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Abstract

Leveraging datasets available to learn a model with high

generalization ability to unseen domains is important for

computer vision, especially when the unseen domain’s anno-

tated data are unavailable. We study a novel and practical

problem of Open Domain Generalization (OpenDG), which

learns from different source domains to achieve high perfor-

mance on an unknown target domain, where the distributions

and label sets of each individual source domain and the tar-

get domain can be different. The problem can be generally

applied to diverse source domains and widely applicable to

real-world applications. We propose a Domain-Augmented

Meta-Learning framework to learn open-domain generaliz-

able representations. We augment domains on both feature-

level by a new Dirichlet mixup and label-level by distilled

soft-labeling, which complements each domain with miss-

ing classes and other domain knowledge. We conduct meta-

learning over domains by designing new meta-learning tasks

and losses to preserve domain unique knowledge and gener-

alize knowledge across domains simultaneously. Experiment

results on various multi-domain datasets demonstrate that

the proposed Domain-Augmented Meta-Learning (DAML)

outperforms prior methods for unseen domain recognition.

1. Introduction

Deep convolutional neural networks have achieved state-

of-the-art performance on wide ranges of computer vision

applications with access to large-scale labeled data [23, 20,

39, 19]. However, for a target domain of interest, collecting

enough training data is prohibitive. A practical solution is to

generalize the model learned on the existing data to the un-

seen domain. Since the existing source datasets for training

may be from different resources, they may fall into different

domains and hold different label sets, e.g., ImageNet [8]

and DomainNet [36]. Besides, the target domain is totally

unknown, and may also have a distribution shift and a differ-

ent label set from the source domains. We call the valuable

and challenging problem as Open Domain Generalization

*Equal contribution.

(OpenDG), where we need to learn generalizable represen-

tation from disparate source domains that generalizes well

to any unseen target domain, as illustrated in Figure 1.

Source domain 1 Source domain 2

Unseen target domain Known classes

Open classes

Figure 1. Open Domain Generalization (OpenDG). Different source

domains hold disparate label sets. The goal is to learn generalizable

representations from these source domains to help classify the

known classes and detect open classes in the unseen target domain.

There are two key challenges for open domain general-

ization. (1) Distinct source domains and the unseen target

domain are drawn from different distributions with a large

distribution shift. (2) The different label sets of distinct

source domains cause some classes to exist in many more

domains than other classes. The data of minor classes exist-

ing in few domains are lacking in diversity. This makes the

problem extremely difficult for existing methods [25, 29].

To address the first challenge, previous works minimize

the distribution distance between domains by adversarial

learning [34, 29], which successfully closes the domain gap

when all source domains share the same label set. However,

according to the second challenge, the different label sets

between domains cause these distribution alignment methods

to suffer from severe mismatch of classes. For the second

challenge, a straightforward way is to manually sample data

of minor classes existing in few domains, but the diversity

in domains of the class is still limited. The generalization on

the minor class is still inferior to other classes.

To generalize from arbitrary source domains to an unseen

target domain, we propose a Domain-Augmented Meta-
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Table 1. Comparison of the proposed generalization setting with the previous settings related to cross-domain learning. The columns list

assumptions made by the problem settings. Note that more “✗” means the method needs less assumption and thus is more widely-

applicable. We can observe that the proposed open domain generalization problem requires no assumptions on the label set, no target data,

and no post-training on target data, which is the most general problem setting. S means source while T means target. Note that “Same

between S&T Domains” means the union of all source domain label sets equals the target label set, i.e., whether there are open classes.

Problem Setting
Label Set Target Data for Training Post-Training on

Target Labeled Data
Same for S Domains Same between S&T Domains Labeled Data Unlabeled Data

Domain Adaptation [31, 32] ✓ ✓ ✗ ✓ ✗

Domain Adaptation with Category Shift [35, 2, 51] ✓ ✗ ✗ ✓ ✗

Multi-Source Domain Adaptation [55] ✓ ✓ ✗ ✓ ✗

Multi-Source Domain Adaptation with Category Shift [50] ✗ ✓ ✗ ✓ ✗

Domain Generalization [34] ✓ ✓ ✗ ✗ ✗

Heterogeneous Domain Generalization [30] ✗ ✗ ✗ ✗ ✓

The Proposed Open Domain Generalization ✗ ✗ ✗ ✗ ✗

Learning (DAML) framework. To close the domain gap

between disparate source domains, we avoid distribution

matching but learn generalizable representations across do-

mains by meta-learning. To overcome the disparate label

sets of open domain generalization, we propose two domain

augmentation methods at both feature-level and label-level.

At feature-level, we design a novel Dirichlet mixup (Dir-

mixup) to compensate for the missing labels. At label-level,

we utilize the soft-labeling distilled from other domains’

networks to transfer the knowledge of other domains to the

current network. DAML learns a representation that embeds

the knowledge of all source domains and is highly generaliz-

able to the unseen target domain. We use the ensemble of all

source domain network outputs as the final prediction, which

naturally calibrates the predictive uncertainty. In summary:

• We propose a new and practical problem: Open Do-

main Generalization (OpenDG), which learns from

arbitrary source domains with disparate distributions

and label sets to generalize to an unseen target domain.

• We propose a principled Domain-Augmented Meta-

Learning (DAML) framework to address open domain

generalization. We augment each domain with novel

Dir-mixup and distilled soft-labeling to overcome the

disparate label sets of source domains and conduct

meta-learning across augmented domains to learn open-

domain generalizable representations.

• Experiment results on several multi-domain datasets

show that compared to previous generalization methods,

DAML achieves higher classification accuracy on both

known classes and open classes in an unseen target

domain even with extremely diverse source domains.

2. Related Work

In this section, we briefly discuss works related to ours, in-

cluding domain adaptation, domain generalization, and data

augmentation methods. We compare our problem setting

with the problem settings of previous works in Table 1.

Domain Adaptation aims to adapt the model from the

source domain to the target domain, which typically miti-

gates the domain gap by minimizing the distribution dis-

tance [14, 32]. However, the classic domain adaptation

requires the same label set between source and target do-

mains. Recent works try to extend domain adaptation to

varied source and target label sets [2, 35, 41, 51], but the

solution relies on the target unlabeled data, which is not

available in the open domain generalization setting.

Multi-source domain adaptation is more related to our

work with more than one source domain. Most of the works

assume that all the source domains share the same label

set [55, 36], which can be easily violated in practice since

source domains may be drawn from different resources.

DCN [50] moves a step forward to remove the constraint on

the source label sets but still requires the union of source

label sets to be the same as the target label set. We instead

require no label set constraint and no target data for training.

Domain Generalization aims to learn a generalizable

model with only source data to achieve high performance

in an unseen target domain [22, 34], which typically learns

domain-invariant features across source domains [34, 16,

15, 28, 4, 38, 5]. When the different source domains hold

different label sets, such learning causes mismatch of classes.

CIDDG [29] can avoid the mismatching but still requires all

the source and target domains to share the same label sets, or

otherwise the low domain diversity of some classes makes it

hard to learn domain-invariant features.

Meta-learning instead has the potential to learn from

highly diverse domains. However, current meta-learning-

based domain generalization methods still fail to consider

different label sets of distinct source domains and the open

classes in the target domain [25, 1, 10, 27]. Heterogeneous

domain generalization [30, 49] has a similar goal of learning

generalizable representations, which targets a more powerful

pre-trained model by learning from heterogeneous source do-

mains of different label sets. However, it requires additional

target labeled data to induce a category model, which cannot

fit into the proposed open domain generalization problem.

Augmentation The statistical learning theory [45] sug-

gests that the generalization of the learning model can be
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Algorithm 1 Training process of Domain-Augmented Meta-Learning (DAML)

Input: Source datasets D1,D2, · · · ,DS , learning rates η and β, Dir-mixup hyper-parameters αmax and αmin

1: Initialize θs|
S
s=1

2: while Not Converged do

3: Sample a batch of data Btr = {(x1,y1), (x2,y2), · · · , (xS ,yS)} from all source domains D1, D2, · · · , DS .

4: for s = 1, . . . , S do ⊲ Meta-training starts

5: α
tr
s ← {αmax, αmin, s} ⊲ Dir-mixup parameter for meta-training

6: BD-mix
s = {(zD-mix

s ,yD-mix
s )} ← Dir-mixup({αtr

s ,B
tr}) ⊲ Obtain Dir-mixup according to Eqn. (3)

7: Bdistill
s = {(xs,y

distill
s )} ← {Gj |j 6=s, Fj |j 6=s,B

tr} ⊲ Obtain distilled soft-label according to Eqn. (4)

8: Ltr
s ←

{
Gs(Fs(xs)),ys, Gs(z

D-mix
s ),yD-mix

s ,ydistill
s

}
using data in Btr, BD-mix

s , and Bdistill
s ⊲ According to Eqn (1)

9: θF ′

s,G
′

s
= θFs,Gs

− η∇θL
tr
s

10: Sample another batch of data Bobj = {(x1,y1), (x2,y2), · · · , (xS ,yS)} from all source domains D1, D2, · · · , DS .

11: for s = 1, . . . , S do ⊲ Meta-objective starts

12: α
obj
s ← {αmin, αmax, s} ⊲ Dir-mixup parameter for meta-objective

13: BD-mix
s

′
= {(zD-mix

s

′
,yD-mix

s

′
)} ← Dir-mixup({αobj

s ,Bobj}) ⊲ Obtain Dir-mixup according to Eqn. (3)

14: Lobj
s ←

{
G′

s(F
′
s(xj))|j 6=s,yj |j 6=s, G

′
s(z

D-mix
s

′
),yD-mix

s

′
}

using data in Bobj and BD-mix
s

′
⊲ According to Eqn (2)

15: θFs,Gs
← θFs,Gs

− β∇θ(L
tr
s + L

obj
s ) ⊲ Update parameters with meta-learning

16: return θs|
S
s=1

characterized by the model capacity and the diversity of train-

ing data. So data augmentation can improve generalization

by increasing the diversity of training data. Basic augmen-

tations including affine transformation, random cropping,

and horizontal flipping are widely-used in image classifica-

tion [6, 42, 24]. Recently, more advanced augmentations

are proposed. Mixup [54, 44, 18] combines two samples

linearly. Cutout [9] removes contiguous sections of input

images. Cutmix [52] combines cutout and mixup by filling

the Cutout part with sections of other image patches.

Augmentation-based generalization methods promote the

generalization ability by augmenting source data, where

adversarial data augmentation [47], gradient-based pertur-

bations [43], self-supervised learning signals [3], and Cut-

Mix [33] are used as the augmentation method. Note that

these augmentation methods target general situations for

generalization across domains but are not designed specially

for open domains with disparate label sets.

Different from all previous works, this paper studies open

domain generalization, a practical but challenging problem.

We develop the DAML framework to conduct meta-learning

over augmented source domains. We design a novel Dir-

mixup to mix samples from multiple domains instead of

mixing two arbitrary samples in classic mixup. Dir-mixup

bridges all the source domains and compensates each domain

with missing classes from other domains, which naturally

fits the disparate source label sets. We further propose a new

distilled soft-labeling to transfer knowledge across domains.

3. Domain-Augmented Meta-Learning

In this section, we first introduce the open domain general-

ization (OpenDG) problem. Then we introduce the Domain-

Augmented Meta-Learning (DAML) and describe the step-

by-step algorithm and the optimization of the framework,

which consists of the proposed domain augmentation and

the meta-learning on the augmented domains.

3.1. Open Domain Generalization

In open domain generalization (OpenDG), we have mul-

tiple source domains D1,D2, · · · ,DS available for training,

where each source domain s consists of data-label pairs

Ds = {(xs,ys)}. ys denotes the one-hot label of xs. Note

that although we train the model with mini-batches in prac-

tice, here we omit the batch size of each domain to simplify

the notations. We use C to denote the union of all the source

label sets. In open domain generalization, we have no con-

straint on the label sets of different domains. We aim to

learn open-domain generalizable representation from all the

source domains, which can generalize well to an unseen tar-

get domainDt. Specifically, the target domain, only used for

evaluation, consists of fully unlabeled data Dt = {xt} and

its label set Ct may contain classes existing in any source la-

bel set or unknown classes not existing in the union of source

label sets C. The goal is to classify at inference each target

sample with the correct class if it belongs to the source label

set C, or label it as “unknown”. Note that no target data, even

unlabeled, are available for training, which differs OpenDG

from domain adaptation [51] or domain generalization [49].
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Figure 2. The architecture of the proposed DAML framework. We show the computation graph for source domain 1 as an example, and the

other source domains are computed similarly. In the meta-training (up part, left to right), each source domain is augmented by Dir-mixup

(red) and distilled soft-labeling (blue) to compute the L
tr
1 to update the model parameters to F

′
1 and G

′
1. In the meta-objective (down part,

right to left), each source domain is augmented by Dir-mixup (red) to compute the L
obj
1 to finally update the model parameters.

3.2. The DAML Framework

We propose DAML to address open domain generaliza-

tion problems to mitigate the disparate label sets and distri-

bution shifts among the diverse source domains. As shown

in Algorithm 1, the idea is to learn generalizable representa-

tions by meta-learning over augmented domains.

Augmented Domains As demonstrated in [53, 17], in-

creasing the diversity of the dataset can substantially improve

the generalization of the representations. Motivated by this

idea, we augment each domain to expand the diversity of the

datasets. We observe that different domains have different

distributions and hold different label sets, which means that

each domain contains distinct knowledge but lacks domain

knowledge and class knowledge of other domains. Based on

the observation, we design domain augmentation to address

open domain generalization. Our insight is to conduct both

feature-level and label-level augmentation. For feature-level

augmentation, we propose a novel Dirichlet Mixup (Dir-

mixup) method, which augments each domain by the mixup

with multiple domains. For label-level augmentation, we pro-

pose to augment each domain by distilling soft-labels from

models of other domains. The proposed domain augmenta-

tion increases the diversity of the data and compensates each

domain with missing knowledge of features and classes. The

details of the proposed domain augmentation are introduced

in Section 3.3.

Meta-Learning We design the learning framework to

learn generalizable representations, which simultaneously

preserves the unique information of each domain and aggre-

gates the knowledge of all the domains. Thus, instead of

employing a shared network for all source domains, which

only embeds domain common knowledge, we build one indi-

vidual classification network composed of a feature extractor

Fs and a classifier Gs for each source domain s. Then we

need to learn a generalizable representation aggregating the

information of all the source domains. We conduct meta-

learning over all the networks since meta-learning is demon-

strated to be able to learn a generalizable representation from

highly disparate domains. In each iteration of the parameter

update, we first draw a batch of samples from each domain

and compute the corresponding Dir-mixup samples and dis-

tilled soft-labels (Line 5-7 in Algorithm 1). Unlike standard

meta-learning loss applied only on the raw data [12], with

the augmented domains, we design a new meta-training loss

as the classification loss on the original data, the domain-

augmented data by Dir-mixup, and soft-labels distilled from

other domain networks. For each domain s, let zs = Fs(xs)
be the feature of xs, we define the meta-training loss as

L
tr
s = E

(xs,ys)∼Ds



−

|C|
∑

k=1

(ys)
(k) log

(

G
(k)
s (Fs(xs))

)





+ E
(zD-mix

s ,yD-mix
s )∼DD-mix

s



−

|C|
∑

k=1

(yD-mix
s )(k) log

(

G
(k)
s (zD-mix

s )
)





+ E
(xs,y

distill
s )∼Ddistill

s



−

|C|
∑

k=1

(ydistill
s )(k) log

(

G
(k)
s (Fs(xs))

)



 .

(1)

The superscript (k) means the probability of the k-th class.

DD-mix
s and Ddistill

s are the augmented domains of Dir-mixup

samples and distilled soft-label samples for meta-training

on domain s. We compute one step of gradient update for

each source network with respect to the meta-training loss:

θG′

s,F
′

s
= θGs,Fs

−η∇θL
tr
s (Line 9 in Algorithm 1), where η

is the step size. The design idea of meta-objective is to guide
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the gradient update from the meta-training loss to the desired

goal. Classic meta-learning employs the losses over all

sampled tasks as the meta-objective [12]. But our goal is to

improve the generalization ability of the model, so different

from classic meta-objective, we design the meta-objective as

the classification loss on the original data and Dir-mixup data

in other domains with the updated network G′
s, F

′
s, which

can propagate the knowledge of other domains to domain

s and promote the knowledge transfer and generalization

across domains. The meta-objective is defined as

L
obj
s =

∑

j 6=s

E
(xj ,yj)∼Dj



−

|C|
∑

k=1

(yj)
(k) log

(

G
′(k)
s (F ′

s(xj))
)





+ E
(zD-mix′

s ,yD-mix′
s )∼DD-mix′

s



−

|C|
∑

k=1

(yD-mix′

s )(k) log
(

G
′(k)
s (zD-mix′

s )
)





(2)

DD-mix
s

′
is the augmented domain of Dir-mixup samples for

domain s in meta-objective. The minimization of the meta-

objective finds a gradient descent update that updates the

network to classify data in other domains with high accu-

racy, which encourages the network to learn a generaliz-

able representation performing well across all domains. We

finally update the network parameters in one iteration by

θs ← θs − β∇θ(L
tr
s + L

obj
s ), where β is the learning rate.

3.3. Domain Augmentation

The meta-learning framework can learn a generalizable

representation aggregating information from all source do-

mains, where the generalization power highly relies on the

diversity of each source domain. To this end, we design

two multiple source domain augmentation approaches: the

feature-level augmentation, Dir-mixup, and the label-level

augmentation, distilled augmentation. The augmentations

compensate for the missing class information in each source

domain and further increase domain diversity.

Dir-mixup Mixup [54] generates a new data-label by the

weighted sum of the feature and one-hot label of existing

samples, where the weights are sampled from a pre-defined

distribution. We augment the s-th source domain by mixup

of data in the s-th domain with data in other domains. Since

these data may belong to the missing classes of the s-th

source domain, mixup augmentation would compensate for

the missing classes. Also, mixup produces inter-domain data,

which further increases the diversity of data in each domain.

However, the original mixup is defined to mix two sam-

ples. When applied to open domain generalization with

multiple source domains, mixup samples are only gener-

ated from pairs of domains, which, as shown in Figure 3,

only generates samples between two domains (the lines be-

tween vertex) but lacks samples mixing multiple domains

(the whole area). Also, to obtain all domain combinations,

such pairwise mixup needs O(#domains×#domains) mixup

(𝐱#, 𝐲#)

(𝐱' , 𝐲')

(𝐱(, 𝐲()

Figure 3. Comparison between Dir-mixup and classic mixup. Clas-

sic mixup only mixes two samples, so mixup samples only exist on

the edge of the triangle while Dir-mixup mixes samples of multiple

domains covering the whole triangle area, meaning Dir-mixup in-

troduce mixup samples with more information and higher diversity.

samples. Therefore, to mix multiple domains, we need to

sample the weight from a multi-variate distribution instead

of the beta distribution used in the original mixup. We se-

lect Dirichlet distribution since it has similar properties to

the beta distribution and is a multi-variate distribution. We

then design a new Dir-mixup to mix samples (one for each

domain) with a designed weight λ sampled from a Dirichlet

distribution parameterized by a parameter α. We perform

mixup at feature-level. Let z1, z2, · · · , zS be the features

of different domain data extracted by the network, the Dir-

mixup augmented data (zD-mix,yD-mix) can be calculated as:

λ ∼ Dirichlet(α)

(zD-mix,yD-mix) = (

S∑

s=1

λ(s)zs,

S∑

s=1

λ(s)ys).
(3)

Compared with recent work using mixup for domain gen-

eralization [33, 49], Dir-mixup is more efficient and effective.

The parameter α adjusts the distribution to generate differ-

ent augmentations, better serving the meta-learning process.

Consider constructing Dir-mixup for each model s. In the

meta-training, we want to keep more information and fo-

cus more on domain s during mixup, so we set α(s) larger

than other components in α, which assigns a larger weight

λ(s) to zs statistically. In the meta objective, the goal is

to transfer knowledge from other domains and improve the

cross-domain generalization, which would be enhanced by

mixup results with larger domain discrepancy. So we set

α(s) smaller than other components in α, which induces

smaller λ(s) statistically. We employ two hyper-parameters

αmax and αmin to realize this idea. For the meta-training of

model s, we set αtr
s to be a length S vector with all entries

as αmin but the s-th entry as αmax. We generate mixup data

with this αtr
s to form the Dir-mixup augmentation set in the

meta-training of model s, as DD-mix
s in Equation 1. For the

meta-objective, we set α
obj
s to be a length S vector with

all entries as αmax but the s-th entry as αmin. And the data

generated from this α
obj
s form the Dir-mixup augmentation

set for model s, which is the DD-mix′

s in Equation 2.
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Distilled Augmentation For the s-th source domain, we

further augment it with the soft-labeling distilled from other

domains, which is the output predictions of other networks.

We mix soft-labels from other domains to increase the di-

versity of the augmentation. We set the α to be a vector

of all ones with dimension S − 1 since we do not prefer a

particular other domain. The augmentation can be defined as

λ ∼ Dirichlet(α)

ydistill
s =

s−1∑

j=1

λ(j)Gj(Fj(xs)) +

S∑

j=s+1

λ(j−1)Gj(Fj(xs)).

(4)

The soft-label indicates the decision of the networks of other

domains on the s-th domain data, which transfers the knowl-

edge from other domains to the s-th domain. The augmenta-

tion is reflected as the third term in Equation 1, where we do

not back-propagate through Fj , Gj since they are just used

to generate the soft-labeling. The augmentation regularizes

the s-th domain network with knowledge of other domains,

which derives a more generalizable representation.

3.4. Inference

In the inference stage, we have the networks for all source

domains G1, · · · , GS , F1, · · · , FS trained by the DAML

framework as shown in Algorithm 1. For a test sample

xt from the target domain Dt, we compute the raw predic-

tion of xt by aggregating the predictions of all the source

networks:

ŷt =
1

S

S∑

s=1

Gs(Fs(xt)). (5)

The ensemble of all source domain networks naturally cal-

ibrates the prediction confidence and enables DAML to

achieve higher performance in the unseen target domain.

4. Experiments

We construct several open domain generalization scenar-

ios with different datasets to evaluate the proposed method.

4.1. Datasets

PACS dataset [26] consists of four domains correspond-

ing to four different image styles, including photo (P), art-

painting (A), cartoon (C) and sketch (S). The four domains

have the same label set of 7 classes. We use each domain

as the target domain and the other three domains as source

domains to form four cross-domain tasks. We evaluate the

generalization performance on both the original closed-set

dataset and the modified open-domain dataset.

Office-Home [46] comprises of images from four differ-

ent domains: Artistic (Ar), Clip art (Cl), Product (Pr) and

Real-world (Rw). It has a large domain gap and 65 classes

which is much more than other DG datasets, so it is very

challenging. We spread these 65 classes among the four do-

mains to derive an open-domain dataset. We construct four

open generalization tasks based on it, where each domain is

used as the target domain respectively, and the other three

domains serve as source domains.

Multi-Datasets scenario is constructed in this paper to

consider a more realistic situation of learning generalizable

representations from arbitrary source domains. We simulate

the process where we obtain source domains from different

resources and try to learn a generalizable model to achieve

high accuracy on an unseen target domain. We leverage

several public datasets including Office-31 [40], STL-10 [7]

and Visda2017 [37] as source domains, and evaluate the

generalization performance on four domains in Domain-

Net [36]. There exist distribution discrepancy and huge

label-set disparity across the four datasets, which forms a

natural open domain generalization scenario. Since there are

too many open classes in the DomainNet, we preserve all

the classes existing in the joint label set of source domains

and subsample 20 open classes.

4.2. Closed­Set Generalization

We evaluate the classification accuracy of closed-set gen-

eralization on the widely-used domain generalization dataset

PACS. The closed-set setting exactly matches the domain

generalization setting so we compare with supervised learn-

ing on the merged datasets of all source domains: AGG,

domain generalization methods including domain-invariant

feature learning based methods: CIDDG [29], CSD [38]

and DMG [5], meta-learning based methods: MLDG [25],

MetaReg [1], MASF [10] and Epi-FCR [27], and aug-

mentation based methods: CrossGrad [43], JiGen [3] and

CuMix [33]. We do not compare with domain adaptation

methods since they need unlabeled target data.

As shown in Table 4, on the closed-set generalization

setting, to which previous domain generalization methods

are tailored, DAML still outperforms all previous methods on

average and achieves at least comparable performance on all

the tasks. In particular, DAML outperforms state-of-the-art

meta-learning-based DG, which indicates the importance of

domain augmentation to learn generalizable representations.

DAML surpasses state-of-the-art augmentation-based DG,

indicating that the meta-learning paradigm and the carefully

designed feature-level and label-level augmentations can

enable learning more generalizable representations.

4.3. Open Domain Generalization

We evaluate the generalization performance for situations

where the source and target domains have different label sets

and open classes exist. We conduct experiments on PACS,

Office-Home, and Multi-Datasets. For PACS and Office-

Home, we preserve different parts of classes in the source

domains and the target domain to create disparate label sets
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Table 2. Results of PACS dataset under the open-domain setting.

Art Sketch Photo Cartoon Avg

Method Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

AGG 51.35 38.87 49.75 47.09 53.15 44.19 66.43 48.98 55.17± 0.16 44.78± 0.33
MLDG [25] 44.59 31.54 51.29 49.91 62.20 43.35 71.64 55.20 57.43± 0.14 45.00± 0.31
FC [30] 51.12 39.01 51.15 49.28 60.94 45.79 69.32 52.67 58.13± 0.20 46.69± 0.25
Epi-FCR [27] 54.16 41.16 46.35 46.14 70.03 48.38 72.00 58.19 60.64± 0.22 48.47± 0.29
PAR [48] 52.97 39.21 53.62 52.00 51.86 36.53 67.77 52.05 56.56± 0.51 44.95± 0.57
RSC [21] 50.47 38.43 50.17 44.59 67.53 49.82 67.51 47.35 58.92± 0.46 45.05± 0.60
CuMix [33] 53.85 38.67 37.70 28.71 65.67 49.28 74.16 47.53 57.85± 0.32 41.05± 0.66
DAML (ours) 54.10 43.02 58.50 56.73 75.69 53.29 73.65 54.47 65.49± 0.36 51.88± 0.42

Table 3. Results of Office-Home dataset under the open-domain setting.

Clipart Real-World Product Art Avg

Method Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

AGG 42.83 44.98 62.40 53.67 54.27 50.11 42.22 40.87 50.43± 0.32 47.41± 0.53
MLDG [25] 41.82 41.26 62.98 55.84 56.89 52.25 42.58 40.97 51.07± 0.19 47.58± 0.42
FC [30] 41.80 41.65 63.79 55.16 54.41 52.02 44.13 43.25 51.03± 0.24 48.02± 0.57
Epi-FCR [27] 37.13 42.05 62.60 54.73 54.95 52.68 46.33 44.46 50.25± 0.50 48.48± 0.76
PAR [48] 41.27 41.77 65.98 57.60 55.37 54.13 42.40 42.62 51.26± 0.27 49.03± 0.41
RSC [21] 38.60 38.39 60.85 53.73 54.61 54.66 44.19 44.77 49.56± 0.44 47.89± 0.79
CuMix [33] 41.54 43.07 64.63 58.02 57.74 55.79 42.76 40.72 51.67± 0.12 49.40± 0.27
DAML (ours) 45.13 43.12 65.99 60.13 61.54 59.00 53.13 51.11 56.45± 0.21 53.34± 0.45

Table 4. Results on closed-set PACS dataset.
Method A S P C Avg

AGG 77.6 70.3 94.4 73.9 79.1
CIDDG [29] 82.0 74.8 94.6 74.4 81.4
MLDG [25] 79.5 71.5 94.3 77.3 80.7
CrossGrad [43] 78.7 65.1 94.0 73.3 77.8
MetaReg [1] 79.5 72.2 94.3 75.4 80.4
JiGen [3] 79.4 71.4 96.0 75.3 80.4
MASF [10] 80.3 71.7 94.5 77.2 81.0
Epi-FCR [27] 82.1 73.0 93.9 77.0 81.5
CSD [38] 79.8 72.5 95.5 75.0 80.7
DMG [5] 76.9 75.2 93.4 80.4 81.5
CuMix [33] 82.3 72.6 95.1 76.5 81.6
DAML 83.0 74.1 95.6 78.1 82.7

among source domains and between the source and target

domains. For Multi-Datasets, we preserve all the classes for

all source datasets. We show the class split in each domain

in the supplementary materials. We follow [51] to set a

threshold on the prediction confidence and label samples

with a confidence lower than the threshold as an open class:

“unknown”. For the evaluation metric, we report the accuracy

of data from non-open classes (Acc) and also follow the

state-of-the-art universal domain adaptation paper [13] to

use H-score to evaluate performance over all target data.

For the open-domain classification setting, we mainly

compare with previous methods that are less influenced by

the different label sets of source domains. We select state-

of-the-art meta-learning-based and augmentation-based DG

methods [25, 27, 33], heterogeneous domain generalization

methods: FC [30], recently proposed methods of learning

robust and generalizable features: PAR [48] and RSC [21].

As shown in Tables 2, 3 and 5, we can observe that DAML

outperforms all the compared methods with a large mar-

gin on both Acc and H-score, which indicates that DAML

not only learns a generalizable representation for non-open

classes but also detects open classes with higher accuracy. In

particular, DAML outperforms the meta-learning-based DG

methods MLDG and Epi-FCR on almost all the tasks, espe-

cially the H-score, which demonstrates that domain augmen-

tation, compensating missing labels for each domain, is vital

to addressing the different label sets across source domains.

DAML outperforms CuMix, which also employs mixup for

data augmentation. Note that we design the Dir-mixup to

mix samples from multiple domains while CuMix mixes two

arbitrary samples. So our Dir-mixup creates mixup samples

with higher variations and diversity, which encourages the

model to learn more generalizable representations.

The Multi-Datasets simulates the real-world scenario

where we aim to generalize from datasets available at hand

to an unseen domain. The different source domains hold ex-

tremely disparate label sets. In this realistic scenario, DAML

outperforms all the compared methods with a large margin,

indicating that DAML can be applied to realistic generaliza-

tion problems and achieve higher performance.

4.4. Analysis

Ablation Study We go deeper into the DAML framework

to explore the efficacy of each module in DAML including

meta-learning, Dir-mixup and distilled soft-labels. As shown

in Table 6, DD-mix
s means whether to use the Dir-mixup data

in the meta-training loss, i.e. whether to use the second term
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Table 5. Results on the Multi-Datasets scenario (naturally under the open-domain setting).

Clipart Real Painting Sketch Avg

Method Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

AGG 29.78 34.06 65.33 64.72 44.30 51.04 27.59 35.41 41.75± 0.63 46.31± 0.57
MLDG [25] 29.66 35.11 65.37 54.40 44.04 50.53 26.83 34.57 41.48± 0.68 43.65± 0.71
FC [30] 29.91 35.42 64.77 63.65 44.13 50.07 28.56 34.10 41.84± 0.73 45.81± 0.69
Epi-FCR [27] 27.70 37.62 60.31 64.95 39.57 50.24 26.76 33.74 38.59± 1.13 46.64± 0.95
PAR [48] 29.29 39.99 64.09 62.59 42.36 46.37 30.21 39.96 41.49± 0.63 47.23± 0.55
RSC [21] 27.57 34.98 60.36 60.02 37.76 42.21 26.21 30.44 37.98± 0.77 41.91± 1.28
CuMix [33] 30.03 40.18 64.61 65.07 44.37 48.70 29.72 33.70 42.18± 0.45 46.91± 0.40
DAML (ours) 37.62 44.27 66.54 67.80 47.80 52.93 34.48 41.82 46.61± 0.59 51.71± 0.52
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Figure 4. The Fréchet distance between each source domain and the target domain for the four generalization tasks on Office-Home dataset.

Table 6. Ablation study on the open-domain Office-Home dataset.

DD-mix
s DD-mix′

s Dmix
s Ddistill

s w/ Meta Cl Rw Pr Ar Avg

- - - - ✓ 42.2 64.8 57.6 49.6 53.6
✓ - - - ✓ 43.8 64.9 57.1 51.7 54.4
- ✓ - - ✓ 43.8 65.7 58.2 52.4 55.0
✓ ✓ - - ✓ 44.8 65.9 59.7 52.9 55.9
✓ ✓ - ✓ - 44.1 65.1 59.7 52.2 55.3
- - ✓ ✓ ✓ 44.3 65.3 59.0 51.9 55.1
✓ ✓ - ✓ ✓ 45.1 66.0 61.5 53.1 56.5

in Equation 1. DD-mix
s

′
means whether to use the Dir-mixup

data in the meta-objective loss, i.e. whether to use the second

term in Equation 2. Dmix
s means using classic mixup which

mixes two arbitrary samples. Ddistill
s means whether to use

the distilled soft-label, i.e. whether to use the third term in

Equation 1. w/ Meta means whether to use meta-learning or

otherwise supervised learning on the augmented domains.

In Table 6, we observe that using bothDD-mix
s andDD-mix

s

′

outperforms using only DD-mix
s and using only DD-mix

s

′
,

which indicates Dir-mixup samples are helpful in both meta-

training and meta-objective losses. Changing the Dir-mixup

to classic mixup drops the accuracy, which shows the impor-

tance of a built-in mixup for multiple domains. Using Ddistill
s

outperforms not using Ddistill
s on average, indicating that

transferring knowledge between domains by distilled soft-

labels learns more generalizable representations. DAML

outperforms meta-learning conducted on the raw domain

without any domain augmentation, which indicates the im-

portance of domain augmentation to address the different

label sets of source domains. DAML also outperforms the

variant that uses no meta-learning, which demonstrates that

meta-learning can aggregate knowledge from augmented

source domains in a more effective way.

Fréchet Distance We compare the domain gap between

source and target domains on features learned by the baseline

AGG model and features learned by the DAML model. We

extract features of each domain and compute their mean vec-

tors and covariance matrices. Then we evaluate the Fréchet

Distance[11] between the features of each source domain

and the non-open class part of the target domain. As shown

in Figure 4, the domain gaps between source domains and

the unseen target domain are smaller in DAML, indicating

that DAML learns more generalizable representations.

5. Conclusion

In this paper, we propose a new open domain general-

ization problem aiming to generalize from arbitrary source

domains with disparate label sets to unseen target domains,

which can be widely utilized in real-world applications. We

further propose a novel Domain-Augmented Meta-Learning

framework (DAML) to address the problem, which conducts

meta-learning over domains augmented at feature-level by

specially designed Dir-mixup and at label-level by distilled

soft-labels. Extensive experiments demonstrate that DAML

learns more generalizable representations for classification in

the target domain than the previous generalization methods.
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