tasks. Moreover,

the keypoints detected are neither ordered nor aligned. A

very recent approach [8] can learn aligned 3D keypoints

by decomposing keypoint coordinates into a low-rank non-

rigid shape representation. However, in categories like the

airplane where objects do not necessarily share highly simi-

lar geometric shapes, its performance dramatically declines.

In view of the challenges above, we propose Skeleton
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with sparse keypoints.

Easy to see it’s a chair
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Figure 2. Describe objects with skeletons. (a) We observe that

human vision can easily distinguish objects with skeletons, but it

is harder with keypoints only. (b) Histogram of nearest neighbour

distances of points in point clouds to its skeleton (red), large quan-

tity of (3200) uniformly sampled points (green) in the bounding

box and keypoints (blue).

Merger, an unsupervised keypoint detector that can extract

salient and aligned keypoints. As its name suggests, Skele-

ton Merger attempts to reconstruct a point cloud from its

skeleton. Some examples of detected keypoints and the

skeletons are shown in Fig. 1.

Utilizing skeleton to represent a point cloud is inspired

by the skeleton extraction problem [6] in traditional graph-

ics. We hold the belief that skeleton is a better presen-

tation method than that adopted by current deep learning-

based frameworks both intuitively and statistically. Qual-

itatively speaking, we observe that human vision tends to

use a ‘joint-skeleton’ cognitive pattern to recognize things,

as is shown in Fig. 2 (a). While accurate and descriptive se-

mantics is mostly provided by keypoints, with some discrete

keypoints as joints alone, it is merely impossible for hu-

man beings to recognize objects. However, if we introduce

some auxiliary line segments connecting certain keypoints

together to form a skeleton, humans can easily distinguish

the object. Quantitatively speaking, statistical results in Fig.

2 (b) show that points of a point cloud are in general closer

to those of a skeleton (red), compared with keypoints (blue)

or uniform sampling inside the bounding box (green). This

indicates skeleton can better fit with local shape features of

the original point cloud.

On implementation level, our Skeleton Merger follows

a deep Autoencoder architecture. The encoder generates

keypoint proposals. It also predicts activation strengths of

edges between keypoints. The decoder generates a skele-

ton from these results, which is essentially a graph of key-

points. It performs uniform sampling on each edge, adds

distinct activation strength and offset to refine the shape.

In this way, each skeleton edge is essentially a small sub-

cloud. The decoder finally merges them altogether to form a

reconstruction point cloud. Noticing that the order of skele-

ton edges is predefined by the encoder, the alignment of

keypoints is therefore considerably improved.

The crucial problem now becomes how to construct a

loss function that can evaluate how well the refined skele-

ton reconstructs the original point cloud. Following the idea

of traditional Chamfer loss [2], which is the sum of forward

and backward losses, we come up with Composite Chamfer

Distance (CCD), which is the sum of fidelity (forward) and

coverage (backward) losses. CCD measures the distance

between the input and the reconstructed point cloud com-

posed of many sub-clouds masked by activation strengths.

Experimental results show that Skeleton Merger is ca-

pable of detecting semantically-rich salient keypoints with

good alignment. Our detector achieves significantly bet-

ter performance than current unsupervised detectors on the

KeypointNet [31] dataset. In fact, its performance is even

comparable to supervised methods. Results also show that

our detector is robust to noise and subsampling.

2. Related work

Curve skeleton extraction In the context of computer

graphics, skeleton refers to the 1D structure which is a

simplified representation of the geometry of a 3D object.

Cornea et al. [6] provided an overview of curve skeleton

algorithms [1, 14, 18] and their applications. In our paper,

however, skeleton refers to a graph of keypoints that repre-

sents topology of the object. The purpose of our skeleton is

not only to provide a rough geometric shape of the original

object, but to help improve alignment of keypoints.

Deep learning on 3D point clouds Currently, various

deep learning-based techniques that consume point clouds

[13, 16, 17, 28, 26, 11] have been developed. They initially

aim at basic tasks such as classification and segmentation,

but can be adapted for more high-level 3D perception tasks

like point cloud registration, pose estimation and 3D recon-

struction [9, 7, 32, 10]. PointNet [16] proposed by Qi et

al. is a pioneering work that first enables neural networks

to directly process raw point cloud data. In PointNet, the

input points pass through per-point multi-layer perceptron

and a symmetric max pooling operation, ending up with a

global feature. The global feature is then used for various

downstream tasks. However, PointNet only takes notice of

the global information, neglecting local details. Thus, Qi

et al. extended PointNet to PointNet++ [17], where Point-

Net is applied hierarchically on different spatial scales for

better performance on point clouds. Our encoder utilizes

PointNet++ as a point cloud processing block.

Unsupervised 3D keypoint detectors Currently, most

3D keypoint detectors remain to be hand-crafted. Popular

hand-crafted detectors such as Harris 3D [19], ISS [33],

HKS [20], SHOT [23] take advantage of geometric prop-

erties to select most salient keypoints. As geometric char-

acteristics are quite complex in 3D objects, most keypoints

detected are neither semantically salient nor well aligned.

To the best of our knowledge, USIP [12] is the first
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Figure 3. Pipeline of Skeleton Merger. The encoder takes n points as input and utilizes a PointNet++ network to generate keypoint

proposals and activation strengths. ‘MLP’ stands for multi-layer perceptron. Batch-norm and ReLU are used for the MLP. The decoder

samples on edges of the skeleton, refines them by adding positional offsets that are directly optimized as parameters, and merges the refined

skeleton edges with the activation strengths. Composite Chamfer Distance is applied between the reconstruction result and the input point

cloud.

learning-based 3D keypoint detector. USIP takes advantage

of probabilistic chamfer loss that greatly enhances repeata-

bility. However, while keypoints detected are stable under

geometric transformations, they may have poor coverage on

the point cloud, especially when the number of keypoints is

small. Furthermore, keypoints detected are unordered and

not aligned. Very recently, Fernandez et al. [8] propose an

unsupervised approach that can learn aligned 3D keypoints

through decomposing keypoint coordinates into a low-rank

non-rigid shape representation. This leads to degraded per-

formance on classes where objects are not necessarily sim-

ilar in geometry such as guitars and airplanes of irregular

shapes. Moreover, all shapes are assumed to be axisymmet-

ric in their method, while our detector needs no symmetry

prior, so it can be applied to a wider range of objects.

3. Methods

Now we propose the unsupervised aligned keypoint de-

tector, Skeleton Merger, which is based on a deep Autoen-

coder framework. The full pipeline is shown in Fig. 3.

The encoder first proposes an ordered list of k keypoints

K ∈ R
k×3. Connecting each pair of keypoints, a rough

skeleton of the input point cloud is generated, composed of

C2
k = k(k−1)/2 edges. The skeleton is further refined into

k(k−1)/2 point clouds through uniform sampling and addi-

tion with a sequence of learned offset vectors. These clouds

are masked by k(k − 1)/2 activation strengths, which also

come from the encoder, and merged into a final reconstruc-

tion point cloud at the output of the decoder. The Composite

Chamfer Distance (CCD) is applied between the merged re-

construction point cloud and input point cloud to guide the

unsupervised learning process.

In the following subsections, we will introduce in detail

each module in the pipeline.

3.1. Skeleton and activation strengths

The key of the Skeleton Merger architecture lies in the

utilization of the skeleton to reconstruct objects.

Directly reconstructing the original point cloud from

keypoints is essentially transforming a point set into a larger

one, which by its nature is unordered. Furthermore, key-

points only contain sparse semantic information, and exper-

iments show that reconstruction by this method may lead

to poor coverage of the original point cloud. In contrast,

the skeleton provides a basic geometric shape of the orig-

inal object, instead of sparse semantics. Meantime, it can

be easily constructed with alignment by connecting pairs of

keypoints in order.
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There are edges in the skeleton, however, that do not ac-

tually exist in the original point cloud. They will bring un-

wanted noise to the reconstruction. A mechanism is thus

required for masking out these non-existing edges. So to-

gether with the skeleton, a list of activation strength val-

ues are predicted by the model. These values indicate exis-

tence of edges in the skeleton. This step requires the model

to learn the skeleton topology of the reconstruction target

object, which, combined with ordered construction of the

skeleton edges, improves alignment of keypoints.

3.2. Encoder, the keypoint proposer

In the encoder, a PointNet++ [17] network is first applied

to obtain k pointwise scores S ∈ R
k×N of the input point

cloud. The pointwise scores are then activated by a softmax

function. A weighted average of the input point cloud X ∈
R

N×3 is computed from softmax(S) and X to form the

final keypoint proposals K ∈ R
k×3. The weighted average

is implemented by a matrix multiplication, shown in Fig. 3.

Besides k keypoints, the existence of k(k − 1)/2 edges

between each pair of keypoints is encoded as well. A

3-layer MLP (multi-layer perceptron) accepts the global

feature vector generated by the PointNet++ network and

predicts k(k − 1)/2 sigmoid-activated activation strengths

a ∈ R
k(k−1)/2. The activation strengths are used to mask

skeleton edges before the merging stage in decoder.

3.3. Decoder, the skeleton refiner

The decoder takes as input the keypoints K ∈ R
k×3 pro-

posed by the encoder. A uniform sampling operation is per-

formed on the edges to get k(k − 1)/2 small point clouds,

P1, P2, . . . , Pk(k−1)/2. The number of points sampled ni is

in proportion to the length of each edge.

For each small point cloud Pi ∈ R
ni×3, pointwise po-

sition offset Bi ∈ R
ni×3 is added to the initial points sam-

pled as a refinement to the skeleton formed by straight lines.

Bi’s are directly optimized as parameters of the network. In

order to keep the refinement localized, a Ridge (L2) regu-

larization is imposed on the learnt position offsets.

The k(k − 1)/2 refined point clouds X̂i = Pi + Bi

are merged into a single point cloud with the activation

strengths ai from the encoder. The CCD is then applied

between the reconstruction point cloud and the input point

cloud X as the loss to guide the training.

3.4. Composite Chamfer Distance

To put the reconstruction process into practice, it is es-

sential to establish a loss function between the input point

cloud X and the reconstruction point cloud composed of

different parts X̂i masked by activation strengths ai. We

generalize the Chamfer Distance to take into account the

activation strengths, and proposes the Composite Chamfer

Distance (CCD).

Similar to the regular Chamfer Distance, CCD is a sum

of fidelity (forward) and coverage (backward) losses. How-

ever, the reconstruction result is composed of several sub-

clouds, while the input is simply one large point cloud. This

asymmetry leads to asymmetry in designs of fidelity and

coverage losses, making it to fit the nature of the problem.

The fidelity loss is a straightforward extension to the

Chamfer Distance where the activation strength is applied

to each sub-cloud, as shown in Eq. 1:

Lf =
∑

i

ai
∑

p̂∈X̂i

min
p0∈X

||p̂− p0||2 . (1)

Then it comes to the coverage loss. If we do the

same simple extension to the Chamfer Distance, activation

strengths ai will go to zero when the loss gets minimized,

which prevents the model from learning anything meaning-

ful. The problem is that, a reconstruction point with a small

ai value does not contribute to coverage as much as one with

a large ai value. Therefore, more points than only the one

with minimal distance should be considered if its activation

strength is not large enough.

In view of this, we come up with the following coverage

loss, which involves point-wise sorting of sub-clouds and

weighted averaging instead of a simple minimum. The al-

gorithm to generate the coverage loss is shown in Alg. 1.

An illustrating example is shown in Fig. 4.

Algorithm 1 Coverage loss of CCD

Input: X , X̂1 . . . X̂k(k−1)/2, a1 . . . ak(k−1)/2

Parameter: γ
Output: Lc

1: for p0 ∈ X do

2: R ←
⋃
{X̂1 . . . X̂k(k−1)/2}

3: w ← 0
4: while w < 1 andR 6= ∅ do

5: Find p̂ by minp̂∈R ||p̂− p0||2
6: Find i with p̂ ∈ X̂i

7: Lc ← Lc + ai ||p̂− p0||2
8: w ← w + ai,R ← R \ X̂i

9: end while

10: if w < 1 then

11: Lc ← Lc + γ(1− w)
12: end if

13: end for

Each point in the input point cloud is treated separately

(the outer ‘for’ loop starting at line 1) with an iterative pro-

cess: the point with minimal distance in the collection of

sub-clouds is selected (line 5 and 6), and the distance mul-

tiplied with the activation strength is the contribution of the

current iteration to the coverage loss (line 7), after which

the entire sub-cloud is removed from the collection under
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For each point p0 in the input point cloud X

Iteration 1

X̂1

X̂2

X̂3

a1 = 0.5

a3 = 0.6

a2 = 0.2

R = {X̂1, X̂2, X̂3}

X̂3

X̂1

R = {X̂1, X̂2}

Iteration 2

d1

d2

p0

p0

Initial State

p0

⇒ Lc = a3d1 + a1d2 + 0 · γ

p̂

p̂

a3 + a1 ≥ 1
Stop iteration

Figure 4. An illustrating example of the coverage loss algo-

rithm. The input cloud is a curved poly-line in the example. Cur-

rently the focus p0 is the marked pink point. In each iteration, the

nearest point of p0 in R is selected and the distance is computed.

Then the small point cloud that contains the selected point is dis-

carded from R and the next iteration starts. The iteration stops

when selected ai’s sum up to 1 (as shown), or when R is empty, in

which case γ would be applied as a penalty for the rest of w. See

the text for more details about coverage loss.

consideration (line 8). The iteration stops after activation

strengths sum up to 1 (notice the w < 1 condition in the

while loop starting at line 4). If it never reaches 1, a high

penalty of γ is imposed (line 10 to 12). γ is set to 20.0 in

the experiments.

Intuitively, sub-clouds that contribute more to the cover-

age have small backward Chamfer Distance, and due to the

cutting mechanism, the activation strengths of these parts

will get larger. The fidelity loss, in contrast, reduces the ac-

tivation strengths of non-existing edges in the skeleton. By

applying CCD as loss, the network is forced to generate a

set of sub-clouds with reasonable activation values, which

enables the training process.

Meantime, alignment is assured since the activation-

generating MLP only sees global information about the

point cloud. The MLP learns essentially the topology of

target model skeletons, and a wrong ordering of keypoints

will lead to high fidelity and coverage losses.

The final CCD loss is a weighted sum of the two parts, fi-

delity loss Lf and coverage loss Lc, as shown in Eq. 2. The

weight coefficients λf and λc can be tuned. They default to

be the same in the experiments.

L = λfLf + λcLc. (2)

4. Results

In this section, we evaluate keypoint saliency, alignment

and repeatability of the proposed Skeleton Merger, and give

some qualitative results of the keypoint detector.

4.1. Metric for alignment with human annotations

Currently, there lacks a metric for evaluating correspon-

dence between two sets of semantic labels for keypoints,

where a consistent label is given to keypoints with the same

semantics in each set, but the relation between labels of two

sets is unknown. We propose Dual Alignment Score (DAS)

metric for this evaluation.

Dual Alignment Score In order to evaluate whether our

keypoints are consistent in semantics, we propose Dual

Alignment Score (DAS). In DAS calculation, a reference

point cloud is used for semantic assignment and another

model is used for the actual evaluation. On the reference

model, we assign each predicted keypoint with the seman-

tic index of the closest point from human annotations. Then

on the other point cloud, the corresponding predicted point

is found since our keypoints are aligned. A score is calcu-

lated by the mean accuracy whether the closest human an-

notated keypoint of this point is of the same semantic index.

In the opposite direction, order of our predicted keypoints is

used to assign semantic labels for human annotations, and

the process is repeated. By averaging scores in these two

directions we get the Dual Alignment Score (DAS). Fig. 5

shows an illustration of the DAS computation.

Reference
Point Cloud

Evaluation
Point Cloud

Human
Annotations

Model
Predictions

①Assign

② Infer

③ Match

①Assign

② Infer

③ Do not
match

Figure 5. An illustration of DAS computation process. Only

one matching direction from predicted semantic labels to annota-

tions is shown. We first assign corresponding labels by finding

the nearest neighbour of predicted keypoints on annotations of the

reference point cloud. Then the human annotated keypoints with

same semantic labels are inferred for the evaluation point cloud.

Finally, we see if the nearest neighbour of the inferred annotations

are of same predicted labels, and compute an accuracy score.
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Ours                       PointConv                   SpiderCNN                    PointNet                            ISS                    Fernandez et al.

Figure 6. Comparison between different supervised and unsupervised detectors. Our detector produces salient, semantically rich

keypoints and is comparable to or even outperforms supervised methods, as shown.

4.2. Evaluation on human annotated data

We first evaluate saliency and alignment of keypoints de-

tected by the proposed Skeleton Merger. More specifically,

we consider evaluation on two large-scale keypoint datasets,

KeypointNet[31] and data from SyncSpecCNN [30], where

keypoints are annotated by experts with semantic corre-

spondence labels.

Keypoint saliency For keypoint saliency, we compute the

mean Intersection over Unions (mIoU) [22] metric, where

IoU =
TP

TP + FP + FN
. (3)

mIoU is computed with a threshold of 0.1 in euclidean

distance. Skeleton Merger is trained and tested on Key-

pointNet. Also, several supervised networks, PointNet [16],

SpiderCNN [28] and PointConv [26], are trained on Key-

pointNet to predict the likeliness of each point to be a key-

point as a comparison. In addition, the recent unsupervised

detector [8] by Fernandez et al.1 and two traditional meth-

ods, Harris3D [19] and ISS [33], are also compared.

The results are shown in Tab. 1. It can be seen that in

these categories where keypoints are (at least partially) well

defined, our unsupervised detector shows competitive per-

formance to, or even outperforms, the supervised networks,

in terms of mIoU, and is by far superior to traditional meth-

ods in detecting salient keypoints. A visualized comparison

between different methods is shown in Fig. 6.

Keypoint alignment For keypoint alignment, Skeleton

Merger is trained on the ShapeNetCoreV2 [4] dataset, and

DAS described in the previous section is evaluated on the

KeypointNet[31] and SyncSpecCNN [30] datasets. The re-

sults are shown in Tab. 2. We compare the DAS scores with

the method of Fernandez et al. [8].

1The method in [8] requires a category-specific symmetry prior, which

is not available in the Guitar class.

Airplanes Chairs Guitars

PointNet 45.4 23.8 0.2

SpiderCNN 55.0 49.0 17.0

PointConv 93.5 86.0 84.9

Harris3D 42.8 15.1 33.1

ISS 36.3 11.6 37.0

Fernandez et al. 69.7 51.2 -

Ours 79.4 68.4 55.0

Table 1. mIoU scores of Skeleton Merger, different supervised net-

works, method of Fernandez et al. and traditional keypoint detec-

tors on KeypointNet.

Airplane (K) Chair (K) Chair (S)

Fernandez et al. 61.4 64.3 54.2

Ours 77.7 76.8 73.8

Table 2. DAS scores of Skeleton Merger and method of Fernandez

et al. on KeypointNet (K) and SyncSpecCNN (S).

4.3. Repeatability

In this section we investigate the repeatability of detected

keypoints to Gaussian additive noise and point cloud down-

sampling. Gaussian noises of different strengths and differ-

ent sampling ratios are applied on the point clouds, and the

same Skeleton Merger network trained on ShapeNetCoreV2

[4] is applied for keypoint detection.

The keypoints that are detected on these modified point

clouds are compared with those detected from the clean,

original point cloud in order, that is, keypoints are com-

pared one-by-one as a list instead of a set as in most previ-

ous works. If the distance between a keypoint detected from

the original point cloud and a keypoint detected under noise

or subsampling is smaller than 10% of the model size, the

keypoint is considered repeatable.

The results are shown in Fig. 8. We compare the results

with ISS [33]. It can be seen that the aligned keypoints

48



mIoU DAS

Airplane Chair Airplane Chair

Full Skeleton Merger 79.4 68.4 77.7 76.8

No activation strengths 55.5 8.4 72.1 65.2

No fidelity loss 78.2 60.0 76.2 74.4

No coverage loss 17.8 1.1 35.6 37.3

No offsets 85.6 62.0 72.4 75.6

Table 3. Ablation study of different components in Skeleton Merger.

Full Skeleton Merger No activation strengths No fidelity loss No coverage loss No offsets

Figure 7. Visualization results of the ablation study. Minor degeneracies can be seen in models without offsets or the fidelity loss. Major

performance drop is seen if either the activation strengths or the coverage loss is removed.

detected remain highly repeatable under Gaussian noise or

downsampling. They also stay well-aligned.
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Figure 8. Repeatability of Skeleton Merger and ISS on

ShapeNetCoreV2. (a) Repeatability under Gaussian noise. (b)

Repeatability under downsampling. (c) Visualization results of

keypoints from Skeleton Merger under the scenarios. Downsam-

ple rate is 8x and the Gaussian noise scale is 0.05.

4.4. Ablation study

We carried out experiments on the effectiveness of pro-

posed components in Skeleton Merger. Tab. 3 and Fig. 7

shows the results from the network with different settings.

The models are trained on ShapeNetCoreV2 [4] and evalu-

ated on KeypointNet [31].

Activation strengths Without activation strengths, i.e. all

activations of sub-clouds are set to 1, the network has

to cope with the non-existing edges to fit the input point

clouds, and there lacks a mechanism to enforce alignment

of keypoints (the skeleton topology is no longer utilized for

alignment), thus the full model outperforms model of this

version both in saliency (mIoU) and alignment (DAS).

Trainable offsets Without offsets, only straight lines be-

tween keypoints are allowed. These lines fit the shape of

airplanes well, and removing offsets reduces variance in

the model, so this version outperforms the full model in

terms of keypoint saliency. In other cases, however, the

model without offsets is not so lucky. It suffers from fill-

ing squares, balls and other shapes with straight lines.

Composite Chamfer Distance The Composite Chamfer

Distance is at the core of the training process.

Without the fidelity loss, activation strengths soon go to

1 because of the stop-iteration procedure in the coverage

loss. As a result, the network can only learn meaningful

latents in the first several epochs, and stops improving due

to the same reasons without activation strengths, causing

degeneracies in performance.

Without the coverage loss, activation strengths soon go

to 0 as fidelity loss is minimized, preventing the network

from learning anything meaningful. This also emphasizes

the importance of coverage in keypoint detection.
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Results from

our model

KeypointNet

Annotations

Figure 9. Examples of keypoints detected by Skeleton Merger

on ShapeNetCoreV2. Keypoints detected on chairs and tables,

together with a set of annotations from KeypointNet are displayed.

Fernandez et al. Supervised PointConv Ours

Figure 10. Comparison of different detectors on an irregular-

shaped airplane. The method from Fernandez et al. fails to gen-

eralize on this instance, and supervised PointConv shows degen-

eracies, while our method works well.

4.5. Qualitative results and limitations

In this section, we give some qualitative results of our

method and discuss the keypoint ambiguity and limitations.

Mugs

Results from

our model Annotations
KeypointNet

Figure 11. Examples of keypoint detections and human anno-

tations in the mug category. The points on the lip of the mugs

share the same semantics, which leads to ambiguity in keypoint

definition.

Qualitative visualization results Fig. 9 shows some

visualization results of keypoints detected by Skeleton

Merger on different object categories. It can be seen that

these points are well-aligned between different instances of

objects and cover most points with semantics in the point

cloud. They correspond well to the human annotations.

Irregular-shaped instances It is worth mentioning the

generalization capability of our keypoint detector to

irregular-shaped objects in an category. As shown in Fig.

10, the model of Fernandez et al. [8] fails to generalize to

the irregular-shaped airplane, and the supervised PointConv

[26] network shows some minor degeneracies in keypoint

detection due to low frequencies of irregular objects appear-

ing in the training set. Our method still works fine on this

irregular-shaped instance.

Keypoint ambiguity It is demonstrated in Fig. 11 that

keypoint definitions are ambiguous in some objects. Points

on the lip of the mug, for example, are equivalent in se-

mantics due to circular symmetry of the shape. Skeleton

Merger and the KeypointNet ground truth both yield sym-

metric points, but points with different angles are selected.

The ambiguity makes it hard to aggregate human anno-

tations to obtain a high-quality dataset for a wide range of

objects, such as jars and cameras. As discussed before,

this imposes a strong limit on the application of supervised

methods for keypoint detection.

Limitations Skeleton Merger is capable of generating

semantically-rich and well-aligned keypoints. However, it

is less sensitive to local semantics than global coverage. For

example, joints are already covered by a cross of two skele-

ton edges. Selecting keypoints at these points may not re-

duce the global losses.

5. Conclusion

In this paper, we present Skeleton Merger, an unsuper-

vised aligned keypoint detector. Composite Chamfer Dis-

tance (CCD) is proposed as a loss function to guide the net-

work to detect high-quality keypoints by reconstructing a

point cloud through refining its skeleton. Evaluations are

performed on the quality and repeatability of detected key-

points. Our detector shows impressive performance detect-

ing salient and well-aligned keypoints.
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