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Abstract

We introduce the concept of geometric stability to the

problem of 6D object pose estimation and propose to learn

pose inference based on geometrically stable patches ex-

tracted from observed 3D point clouds. According to the

theory of geometric stability analysis, a minimal set of three

planar/cylindrical patches are geometrically stable and de-

termine the full 6DoFs of the object pose. We train a deep

neural network to regress 6D object pose based on geomet-

rically stable patch groups via learning both intra-patch ge-

ometric features and inter-patch contextual features. A sub-

network is jointly trained to predict per-patch poses. This

auxiliary task is a relaxation of the group pose prediction:

A single patch cannot determine the full 6DoFs but is able

to improve pose accuracy in its corresponding DoFs. Work-

ing with patch groups makes our method generalize well for

random occlusion and unseen instances. The method is eas-

ily amenable to resolve symmetry ambiguities. Our method

achieves the state-of-the-art results on public benchmarks

compared not only to depth-only but also to RGBD meth-

ods. It also performs well in category-level pose estimation.

1. Introduction

The problem of object pose estimation is to determine

the 6D rigid transformation from the local object coordinate

system to the camera reference frame. Robust and accurate

object pose estimation is of primary importance in a vari-

ety of applications ranging from robotic manipulation and

localization to augmented reality. Recent advances either

predict correspondences between observations and template

models [36], or regress pose directly [49]. In these tasks,

RGB features learned with convolutional neural networks

have been predominantly adopted with notable success [17].

Object pose inference with only color information, how-

ever, find difficulty in handling texture-less objects or un-

seen surface texture/appearance. In human perception, ob-

ject pose hinges on object geometry [42]. Humans cog-

nize shapes and their poses simultaneously and in a cou-

pled way [11] in order to achieve a so-called invariant object
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Figure 1: Given the 3D point cloud (b) of a detected object

(a), StablePose is trained to predict its 6D pose based on

a geometrically stable patch group containing the blue, the

orange and the green patches. Each patch determines a few

DoFs and they altogether pin down all six DoFs (c, d).

recognition [23]. Geometry enables a natural and powerful

pose perception not only mitigating the distraction of color

and appearance but also facilitating generalization to ran-

dom occlusion and unseen instances.

3D geometric information does have been utilized for

pose inference, both in traditional [9, 44] and in learning-

based methods [52, 6], especially with the proliferation of

depth cameras. The most straightforward use is to per-

form ICP-based pose refinement with the geometric infor-

mation [40, 30]. Most deep learning approaches learn depth

features to enhance color features [46]. Some others infer

object poses from geometric features learned on 3D point

clouds [12] or voxels [45]. These geometric features, how-

ever, are learned without an explicit guidance on the correla-

tion between shape and pose, making pose reasoning based

on them lack of interpretability and weak in generality.

We propose to learn object pose inference based on 3D

surface patches extracted from the point cloud of a single-

view depth image. In particular, we focus on planar and

cylindrical patches which are omnipresent on the surface

of household objects. This design choice stems from two

key insights. First, patches are neither too local to capture

meaningful geometric information, nor too global to be re-

peatable and generalizable across object instances. Second,

each patch determines a specific set of DoFs of object pose.

A minimal set of geometrically stable patches can lock all

six DoFs according to the theory of geometric stability (or

slippage) analysis [13]. It is therefore possible to accurately

reason about 6D object poses over a small group of geomet-

rically stable patches (Figure 1). Each stable group usually
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contains up to three patches, which facilitates fast learning.

This also enables pose prediction with a redundant set of the

stable groups, leading to robust pose estimation generaliz-

ing under occlusion and to unseen objects.

We design StablePose, a deep neural network trained to

regress 6D object pose based on geometrically stable patch

groups. Given a patch-sample 3D point cloud, the network

extracts both intra-patch geometric features and inter-patch

contextual features. It then predicts a 6D pose for each

stable patch group through aggregating the intra- and inter-

patch features. A dense point-to-point pose loss is used to

train this network. A crucial design of StablePose is that a

subnetwork is trained to predict per-patch poses. This aux-

iliary task is a relaxation of the group pose prediction since

a single patch cannot determine the full 6DoFs and thus the

pose loss downgrades to a weaker point-to-patch loss. Im-

posing such weak constraint for each patch in a stable group

individually improves pose accuracy in the respective DoFs

and altogether reinforces the group pose constraint, similar

in spirit to the principle of geometrically stable ICP [14].

Given a 3D point cloud, we first extract a set of geomet-

rically stable patch groups via performing stability analysis.

We then use StablePose to predict a 6D pose for each sta-

ble group. The final object pose takes the average of all

group poses weighted by group stability. To resolve am-

biguities introduced by symmetries and achieve high pose

accuracy, StablePose is trained to handle asymmetric ob-

jects and objects with discrete and continuous symmetries

separately. Through extensive evaluation, we show that Sta-

blePose outperforms state-of-the-art learning-based meth-

ods by 19.1% for depth-only input and 9.1% for RGBD

input on the T-LESS benchmark [18]. Furthermore, our

method generalizes well for category-level pose estima-

tion, obtaining competitive results on the NOCS-REAL275

benchmark [48] and 18.6% improvement on a more chal-

lenging ShapeNet based dataset. Our work makes the fol-

lowing contributions:

• We, for the first time, introduce the concept of geomet-

ric stability into 6D object pose estimation.

• We propose a deep network learning to infer 6D object

pose based on geometrically stable patch groups. It

attains high accuracy and robustness with a weak task

of patch-wise, under-determined pose estimation.

• We devise several key designs to accommodate a broad

range of cases encompassing asymmetric or symmetric

objects, objects with occlusion and unseen objects.

2. Related work

Pose estimation from RGB The most common solution

to object pose estimation from RGB images is to detect and

match keypoints and solve a PnP. This approach has been

well studied with a huge body of learned or non-learned

methods (e.g., [36, 43, 32, 51, 39] and a survey [10]). They

are, however, less capable in the texture-less case where

keypoints are hard to detect.

More recent works focus on predicting 6D object pose

directly with trained deep neural networks [49]. Li et

al. [28] proposed a method which matches the rendered im-

ages of the object model against the input image for pose

refinement. Similar idea was later explored in many follow-

up works [27, 47, 31]. SSD-6D [24] and Deep-6DPose [8]

integrate object detection, segmentation and pose regres-

sion from single-view RGB images in a unified network.

Instead of directly regressing poses, another line of works

learns to output interim results of pixel-wise 3D coordi-

nates [2, 48, 17, 21], based on which object poses can

then be recovered. Note, however, EPOS [17] samples 3D

patches from template models which are used as spatial

clusters for 3D coordinates regression of image pixels. In

contrast, our patches are sampled from observation point

clouds and serve as DoF determinant of 6D object pose.

Pose estimation with RGB-D The most straightforward

use of depth is to perform pose refinement with ICP-based

geometric alignment [40, 30] or by congruent set based reg-

istration [29]. A more sophisticated approach is to utilize

depth for 2D-3D feature fusion [46]. 3D-keypoint-based ap-

proaches compute object poses by solving a least-square op-

timization to match detected 3D key-points and their coun-

terparts of the template model [41, 15]. Point pair feature

(PPF) based methods [9, 44, 50] achieve high accuracy at

the cost of high computation complexity.

The most relevant work to ours is [25] where a con-

volutional auto-encoder is trained to regress descriptors of

locally-sampled RGB-D patches for 6D vote casting. Dur-

ing testing, scene patch descriptors are matched against

model view patches and cast 6D object votes which are then

filtered to refined hypotheses. While their method learns

patch matching, our method tries to learn pose regression

from geometrically stable patch groups.

Stability analysis Stability or slippage analysis is a pow-

erful tool of shape analysis. It is originally posed to sub-

sample points from a point set while maintaining the sta-

bility of DoFs in ICP-based alignment [14, 33, 3]. This is

done by filtering out redundant points while keeping suffi-

cient points for each alignment DoF. Another application of

stability analysis is to extract slippage signatures for discov-

ering slippable components on a 3D object [13, 1]. Inspired

by these works, our work, for the first time, introduces the

concept of stability into object pose estimation.

3. Stability Analysis for Pose Estimation

We describe stability analysis of 3D shapes, also known

as slippage analysis, and investigate its relation to object

pose estimation. The geometric stability of a 3D shape can
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Figure 2: (a-d): Geometric stability of different shapes. The

unstable/slippable transformations of each shape are anno-

tated with red arrows. A group of three non-coplanar planes

(d) is geometrically stable under rigid transformation. (e-h):

Using geometric stability for object pose estimation. Given

the observation of an object (f), a geometrically stable patch

group is extracted and matched to the model shape (g), thus

determining the 6D pose of the object (h).

be characterized by the rigid transformations (a translation

and a rotation) that minimizes point-to-plane error metric.

Intuitively, if a 3D shape is transformed by a rigid trans-

formation without introducing significant motion along the

normal direction at each surface point, it is called geomet-

rically unstable (or slippable) along that transformation. If

there is no such transformation, the shape is stable. See

Figure 2(a-d) for a few examples with different stability.

Given a 3D shape sampled into a point set, we can com-

pute a stability measure base on the eigenvalues of the 6×6
covariance matrix of the 6D rigid transformation minimiz-

ing point-to-plane error. Please refer to the appendix in the

supplemental material for details of this computation.

Stability and object pose Given the geometric observa-

tion of an object, we solve the problem of 6D object pose

estimation on the basis of stability analysis. Specifically, we

first extract a group of planar or cylindrical patches which

are geometrically stable. The patches in the stable group are

then aligned to the corresponding patches on the 3D model

in canonical pose. Each alignment determines a subset of

the six DoFs. All patches in the stable groups together pin

down the 6D pose of the object. See Figure 2(e-h) for an

illustration. In practice, however, finding patch correspon-

dence itself is a challenging problem. In what follows, we

propose a deep neural network which predicts 6D object

poses without relying on patch correspondences.

4. Method

Overview Figure 3 provides an overview of our method.

The input to our method is an RGBD image capturing one

or multiple objects. The RGB image is used only for ob-

ject detection but not for pose estimation. The output is the

6DoF pose of each object. Our method starts from detecting

objects and predicting their 2D masks in the depth image.

For each detected object, we obtain a 3D point cloud by un-

projecting its depth mask. We then extract planar and cylin-

drical patches from the point cloud (Section 4.1) and sample

a set of geometrically stable patch groups based on stability

analysis (Section 4.2). Each stable group is fed into a deep

network to predict the 6D pose of the corresponding object

and the final pose is obtained by averaging the 6D poses

obtained with all stable groups (Section 4.3). To resolve

the ambiguities caused by symmetry, our network handles

asymmetric objects and objects with discrete and continu-

ous symmetries separately, each trained with a proper loss.

4.1. Object Detection and Patch Extraction

The first step is to detect objects and extract patches.

Any RGB-based object detection method can be used here.

We adopt the detector proposed in Pix2Pose [30] which is

also used in many recent pose estimation works. We then

crop the depth image based on the detected object mask

and unproject the cropped depth image into a 3D point

cloud. For each object point cloud, we extract both pla-

nar patches PP = {pP
i } and cylindrical patches PC = {pC

i }.

Let P = PP ∪ PC. Again, many existing methods can

be utilized to extract patches from point clouds. We found

through experiment that CAPE [34] is fast and relatively ro-

bust for our data modality (i.e., point cloud converted from

single-view depth image of objects with occlusion).

4.2. Stable Patch Group Sampling

One could predict object pose based on all patches. Ide-

ally, the more patches are used, the more global information

is encoded and the better the pose can be estimated [25].

In the case of single-view observations, however, using all

patches may not be a good choice since the patch count

varies from different views due to occlusion. Based on the

fact that 6D object pose can be determined with a minimum

of three geometrically stable patches (e.g., nearly mutual

orthogonal planar patches in Figure 2), we opt for learning

pose estimation based on patch triplets.

Given an object point cloud, we enumerate all triplets

out of P as patch group candidates. We then analyze the

stability of each group. We collect those groups whose sta-

bility measure passes the threshold into the set of geomet-

rically stable patch groups G = {Gk = (pk1, pk2, pk3)}.

To enhance the generality of our pose estimation network,

we train it with patch groups sampled from point clouds in

multiple views for each object.

4.3. Object Pose Estimation

4.3.1 Patch Feature Extraction

Intra-patch geometric feature To learn geometric fea-

ture for each individual patch, we utlize PointNet++ [35].
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Figure 3: Method overview. Given a single-view RGB-D image, we first detect and segment objects in the RGB image and

then crop the depth point cloud. Based on object labels, the objects are categorized according to symmetry property. For each

object point cloud, we extract planar and cylindrical patches and sample a set of geometrically stable patch groups based on

stability analysis. Our network predicts for stable group a 6D pose, with patch-wise pose estimation as an auxiliary task. For

objects with continuous symmetry, it computes the rotation axis and then outputs one possible 6D pose.

The input is the point cloud of a patch (resampled to 2000
points) and the output is a feature vector of 1024D. Note that

this learned feature encodes for a patch not only its local ge-

ometry but also its relative position in the whole object. The

latter benefits spatial reasoning in pose estimation.

Inter-patch contextual feature To help our network rea-

soning about object pose globally, we additionally learn

inter-patch contextual features using all patches. Since we

have extracted per-patch features, we concatenate the per-

patch features for every two patches and then aggregate

them using the Relation Network [37]. Relation network

provides a mechanism for non-local message passing be-

tween patches. The final feature is the adaptive pooling of

the pair-wise features after message passing, which encodes

inter-patch structure and global shape context.

4.3.2 Pose Estimation of Asymmetric Objects

Group pose prediction Given an object, its 6D pose is

predicted on the basis of its geometrically stable patch

groups G. As shown in Figure 5, for each Gk in G, a three-

layer multi-layer perceptrons (MLPs) takes the concatena-

tion of its per-patch geometric features and the inter-patch

contextual feature as input and outputs a 6D pose. To train

the network, we impose a dense-point pose loss which mea-

sures the discrepancy between the predicted 6D pose and

the ground-truth on a per-point basis:

L
group
k =

∑

j

‖TG
kx

m
j − T̄x

m
j ‖, (1)

where T
G
k = [RG

k |t
G
k ] is the predicted pose for group Gk

and T̄i = [R̄|t̄] the ground-truth object pose. Xm = {xm
j }

are the points sampled on the template 3D model.

Patch pose prediction In addition to the group pose pre-

diction, we introduce an auxiliary task of patch-wise pose

prediction. This task is a relaxation of the group pose pre-

diction since a single patch cannot determine all six DoFs

and thus the point-to-point loss in Eq. (1) needs to be re-

placed by a weaker “point-to-patch” loss. For a stable patch

group, imposing such weak constraint for each of its three

patches individually improves the pose accuracy in respec-

tive DoFs and altogether reinforces the group pose con-

straint (see Figure 4). This process resembles the stability-

based ICP for 3D shape registration [38]. Further, these

weak tasks decouple the learning into different sets of DoFs,

making the network easier to train with faster convergence.

For each patch pi ∈ P , we devise a three-layer MLP

which takes the concatenation of its geometric feature and

the contextual feature as input and produces a patch pose

T
P
i = [RP

i |t
P
i ]. The network is trained by minimizing a

point-to-plane loss for planar patches or a point-to-axis loss

for cylindrical patches. In particular, we define the dense

point-to-plane loss for planar patches as

L
planar
i =

∑

j

‖[(TP
i )

−1
xij − (T̄)−1

ci] · (R̄
−1

ni)‖, (2)

𝛼 𝛽 𝛾 𝑡𝑥 𝑡𝑦 𝑡𝑧0

0.1

0.2

patch 2

patch 1
patch 3

w/ patch 2 onlyw/ patch 1 only

w/ all patch pose loss w/o patch pose loss

w/ patch 3 only

Figure 4: A parallel coordinates visualization [22] of object

pose errors in the six DoFs. Minimizing the pose loss of one

patch optimizes a specific subset of DoFs (see the curves

with light shading). Minimizing the group pose loss but not

per-patch pose loss leads to high overall pose error (the blue

curve). The best overall accuracy is obtained by minimizing

both group and all-patch pose losses (the red curve).
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where ci represents the center of patch pi, and ni is the

normal of the plane that pi lies in. xij is a point on pi. For

cylindrical patches, point-to-patch error can be reduced to

point-to-axis error and the corresponding patch pose loss is

L
cylind
i =

∑

j

‖d((TP
i )

−1
xij , φ̄i)− ri‖, (3)

where φ̄i is axis of the patch cylinder transformed with T̄
−1

and ri the radius of the cylinder. d(x, φ) denotes the dis-

tance between point x and line φ.

The overall loss The 6D pose loss for asymmetric objects

sums up the pose losses over all stable patch groups and

those of all planar and cylindrical patches:

Lasym =

|G|∑

k=1

L
group
k +

|PP|∑

i=1

L
planar
i +

|PC|∑

i=1

L
cylind
i (4)

4.3.3 Pose Estimation of Symmetric Objects

Discrete symmetry case Object symmetries introduce

ambiguities to pose estimation. A common strategy of re-

solving symmetry ambiguities in training a pose estimation

network is “back-propagate with the best” [46, 27]. In par-

ticular, suppose the object possesses a discrete set of sym-

metries {TS
i }i=1,...,M

1 and its 6D pose estimated by the

current neural network is T. In the next round of training,

we choose the transformation from {T,TT
S
1
, . . . ,TT

S
M}

such that it leads to the minimal alignment error between

the observation and the template model, and back-propagate

this error. Using this scheme, however, the network tends to

memorize a particular pose of the object and lacks a global

understanding of object symmetries resulting in weak gen-

erality on occluded or unseen objects. To overcome this

issue, we propose a new training method for handling sym-

metry ambiguities — “back-propagate with all”.

In our approach, instead of estimating only a single ob-

ject pose, we predict M + 1 object poses, each against one

of the ground-truth poses in {T̄, T̄T
S
1
, . . . , T̄T

S
M}, using

again a three-layer MLP. Since there are multiple outputs,

the correspondence between the predictions and ground-

truths should be determined on-the-fly, so that the loss of

each individual prediction could be evaluated and back-

propagated. To this end, we devise an optimal assignment

process [26] which finds a benefit-maximizing correspon-

dence by solving the following optimization:

argmax
Π

M+1∑

m=1

M+1∑

k=1

Bm,kΠm,k,

s.t.

M+1∑

m=1

Πm,k = 1,

M+1∑

k=1

Πm,k = 1, m, k ∈ {1, . . . ,M + 1}.

1A symmetry transformation T
S ∈ SE(3) of a 3D shape X satisfies

T
S
X = T

S and T
S 6= I.

Π is a permutation matrix with Πm,k ∈ {0, 1} indicating

whether the m-th predicted pose matches the k-th ground-

truth pose. M + 1 is the total number of possible object

poses given M object symmetries. B is a benefit matrix

in which Bm,k represents the benefit of matching the m-th

predicted pose to the k-th ground-truth. A higher similar-

ity in pose leads to a larger benefit. The benefit Bm,k be-

tween two poses Tm and Tk is computed as the point-wise

Euclidean error between point sets transformed by the two

poses respectively:

Bm,k =
∑

j

‖Tmxj −Tkxj‖, (5)

where X = {xj} are sample points on the template model.

Once the correspondences are determined, the pose loss

can be evaluated by accumulating the asymmetry loss in

Eq. (4) over all M +1 possible poses under M symmetries:

Ldsym =
∑

TS∈T S

Lasym(T → TT
S). (6)

Lasym(T → TT
S) means that the loss is computed by re-

placing the predicted group/patch pose T with TT
S , with

T
S ∈ T S and T S = {I,TS

1
, . . . ,TS

M}.

Continuous symmetry case For object with a continu-

ous rotational symmetry, the number of ground-truth pose

is infinite. Therefore, instead of predicting poses directly,

we opt to train a three-layer MLP to regress the rotation

axis represented by the object center cr and the orientation

vector of the axis ar, based on each stable group. Let us de-

fine T(θ, cr,ar) as the transformation of rotating an angle

of θ about the axis (cr,ar). The regression loss of rotation

axis for each patch group Gk is then defined as the point-

wise Euclidean error between model point sets transformed

by the predicted and ground-truth rotational transformations

respectively:

Lrot
k =

1

|Θ|

∑

θ∈Θ

∑

j

‖T(θ, cr
,a

r)xj −T(θ, c̄r
, ā

r)xj‖, (7)

where (c̄r, ār) is the ground-truth rotation axis. The loss

is computed over a set of rotation angles Θ = {κ ·
π/8}κ=1,...,16. The overall loss sums up the losses of both

per-group axis prediction and per-patch pose prediction:

Lcsym =

|G|∑

k=1

Lrot
k +

|PP|∑

i=1

L
planar
i +

|PC|∑

i=1

L
cylind
i . (8)

Having obtained the rotation axis, we can compute the 6D

object pose [R|t]. The translation DoFs are determined:

t = c
r. The quaternion corresponding to R is

qR =
(

cos
γ

2
, sin

γ

2
ax, sin

γ

2
ay, sin

γ

2
az

)

where a
r = (ax, ay, az) is the axis vector and γ can be an

arbitrary angle (we set γ = π
2

) since there is one rotational

DoF that cannot be determined by the rotation axis.
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Figure 5: The network architecture of StablePose which is composed of four subnetworks.

4.3.4 Inference

During inference, the 6D pose for each stable patch group

is first regressed with the proper network according to the

object’s symmetry property. The final object pose is the

weighted average over all group poses, with the weight be-

ing the stability measure of a group. Higher stability leads

to higher weight. Note that the weighed average of rota-

tion and translation are computed separately. The weighted

combination of rotations is computed in quaternion form.

4.4. Implementation details

The number of points sampled is 500 on template models

in Eq. (1), (5) and (7), and 100 for each patch in Eq. (2) and

(3). The dimensions of several critical features are shown in

Figure 5. Rotations are represented in quaternion form. The

network is trained first with patch-wise pose losses only for

2~3 epoches as a warmup and then with all losses turned on.

The batch size is 16. For some small objects with less than

three patches extracted, we use PointNet++ [35] to extract

feature for the object points and then regress the pose/axis

directly with a three-layer MLP. For objects with no stable

patch group extracted, we simply use the inter-patch con-

textual feature to make pose/axis prediction. The ratio of

these two cases is 10~30% for the datasets we have tested.

5. Results and Evaluation

Datasets We conduct evaluation on three pub-

lic datasets: T-LESS [18], LineMOD-O [2] and

NOCS-REAL275 [48]. T-LESS is challenging as

the objects are texture-less mechanical parts with similar

appearance and geometry and most possess symmetries.

LineMOD-O is one of the most widely used datasets for 6D

object pose estimation with RGBD images of texture-less

household objects with heavy occlusion. NOCS-REAL275

is used to evaluate category-level object pose estimation.

The test set contains unseen objects of five categories with

different shape and size from those in the training set. To

better evaluate the generality on unseen objects with larger

shape variations, we created a synthetic dataset based

on ShapeNet [4], named ShapeNetPose. This new

dataset contains rendered RGBD images of objects from

22 categories. The test objects are usually significantly

different from the training ones in terms of shape and

appearance; please refer to the supplemental material for

an overview of this dataset.

Metrics For instance-level pose estimation, to facilitate

comparison to previous works, we adopt the 6D localiza-

tion recall under two popular pose-error functions: Average

Closest Point Distance (ADI) [16] and Visible Surface Dis-

crepancy (VSD) [20]. ADI considers both visible and invis-

ible parts of the 3D model surface. Suppose T is the pre-

dicted pose and T̄ the ground-truth, ADI measures the mean

Euclidean distance from each point on the 3D model trans-

formed by T to the closest point on the model transformed

by T̄. We use the standard ADI recall metric eADI < 0.1d,

where d is the object diameter [20, 27]. VSD considers vis-

ible parts only. To evaluate the VSD error of an estimated

pose T w.r.t. its ground-truth T̄, we first render the tem-

plate model into two depth maps D and D̄ using the two

poses, respectively. VSD measures the differences between

D and D̄ at image locations where the object is visible in

the input observation. We use the standard VSD recall met-

ric eVSD < 0.3 with τ = 20mm and δ = 15mm [20, 27].

For T-LESS, the results are reported on 6D localization

both for varying number of instances of varying number

of objects in single-view RGBD images (VIVO) [20] and

for a single instance of a single object (SISO) [19]. For

LineMOD-O, since each RGB-D image contains at most

one instance for one object, we only report results for SISO.

5.1. Qualitative Results

Figure 6 shows some visual results of CosyPose [27] and

our StablePose on T-LESS and LineMOD-O. These ex-

amples encompass objects with heavy occlusion (e.g. col-

umn 1–5), discrete symmetry (column 2 and 3) and contin-

uous symmetry (column 4). In all these challenging cases,

our method is able to estimate the 6D object poses accu-

15227



S
ta

b
le

P
o

se
C

o
sy

P
o

se
S

ce
n

e

T-LESS LineMOD-O

Figure 6: Visual results of 6D object pose estimation by CosyPose (single-view) [27] and StablePose on T-LESS and

LineMOD-O. Please pay special attention to the results of the challenging objects highlighted in the input scene.

rately. Especially for those objects with severe occlusion,

our poses are quite accurate thanks to the per-patch pose

prediction as a reinforcement of the global pose prediction;

see a visual ablation study in the supplemental material.

5.2. Quantitative Comparisons

Comparing to depth-only methods We first compare

our method to several baselines that take only depth image

as input: Drost-PPF [9], Vidal-PPF [44], PointNet++ [44]

and PPFNet [7]. Both Drost-PPF and Vidal-PPF are state-

of-the-art methods based on the point pair features. They

simultaneously detect objects and estimate poses. We also

build two baselines by using PointNet++ and PPFNet as

point feature extraction backbone, respectively, followed

by a three-layer MLP for regressing 6D pose trained with

dense-pixel loss [46]. Like our method, a pretrained ob-

ject detector [30] is use for these methods. The experi-

ments are conducted on T-LESS and LineMOD-O; see

the results in Table 1 and Table 2. StablePose outper-

forms all the baselines over both datasets for all metrics.

StablePose outperforms the learning-based methods signifi-

cantly. Drost-PPF and Vidal-PPF are comparably accurate

but 3~4 times slower than StablePose inference. Moreover,

the learned StablePose model can generalize to handle un-

seen objects without a template model (see Table 4) which

is difficult, if not impossible, for non-learning-based meth-

ods. Note, for the experiments on LineMOD-O, we use

ADI/ADD, instead of ADI, as LineMOD-O contains many

non-symmetric objects [20].

Comparing to RGBD methods We compare to the fol-

lowing RGBD baselines: DenseFusion [46], Pix2Pose [30]

and CosyPose (single-view) [27]. DenseFusion achieves

6D pose estimation by fusing features of RGB and depth.

Pix2Pose trains an auto-encoder to regress pixel-wise 3D

coordinates. CosyPose is the state-of-the-art method which

predicts poses using RGB image followed by an ICP refine-

ment with depth image. The comparison is conducted on

T-LESS and LineMOD-O; see results in Table 1 and Ta-

ble 2. Although using only depth in pose prediction, Stable-

Pose beats the RGBD methods on T-LESS by a large mar-

gin. On LineMOD-O, our method outperforms all methods

except CosyPose which was trained using a much larger

training set of RGB images. The training of StablePose

requires a much smaller dataset and hence is significantly

faster. This implies that learning on depth/geometric input

is more data-efficient for the task of 6D pose estimation.

5.3. Parameter Setting and Ablation Studies

In Table 3, we study the parameter setting and design

choices of our method.

Patch count of a stable group Our method selects three

patches for each stable group. Here we evaluate other possi-

bilities: one-patch, two-patch and five-patch. All baselines

adopt the same network setting as the main method. For

one-patch and two-patch cases, the final pose takes average

over all groups with uniform weights since stability measure

can hardly be computed for less than three patches. The re-

sults show that patch triplet is the best choice for construct-

ing stable groups for pose estimation.

Patch group sampling To evaluate the necessity of

stability-based patch group sampling, we compare to two

baselines: size-based sampling and distance-based sam-

pling. The former selects patch triplets by point count: Any

three patches whose total point count is larger than a thresh-

old (1000) form a group. The latter picks patch triplets

such that the sum up of pair-wise patch distances exceeds

a threshold (8 cm). Table 3 shows that stability-based sam-

pling performs the best. This confirms the idea that geo-

metrically stable patches complement better to each other

in terms of determining the DoFs of object pose.
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Table 1: Performance comparison on T-LESS.

Pose Est. eADI (VIVO) eADI (SISO) eVSD (VIVO) eVSD (SISO) Training data Training time Inference time

Drost-PPF [9] D - - - 0.57 - - 1.3s

Vidal-PPF [44] D - - - 0.72 - - 1.6s

PointNet++ [35] D 0.74 0.78 0.50 0.54 37K 15h 0.4s

PPFNet [7] D 0.76 0.79 0.44 0.49 37K 15h 0.4s

DenseFusion [46] RGBD 0.13 0.15 0.08 0.10 37K 15h 0.1s

Pix2Pose [30] RGBD - - - 0.30 37K 80h 0.6s

CosyPose [27] RGBD 0.68 0.75 0.63 0.64 1M 200h 1.1s

StablePose D 0.86 0.88 0.69 0.73 37K 15h 0.4s

Table 2: Performance comparison on LineMOD-O.

eADI/ADD (SISO) eVSD (SISO) Training data

Drost-PPF [9] - 0.55 -

Vidal-PPF [44] - 0.62 -

Pix2Pose [30] 0.32 - 10K

CosyPose [27] 0.68 0.83 1M

StablePose 0.63 0.71 10K

Table 3: Parameter setting and ablation studies.

eADI (SISO) eVSD (SISO)

one-patch 0.70 0.57

two-patch 0.76 0.63

five-patch 0.73 0.69

size-based sampling 0.85 0.69

distance-based sampling 0.77 0.68

w/o patch-wise pose 0.73 0.62

baseline symmetry handling 0.75 0.54

StablePose 0.88 0.73

Network design and training scheme We also compare

to baselines of without inter-patch contextual feature, with-

out patch-wise pose estimation and “back-propagate with

the best” in symmetry handling, by ablating each of these

algorithmic components. The degraded performance of the

baselines validates our design choices. Crucially, the per-

formance drops significant for without patch-wise pose es-

timation, which suggests that this auxiliary task indeed pro-

vides substantial constraints for improving pose accuracy.

5.4. Category­Level Pose Estimation

The generality of our method can be best reflected by

category-level 6D pose estimation in which the object in-

stance is unseen during training. We test our method

on NOCS-REAL275 and ShapeNetPose, and com-

pare with two state-of-the-art methods: NOCS [48] and

CASS [5]. Note, both NOCS and CASS predict pose with

RGBD, while our method does so with only depth input.

The experiments are evaluated using 10◦10cm, IoU25,

Rerr and Terr as in [48]. In Table 4, we show the results on

ShapeNetPose (the results on NOCS-REAL275 is in the

supplemental material). The better cross-instance general-

ity of StablePose is due to the repeatability of patch groups

Table 4: Comparison on category-level pose estimation over

ShapeNetPose.

Pose Est. 10◦10cm IoU25 Rerr Terr

NOCS [48] RGBD 12.8 61.7 33.5 19.3

CASS [5] RGBD 13.9 67.3 32.9 17.6

Ours D 21.4 92.1 20.9 9.6

across object instances and the pose prediction learning over

a redundant set of patch groups.

6. Discussion, Limitations and Future Works

With our work, we hope to deliver the following key

messages. 1) Shape and pose of objects are tightly coupled

in visual perception. 2) 6D object pose can be pined down

by a minimal set of geometrically stable patches sampled

on the object surface. 3) Although each patch determines

only a subset of the six DoFs, their under-determined pre-

dictions can cummulatively constrain the object pose, re-

sulting in high accuracy and robustness. We have realized

these ideas with StablePose, a multi-task deep neural net-

work with good generalization. The network achieves the

state-of-the-art performance on several public benchmarks.

Our current solution has the following limitations on

which future investigations could be conducted. First, ob-

ject detection still relies on RGB input. Designing a single-

stage object detection and pose estimation for depth-only

input is an interesting problem to study. Second, although

our method works on redundant set of patch groups, the

quality of patch extraction is of great importance. It is diffi-

cult to extract valid patches from very small or incompletely

scanned objects. In the future, we plan to realize implicit

patch stability analysis in a more end-to-end fashion with-

out explicit patch extraction and stable group sampling.
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