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Abstract

Accurate segmentation of tubular, network-like struc-

tures, such as vessels, neurons, or roads, is relevant to

many fields of research. For such structures, the topology

is their most important characteristic; particularly preserv-

ing connectedness: in the case of vascular networks, miss-

ing a connected vessel entirely alters the blood-flow dynam-

ics. We introduce a novel similarity measure termed center-

lineDice (short clDice), which is calculated on the inter-

section of the segmentation masks and their (morpholog-

ical) skeleta. We theoretically prove that clDice guaran-

tees topology preservation up to homotopy equivalence for

binary 2D and 3D segmentation. Extending this, we pro-

pose a computationally efficient, differentiable loss func-

tion (soft-clDice) for training arbitrary neural segmenta-

tion networks. We benchmark the soft-clDice loss on five

public datasets, including vessels, roads and neurons (2D

and 3D). Training on soft-clDice leads to segmentation with

more accurate connectivity information, higher graph simi-

larity, and better volumetric scores.

1. Introduction

Segmentation of tubular and curvilinear structures is an

essential problem in numerous domains, such as clinical

and biological applications (blood vessel and neuron seg-

mentation from microscopic, optoacoustic, or radiology im-

ages), remote sensing applications (road network segmen-

tation from satellite images) and industrial quality control,

etc. In the aforementioned domains, a topologically accu-

rate segmentation is necessary to guarantee error-free down-

stream tasks, such as computational hemodynamics, route

planning, Alzheimer’s disease prediction [18], or stroke

modeling [20]. When optimizing computational algorithms

for segmenting curvilinear structures, the two most com-

monly used categories of quantitative performance mea-

sures for evaluating segmentation accuracy of tubular struc-

*The authors contributed equally to the work

Figure 1. Motivation: The figure shows a 3D rendering of a com-

plex, whole brain vascular dataset [48], where an exemplary 2D

slice of the data is chosen and segmented by two different models,

see purple (middle) and red (right), respectively. The two segmen-

tation results achieve identical quality in terms of the traditional

Dice score. Note that the purple segmentation does not capture the

small vessels while segmenting the large vessel very accurately;

on the other side, the red segmentation captures all vessels in the

image while being less accurate on the radius of the large vessel.

Skeleta are drawn in yellow. From a topology or network perspec-

tive, the red segmentation is evidently preferred.

tures, are 1) overlap based measures such as Dice, preci-

sion, recall, and Jaccard index; and 2) volumetric distance

measures such as the Hausdorff and Mahalanobis distance

[21, 40, 36, 16].

However, in most segmentation problems, where the

object of interest is 1) locally a tubular structure and 2)

globally forms a network, the most important characteris-

tic is the connectivity of the global network topology. Note

that network in this context implies a physically connected

structure, such as a vessel network, a road network, etc.,

which is also the primary structure of interest for the given
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image data. As an example, one can refer to brain vascula-

ture analysis, where a missed vessel segment in the segmen-

tation mask can pathologically be interpreted as a stroke

or may lead to dramatic changes in a global simulation

of blood flow. On the other hand, limited over- or under-

segmentation of vessel radius can be tolerated, because it

does not affect clinical diagnosis.

For evaluating segmentations in such tubular-network

structures, traditional volume-based performance indices

are sub-optimal. For example, Dice and Jaccard rely on

the average voxel-wise hit or miss prediction [46]. In a task

like network-topology extraction, a spatially contiguous se-

quence of correct voxel prediction is more meaningful than

a spurious correct prediction. This ambiguity is relevant for

objects of interest, which are of the same thickness as the

resolution of the signal. For them, it is evident that a single-

voxel shift in the prediction can change the topology of the

whole network. Further, a globally averaged metric does

not equally weight tubular-structures with large, medium,

and small radii (cf. Fig 1). In real vessel datasets, where

vessels of wide radius ranges exist, e.g. 30 µm for arteri-

oles and 5 µm for capillaries [48, 9], training on a globally

averaged loss induces a strong bias towards the volumet-

ric segmentation of large vessels. Both scenarios are pro-

nounced in imaging modalities, such as fluorescence mi-

croscopy [48, 58] and optoacoustics, which focus on map-

ping small capillary structures.

To this end, we are interested in a topology-aware image

segmentation, eventually enabling a correct network extrac-

tion. Therefore, we ask the following research questions:

Q1. What is a good pixelwise measure to benchmark seg-

mentation algorithms for tubular, and related linear

and curvilinear structure segmentation while guaran-

teeing the preservation of the network-topology?

Q2. Can we use this improved measure as a loss function

for neural networks, which is a void in existing litera-

ture?

1.1. Related Literature

Achieving topology preservation can be crucial to ob-

tain meaningful segmentation, particularly for elongated

and connected shapes, e.g. vascular structures or roads.

However, analyzing preservation of topology while simpli-

fying geometries is a difficult analytical and computational

problem [11, 10].

For binary geometries, various algorithms based on thin-

ning and medial surfaces have been proven to be topology-

preserving according to varying definitions of topology

[23, 25, 26, 35]. For non-binary geometries, existing meth-

ods applied topology and connectivity constraints onto vari-

ational and Markov random field-based methods: tree shape

priors for vessel segmentation [44], graph representation

priors to natural images [2], higher-order cliques which con-

nect superpixels [53] and adversarial learning for road seg-

mentation [51], integer programming to general curvilin-

ear structures [49], and proposed a tree-structured convolu-

tional gated recurrent unit [22], morphological optimization

[14], among others [3, 15, 32, 31, 33, 37, 41, 52, 57, 56].

Further, topological priors of containment were applied to

histology scans [5], a 3D CNN with graph refinement was

used to improve airway connectivity [19], and recently,

Mosinska et al. trained networks which perform segmen-

tation and path classification simultaneously [30]. Another

approach enables the predefinition of Betti numbers and en-

forces them on the training[8].

The aforementioned literature has advanced the com-

munities understanding of topology-preservation, but crit-

ically, they do not possess end-to-end loss functions that

optimize topology-preservation. In this context, the litera-

ture remains sparse. Recently, Mosinska et al. suggested

that pixel-wise loss-functions are unsuitable and used se-

lected filter responses from a VGG19 network as an addi-

tional penalty [29]. Nonetheless, their approach does not

prove topology preservation. Importantly, Hu et al. pro-

posed the first continuous-valued loss function based on the

Betti number and persistent homology [17]. However, this

method is based on matching critical points, which, accord-

ing to the authors makes the training very expensive and

error-prone for real image-sized patches [17]. While this is

already limiting for a translation to large real world data set,

we find that none of these approaches have been extended

to three dimensional (3D) data.

1.2. Our Contributions

The objective of this paper is to identify an efficient,

general, and intuitive loss function that enables topology

preservation while segmenting tubular objects. We intro-

duce a novel connectivity-aware similarity measure named

clDice for benchmarking tubular-segmentation algorithms.

Importantly, we provide theoretical guarantees for the topo-

logical correctness of the clDice for binary 2D and 3D seg-

mentation. As a consequence of its formulation based on

morphological skeletons, our measure pronounces the net-

work’s topology instead of equally weighting every voxel.

Using a differentiable soft-skeletonization, we show that the

clDice measure can be used to train neural networks. We

show experimental results for various 2D and 3D network

segmentation tasks to demonstrate the practical applicabil-

ity of our proposed similarity measure and loss function.

2. Let’s Emphasize Connectivity

We propose a novel connectivity-preserving metric to

evaluate tubular and linear structure segmentation based on

intersecting skeletons with masks. We call this metric cen-

terlineDice or clDice.
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Figure 2. Schematic overview of our proposed method: Our proposed clDice loss can be applied to any arbitrary segmentation network.

The soft-skeletonization can be easily implemented using pooling functions from any standard deep-learning toolbox.

We consider two binary masks: the ground truth mask

(VL) and the predicted segmentation masks (VP ). First, the

skeletons SP and SL are extracted from VP and VL re-

spectively. Subsequently, we compute the fraction of SP

that lies within VL, which we call Topology Precision or

Tprec(SP , VL), and vice-a-versa we obtain Topology Sen-

sitivity or Tsens(SL, VP ) as defined bellow;

Tprec(SP , VL) =
|SP \ VL|

|SP |
; Tsens(SL, VP ) =

|SL \ VP |

|SL|
(1)

We observe that the measure Tprec(SP , VL) is suscepti-

ble to false positives in the prediction while the measure

Tsens(SL, VP ) is susceptible to false negatives. This ex-

plains our rationale behind referring to the Tprec(SP , VL)
as topology’s precision and to the Tsens(SL, VP ) as its sen-

sitivity. Since we want to maximize both precision and sen-

sitivity (recall), we define clDice to be the harmonic mean

(also known as F1 or Dice) of both the measures:

clDice(VP , VL) = 2⇥
Tprec(SP , VL)⇥ Tsens(SL, VP )

Tprec(SP , VL) + Tsens(SL, VP )
(2)

Note that our clDice formulation is not defined for Tprec =
0 and Tsens = 0, but can easily be extended continuously

with the value 0.

3. Topological Guarantees for clDice

The following section provides general theoretical

guarantees for the preservation of topological properties

achieved by optimizing clDice under mild conditions on the

input. Roughly, these conditions state that the object of in-

terest is embedded in S3 in a non-knotted way, as is typi-

cally the case for blood vessel and road structures.

Specifically, we assume that both ground truth and pre-

diction admit foreground and background skeleta, which

means that both foreground and background are homotopy-

equivalent to topological graphs, which we assume to be

embedded as skeleta. Here, the voxel grid is considered as

a cubical complex, consisting of elementary cubes of di-

mensions 0, 1, 2, and 3. This is a special case of a cell

complex (specifically, a CW complex), which is a space con-

structed inductively, starting with isolated points (0-cells),

and gluing a collection of topological balls of dimension k

(called k-cells) along their boundary spheres to a k � 1-

dimensional complex. The voxel grid, seen as a cell com-

plex in this sense, can be completed to an ambient complex

that is homeomorphic to the 3-sphere S3 by attaching a sin-

gle exterior cell to the boundary. In order to consider fore-

ground and background of a binary image as complemen-

tary subspaces, the foreground is now assumed to be the

union of closed unit cubes in the voxel grid, corresponding

to voxels with value 1; and the background is the comple-

ment in the ambient complex. This convention is commonly

used in digital topology [24, 23]. The assumption on the

background can then be replaced by a convenient equiva-

lent condition, stating that the foreground is also homotopy

equivalent to a subcomplex obtained from the ambient com-

plex by only removing 3-cells and 2-cells. Such a subcom-

plex is then clearly homotopy-equivalent to the complement
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of a 1-complex.

We will now observe that the above assumptions imply

that the foreground and the background are connected and

have a free fundamental group and vanishing higher funda-

mental groups. In particular, the homotopy type is already

determined by the first Betti number 1; moreover, a map in-

ducing an isomorphism in homology is already a homotopy

equivalence. To see this, first note that both foreground and

background are assumed to have the homology of a graph,

in particular, homology is trivial in degree 2. By Alexander

duality [1], then, both foreground and background have triv-

ial reduced cohomology in degree 0, meaning that they are

connected. This implies that both have a free fundamental

group (as any connected graph) and vanishing higher ho-

motopy groups. In particular, since homology in degree 1

is the Abelianization of the fundamental group, these two

groups are isomorphic. This in turn implies that in our set-

ting a map that induces isomorphisms in homology already

induces isomorphisms between all homotopy groups. By

Whitehead’s theorem [54], such a map is then a homotopy

equivalence.

The following theorem shows that under our assump-

tions on the images admitting foreground and background

skeleta, the existence of certain nested inclusions already

implies the homotopy-equivalence of foreground and back-

ground, which we refer to as topology preservation.

Theorem 1. Let LA ✓ A ✓ KA and LB ✓ B ✓ KB

be connected subcomplexes of some cell complex. Assume

that the above inclusions are homotopy equivalences. If the

subcomplexes also are related by inclusions LA ✓ B ✓

KA and LB ✓ A ✓ KB , then these inclusions must be

homotopy equivalences as well. In particular, A and B are

homotopy-equivalent.

Proof. An inclusion of cell complexes map is a homotopy

equivalence if and only if it induces isomorphisms on all

homotopy groups. Since the inclusion LA ✓ B ✓ KA

induces an isomorphism, the inclusion LA ✓ B induces a

left-inverse, and since B ✓ KB induces an isomorphism,

the inclusion LA ✓ KB also induces a left-inverse. At the

same time, since the inclusion LB ✓ A ✓ KB induces an

isomorphism, the inclusion A ✓ KB induces a left-inverse,

and since LA ✓ A induces an isomorphism, the inclusion

LA ✓ KB also induces a right-inverse. Together, this im-

plies that the inclusion LA ✓ KB induces an isomorphism.

Together with the isomorphisms induced by LA ✓ A and

B ✓ KB , we obtain isomorphisms induced by LA ✓ B and

by A ✓ KB , which compose to an isomorphism between

the homotopy groups of A and B.

1Betti numbers: β0 represents the number of distinct connected-

components, β1 represents the number of circular holes, and β2 represents

the number of cavities, for depictions see Supplementary material

Corollary 1.1. Let VL and VP be two binary masks admit-

ting foreground and background skeleta, such that the fore-

ground skeleton of VL is included in the foreground of VP

and vice versa, and similarly for the background. Then the

foregrounds of VL and VP are homotopy equivalent, and the

same is true for their backgrounds.

Note that the inclusion condition in this corollary is sat-

isfied if and only if clDice evaluates to 1 on both foreground

and background of (VL, VP ).
This proof lays the ground for a general interpretation

of clDice as a topology preserving metric. Additionally,

we provide an elaborate explanation of clDice topological

properties, using concepts of applied digital topology in the

theory section of the Supplementary material [24, 23].

4. Training Neural Networks with clDice

In the previous section we provided general theoretic

guarantees how clDice has topology preserving properties.

The following chapter shows how we applied our theory

to efficiently train topology preserving networks using the

clDice formulation. 2

4.1. Soft-clDice using Soft-skeletonization:

Extracting accurate skeletons is essential to our method.

For this task, a multitude of approaches has been proposed.

However, most of them are not fully differentiable and

therefore unsuited to be used in a loss function. Popular

approaches use the Euclidean distance transform or utilize

repeated morphological thinning. Euclidean distance trans-

form has been used on multiple occasions [42, 55], but re-

mains a discrete operation and, to the best of our knowl-

edge, an end-to-end differentiable approximation remains

to be developed, preventing the use in a loss function for

training neural networks. On the contrary, morphological

thinning is a sequence of dilation and erosion operations

[c.f. Fig. 3].

Importantly, thinning using morphological operations

(skeletonization) on curvilinear structures can be topology-

preserving [35]. Min- and max filters are commonly used as

the grey-scale alternative of morphological dilation and ero-

sion. Motivated by this, we propose ‘soft-skeletonization’,

where an iterative min- and max-pooling is applied as a

proxy for morphological erosion and dilation. The Algo-

rithm 1 describes the iterative processes involved in its com-

putation. The hyper-parameter k involved in its computa-

tion represents the iterations and has to be greater than or

equal to the maximum observed radius. In our experiments,

this parameter depends on the dataset. For example, it is

k = 5...25 in our experiments, matching the pixel radius of

the largest observed tubular structures. Choosing a larger

k does not reduce performance but increases computation

2https://github.com/jocpae/clDice
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Figure 3. Based on the initial vessel structure (purple), sequential bagging of skeleton voxels (red) via iterative skeletonization leads to a

complete skeletonization, where d denotes the diameter and k > j > i iterations.

Algorithm 1: soft-skeleton

Input: I, k

I 0  maxpool(minpool(I))
S  ReLU(I � I 0)

for i 0 to k do
I  minpool(I)
I 0  maxpool(minpool(I))
S  S + (1� S) � ReLU(I � I 0)

end

Output: S

Algorithm 2: soft-clDice

Input: VP , VL

SP  soft-skeleton(VP )
SL  soft-skeleton(VL)

Tprec(SP , VL) 
|SP �VL|+✏

|SP |+✏

Tsens(SL, VP ) 
|SL�VP |+✏

|SL|+✏

clDice 

2⇥ Tprec(SP ,VL)⇥Tsens(SL,VP )
Tprec(SP ,VL)+Tsens(SL,VP )

Output: clDice

Figure 4. Algorithm 1 calculates the proposed soft-skeleton, here

I is the mask to be soft-skeletonized and k is the number of itera-

tions for skeletonization. Algorithm 2, calculates the soft-clDice

loss, where VP is a real-valued probabilistic prediction from a seg-

mentation network and VL is the true mask. We denote Hadamard

product using �.

time. On the other hand, a too low k leads to incomplete

skeletonization.

In Figure 3, the successive steps of our skeletonization

are intuitively represented. In the early iterations, the struc-

tures with a small radius are skeletonized and preserved un-

til the later iterations when the thicker structures become

skeletonized. This enables the extraction of a parameter-

free, morphologically motivated soft-skeleton. The afore-

mentioned soft-skeletonization enables us to use clDice as a

fully differentiable, real-valued, optimizable measure. The

Algorithm 2 describes its implementation. We refer to this

as the soft-clDice.

For a single connected foreground component and in the

absence of knots, the homotopy type is specified by the

number of linked loops. Hence, if the reference and the pre-

dicted volumes are not homotopy equivalent, they do not

have pairwise linked loops. To include these missing loops

or exclude the extra loops, one has to add or discard de-

formation retracted skeleta of the solid foreground. This

implies adding new correctly predicted voxels. In contrast

to other volumetric losses such as Dice, cross-entropy, etc.,

clDice only considers the deformation-retracted graphs of

the solid foreground structure. Thus, we claim that clDice

requires the least amount of new correctly predicted voxels

to guarantee the homotopy equivalence. Along these lines,

Dice or cross-entropy can only guarantee homotopy equiv-

alence if every single voxel is segmented correctly. On the

other hand, clDice can guarantee homotopy equivalence for

a broader combinations of connected-voxels. Intuitively,

this is a very much desirable property as it makes clDice

robust towards outliers and noisy segmentation labels.

4.2. Cost Function

Since our objective here is to preserve topology while

achieving accurate segmentations, and not to learn skeleta,

we combine our proposed soft-clDice with soft-Dice in the

following manner:

Lc = (1� α)(1� softDice) + α(1� softclDice) (3)

where α 2 [0, 0.5]. In stark contrast to previous works,

where segmentation and centerline prediction has been

learned jointly as multi-task learning [50, 47], we are not

interested in learning the centerline. We are interested in
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learning a topology-preserving segmentation. Therefore,

we restrict our experimental choice of alpha to α 2 [0, 0.5].
We test clDice on two state-of-the-art network architec-

tures: i) a 2D and 3D U-Net[38, 6], and ii) a 2D and 3D

fully connected networks (FCN) [47, 13]. As baselines, we

use the same architectures trained using soft-Dice [27, 45].

4.3. Adaption for Highly Imbalanced Data

Our theory (Section 3), describes a two-class problem

where clDice should be computed on both the foreground

and the background channels. In our experiments, we show

that for complex and highly imbalanced dataset it is suffi-

cient to calculate the clDice loss on the underrepresented

foreground class. We attribute this to the distinct properties

of tubularness, sparsity of foreground and the lack of cavi-

ties (Betti number 2) in our data. An intuitive interpretation

how these assumptions are valid in terms of digital topology

can be found in the supplementary material.

5. Experiments

5.1. Datasets

We employ five public datasets for validating clDice and

soft-clDice as a measure and an objective function, respec-

tively. In 2D, we evaluate on the DRIVE retina dataset

[43], the Massachusetts Roads dataset [28] and the CREMI

neuron dataset [12]. In 3D, a synthetic vessel dataset with

an added Gaussian noise term [39] and the Vessap dataset

of multi-channel volumetric scans of brain vessels is used

[48, 34]. For the Vessap dataset we train different mod-

els for one and two input channels. For all of the datasets,

we perform three fold cross-validation and test on held-out,

large, and highly-variant test sets. Details concerning the

experimental setup can be found in the supplementary ma-

terial.

5.2. Evaluation Metrics

We compare the performance of various experimental

setups using three types of metrics: volumetric, topology-

based, and graph-based.

1. Volumetric: We compute volumetric scores such as

Dice coefficient, Accuracy, and the proposed clDice.

2. Topology-based: We calculate the mean of absolute

Betti Errors for the Betti Numbers β0 and β1 and the

mean absolute error of Euler characteristic, χ = V �

E+F , where V,E, and F denotes number of vertices,

edges, and faces.

3. Graph-based: we extract random patch-wise graphs for

the 2D/3D images. We uniformly sample fixed num-

ber of points from the graph and compute the Street-

moverDistance (SMD) [4]. SMD captures a Wasser-

stein distance between two graphs. Additionally we

compute the F1 score of junction-based metric [7].

5.3. Results and Discussion

We trained two segmentation architectures, a U-Net and

an FCN, for the various loss functions in our experimental

setup. As a baseline, we trained the networks using soft-dice

and compared it with the ones trained using the proposed

loss (Eq. 3), by varying α from (0.1 to 0.5).

Quantitative: We observe that including soft-clDice in any

proportion (α > 0) leads to improved topological, volu-

metric and graph similarity for all 2D and 3D datasets, see

Table 1. We conclude that α can be interpreted as a hy-

per parameter which can be tuned per-dataset. Intuitively,

increasing the α improves the clDice measure for most ex-

periments. Most often, clDice is high or highest when the

graph and topology based measures are high or highest, par-

ticularly the β1 Error, Streetmover distance and Opt-J F1

score; quantitatively indicating that topological properties

are indeed represented in the clDice measure.

In spite of not optimizing for a high soft-clDice on

the background class, all of our networks converge to

superior segmentation results. This not only reinforces

our assumptions on dataset-specific necessary conditions

but also validates the practical applicability of our loss.

Our findings hold for the different network architectures,

for 2D or 3D, and for tubular or curvilinear structures,

strongly indicating its generalizability to analogous binary

segmentation tasks.

Observe that CREMI and the synthetic vessel dataset

(see Supplementary material) appear to have the smallest

increase in scores over the baseline. We attribute this to

them being the least complex datasets in the collection, with

CREMI having an almost uniform thickness of radii and

the synthetic data having a high signal-to-noise ratio and

insignificant illumination variation. More importantly, we

observe larger improvements for all measures in case of the

more complex Vessap and Roads data see Figure 5. In direct

comparison to performance measures reported in two recent

publications by Hu et al. and Mosinska et al. [17, 29], we

find that our approach is on par or better in terms of Accu-

racy and Betti Error for the Roads and CREMI dataset. It is

important to note that we used a smaller subset of training

data for the Road dataset compared to both while using the

same test set.

Hu et al. reported a Betti error for the DRIVE data,

which exceeds ours; however, it is important to consider

that their approach explicitly minimizes the mismatch of the

persistence diagram, which has significantly higher com-

putational complexity during training, see the section be-

low. We find that our proposed loss performs superior to

the baseline in almost every scenario. The improvement ap-

pears to be pronounced when evaluating the highly relevant

graph and topology based measures, including the recently
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Table 1. Quantitative experimental results for the Massachusetts road dataset (Roads), the CREMI dataset, the DRIVE retina dataset and

the Vessap dataset (3D). Bold numbers indicate the best performance. The performance according to the clDice measure is highlighted in

rose. For all experiments we observe that using soft-clDice in Lc results in improved scores compared to soft-Dice. This improvement

holds for almost α > 0; α can be interpreted as a dataset specific hyper-parameter.

Dataset Network Loss Dice Accuracy clDice β0 Error β1 Error SMD [4] χerror Opt-J F1 [7]

Roads

FCN
soft-dice 64.84 95.16 70.79 1.474 1.408 0.1216 2.634 0.766

Lc,α = 0.1 66.52 95.70 74.80 0.987 1.227 0.1002 2.625 0.768

Lc,α = 0.2 67.42 95.80 76.25 0.920 1.280 0.0954 2.526 0.770

Lc,α = 0.3 65.90 95.35 74.86 0.974 1.197 0.1003 2.448 0.775

Lc,α = 0.4 67.18 95.46 76.92 0.934 1.092 0.0991 2.183 0.803

Lc,α = 0.5 65.77 95.09 75.22 0.947 1.184 0.0991 2.361 0.782

U-NET

soft-dice 76.23 96.75 86.83 0.491 1.256 0.0589 1.120 0.881

Lc,α = 0.1 76.66 96.77 87.35 0.359 0.938 0.0457 0.980 0.878

Lc,α = 0.2 76.25 96.76 87.29 0.312 1.031 0.0415 0.865 0.900

Lc,α = 0.3 74.85 96.57 86.10 0.322 1.062 0.0504 0.827 0.913

Lc,α = 0.4 75.38 96.60 86.16 0.344 1.016 0.0483 0.755 0.916

Lc,α = 0.5 76.45 96.64 88.17 0.375 0.953 0.0527 1.080 0.894

Mosinska et al. [29, 17] - 97.54 - - 2.781 - - -

Hu et al. [17] - 97.28 - - 1.275 - - -

CREMI

U-NET

soft-dice 91.54 97.11 95.86 0.259 0.657 0.0461 1.087 0.904

Lc,α = 0.1 91.76 97.21 96.05 0.222 0.556 0.0395 1.000 0.900

Lc,α = 0.2 91.66 97.15 96.01 0.231 0.630 0.0419 0.991 0.902

Lc,α = 0.3 91.78 97.18 96.21 0.204 0.537 0.0437 0.919 0.913

Lc,α = 0.4 91.56 97.12 96.09 0.250 0.630 0.0444 0.995 0.902

Lc,α = 0.5 91.66 97.16 96.16 0.231 0.620 0.0455 0.991 0.907

Mosinska et al. [29, 17] 82.30 94.67 - - 1.973 - - -

Hu et al. [17] - 94.56 - - 1.113 - - -

DRIVE retina

FCN

soft-Dice 78.23 96.27 78.02 2.187 1.860 0.0429 3.275 0.773

Lc,α = 0.1 78.36 96.25 79.02 2.100 1.610 0.0393 3.203 0.777

Lc,α = 0.2 78.75 96.29 80.22 1.892 1.382 0.0383 2.895 0.793

Lc,α = 0.3 78.29 96.20 80.28 1.888 1.332 0.0318 2.918 0.798

Lc,α = 0.4 78.00 96.11 80.43 2.036 1.602 0.0423 3.141 0.764

Lc,α = 0.5 77.76 96.04 80.95 1.836 1.408 0.0394 2.848 0.794

U-Net
soft-Dice 74.25 95.63 75.71 1.745 1.455 0.0649 2.997 0.760

Lc,α = 0.5 75.21 95.82 76.86 1.538 1.389 0.0586 2.737 0.767

Mosinska et al. [29, 17] - 95.43 - - 2.784 - - -

Hu et al. [17] - 95.21 - - 1.076 - - -

Vessap data

FCN, 1 ch
soft-dice 85.21 96.03 90.88 3.385 4.458 0.00459 5.850 0.862

Lc,α = 0.5 85.44 95.91 91.32 2.292 3.677 0.00417 5.620 0.864

FCN, 2 ch

soft-dice 85.31 95.82 90.10 2.833 4.771 0.00629 6.080 0.849

Lc,α = 0.1 85.96 95.99 91.02 2.896 4.156 0.00447 5.980 0.860

Lc,α = 0.2 86.45 96.11 91.22 2.656 4.385 0.00466 5.530 0.869

Lc,α = 0.3 85.72 95.93 91.20 2.719 4.469 0.00423 5.470 0.866

Lc,α = 0.4 85.65 95.95 91.65 2.719 4.469 0.00423 5.670 0.869

Lc,α = 0.5 85.28 95.76 91.22 2.615 4.615 0.00433 5.320 0.870

U-Net, 1 ch
soft-dice 87.46 96.35 91.18 3.094 5.042 0.00549 5.300 0.863

Lc,α = 0.5 87.82 96.52 93.03 2.656 4.615 0.00533 4.910 0.872

U-Net, 2 ch

soft-dice 87.98 96.56 90.16 2.344 4.323 0.00507 5.550 0.855

Lc,α = 0.1 88.13 96.59 91.12 2.302 4.490 0.00465 5.180 0.872

Lc,α = 0.2 87.96 96.74 92.52 2.208 3.979 0.00342 4.830 0.861

Lc,α = 0.3 87.70 96.71 92.56 2.115 4.521 0.00309 5.260 0.858

Lc,α = 0.4 88.57 96.87 93.25 2.281 4.302 0.00327 5.370 0.868

Lc,α = 0.5 88.14 96.74 92.75 2.135 4.125 0.00328 5.390 0.864

introduced OPT-Junction F1 by Citraro et al. [7]. Our re-

sults are consistent across different network architectures,

indicating that soft-clDice can be deployed to any network

architecture.

Qualitative: In Figure 5, typical results for our datasets

are depicted. Our networks trained on the proposed loss

term recover connections, which were false negatives when

trained with the soft-Dice loss. These missed connections

appear to be particularly frequent in the complex road and

DRIVE dataset. For the CREMI dataset, we observe these

situations less frequently, which is in line with the very high

quantitative scores on the CREMI data. Interestingly, in

the real 3D vessel dataset, the soft-Dice loss oversegments

vessels, leading to false positive connections. This is not

the case when using our proposed loss function, which

we attribute to its topology-preserving nature. Additional
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qualitative results can be inspected in the supplementary.

Computational Efficiency: Naturally, inference times

of CNNs with the same architecture but different train-

ing losses are identical. However, during training, our

soft-skeleton algorithm requires O(kn2) complexity for

an n ⇥ n 2D image where k is the number of iterations.

As a comparison, [17] needs O(c2mlog(m)) (see [15])

complexity to compute the 1d persistent homology where

d is the number of points with zero gradients in the

prediction and m is the number of simplices. Roughly, c is

proportional to n2, and m is of O(n2) for a 2D Euclidean

grid. Thus, the worst complexity of [17] is O(n6log(n)).
Additionally, their approach requires an O(clog(c)) com-

plexity to find an optimal matching of the birth-death pairs.

We note that the total run-time overhead for soft-clDice

compared to soft-Dice is marginal, i.e., for batch-size of 4

and 1024x1024 image resolution, the former takes 1.35s

while the latter takes 1.24s on average (<10% increase) on

an RTX-8000.

Future Work: Although our proposed soft-skeleton ap-

proximation works well in practice, a better differentiable

skeletonization can only improve performance, which we

reserve for future research. Any such skeletonization can

be readily plugged into our approach. Furthermore, theo-

retical and experimental multi-class studies would sensibly

extend our study.

6. Conclusive Remarks

We introduce clDice, a novel topology-preserving

similarity measure for tubular structure segmentation.

Importantly, we present a theoretical guarantee that clDice

enforces topology preservation up to homotopy equiva-

lence. Next, we use a differentiable version of the clDice,

soft-clDice, in a loss function, to train state-of-the-art 2D

and 3D neural networks. We use clDice to benchmark

segmentation quality from a topology-preserving per-

spective along with multiple volumetric, topological, and

graph-based measures. We find that training on soft-clDice

leads to segmentations with more accurate connectivity

information, better graph-similarity, better Euler character-

istics, and improved Dice and Accuracy. Our soft-clDice

is computationally efficient and can be readily deployed

to any other deep learning-based segmentation tasks such

as neuron segmentation in biomedical imaging, crack

detection in industrial quality control, or remote sensing.
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Image Label Soft-Dice Ours

Figure 5. Qualitative results: from top to bottom we show two rows

of results for: the Massachusetts road dataset, the DRIVE retina

dataset, the CREMI neuron data and 2D slices from the 3D Vessap

dataset. From left to right, the real image, the label, the predic-

tion using soft-Dice and the U-Net predictions using Lc(α = 0.5)
are shown, respectively. The images indicate that clDice segments

road, retina vessel connections and neuron connections which the

soft-Dice loss misses, but also does not segment false-positive ves-

sels in 3D. Some, but not all, missed connections are indicated

with solid red arrows, false positives are indicated with red-yellow

arrows. More qualitative results can be found in the Supplemen-

tary material.
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A deep learning design for improving topology coherence in

blood vessel segmentation. In International Conference on

Medical Image Computing and Computer-Assisted Interven-

tion, pages 93–101. Springer, 2019.

[4] Davide Belli and Thomas Kipf. Image-conditioned graph

generation for road network extraction. arXiv preprint

arXiv:1910.14388, 2019.

[5] Aı̈cha BenTaieb and Ghassan Hamarneh. Topology aware

fully convolutional networks for histology gland segmenta-

tion. In MICCAI, pages 460–468. Springer, 2016.
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