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Abstract

We propose novel motion representations for animating

articulated objects consisting of distinct parts. In a com-

pletely unsupervised manner, our method identifies object

parts, tracks them in a driving video, and infers their motions

by considering their principal axes. In contrast to the previ-

ous keypoint-based works, our method extracts meaningful

and consistent regions, describing locations, shape, and

pose. The regions correspond to semantically relevant and

distinct object parts, that are more easily detected in frames

of the driving video. To force decoupling of foreground from

background, we model non-object related global motion with

an additional affine transformation. To facilitate animation

and prevent the leakage of the shape of the driving object,

we disentangle shape and pose of objects in the region space.

Our model1 can animate a variety of objects, surpassing pre-

vious methods by a large margin on existing benchmarks. We

present a challenging new benchmark with high-resolution

videos and show that the improvement is particularly pro-

nounced when articulated objects are considered, reaching

96.6% user preference vs. the state of the art.

1. Introduction

Animation—bringing static objects to life—has broad

applications across education and entertainment. Animated

characters and objects, such as those in Fig. 1, increase

the creativity and appeal of content, improve the clarity of

material through storytelling, and enhance user experiences.

Until very recently, animation techniques necessary for

achieving such results required a trained professional, spe-

cialized hardware, software, and a great deal of effort. Qual-

ity results generally still do, but vision and graphics commu-

nities have attempted to address some of these limitations

by training data-driven methods [36, 6, 25, 11, 10] on object

classes for which prior knowledge of object shape and pose

can be learned. This, however, requires ground truth pose

and shape data to be available during training.

Recent works have sought to avoid the need for ground

1Our source code is publicly available at https://github.com/snap-

research/articulated-animation.

Source Animated

Figure 1: Our method animates still source images via unsu-

pervised region detection (inset).

truth data through unsupervised motion transfer [39, 27, 28].

Significant progress has been made on several key chal-

lenges, including training using image reconstruction as a

loss [39, 27, 28], and disentangling motion from appear-

ance [19]. This has created the potential to animate a broader

range of object categories, without any domain knowledge

or labelled data, requiring only videos of objects in motion

during training [27]. However, two key problems remain

open. The first is how to represent the parts of an articulated

or non-rigid moving object, including their shapes and poses.

The second is given the object parts, how to animate them

using the sequence of motions in a driving video.

Initial attempts used end-to-end frameworks [39, 28] to

first extract unsupervised keypoints [19, 17], then warp a

feature embedding of a source image to align its keypoints

with those of a driving video. Follow on work [27] further

modelled the motion around each keypoint with local, affine

transformations, and introduced a generation module that

both composites warped source image regions and inpaints

occluded regions, to render the final image. This enabled a

variety of creative applications,2 for example needing only

one source face image to generate a near photo-realistic

animation, driven by a video of a different face.

However, the resulting unsupervised keypoints are de-

2E.g. a music video in which images are animated using prior work [27].
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tected on the boundary of the objects. While points on

edges are easier to identify, tracking such keypoints between

frames is problematic, as any point on the boundary is a

valid candidate, making it hard to establish correspondences

between frames. A further problem is that the unsupervised

keypoints do not correspond to semantically meaningful ob-

ject parts, representing location and direction, but not shape.

Due to this limitation, animating articulated objects, such as

bodies, remains challenging. Furthermore, these methods

assume static backgrounds, i.e. no camera motion, leading

to leakage of background motion information into one or

several of the detected keypoints. Finally, absolute motion

transfer, as in [27], transfers the shape of the driving object

into the generated sequence, decreasing the fidelity of the

source identity. These remaining deficiencies limit the scope

of previous works [27, 28] to more trivial object categories

and motions, especially when objects are articulated.

This work introduces three contributions to address these

challenges. First, we redefine the underlying motion rep-

resentation, using regions from which first-order motion is

measured, rather than regressed. This enables improved

convergence, more stable, robust object and motion repre-

sentations, and also empirically captures the shape of the

underpinning object parts, leading to better motion segmen-

tation. This motion representation is inspired by Hu mo-

ments [8]. Fig. 3(a) contains several examples of region vs.

keypoint-based motion representation.

Secondly, we explicitly model background or camera mo-

tion between training frames by predicting the parameters

of a global, affine transformation explaining non-object re-

lated motions. This enables the model to focus solely on the

foreground object, making the identified points more stable,

and further improves convergence. Finally, to prevent shape

transfer and improve animation, we disentangle the shape

and pose of objects in the space of unsupervised regions. Our

framework is self-supervised, does not require any labels,

and is optimized using reconstruction losses.

These contributions further improve unsupervised motion

transfer methods, resulting in higher fidelity animation of ar-

ticulated objects in particular. To create a more challenging

benchmark for such objects, we present a newly collected

dataset of TED talk speakers. Our framework scales better

in the number of unsupervised regions, resulting in more

detailed motion. Our method outperforms previous unsuper-

vised animation methods on a variety of datasets, including

talking faces, taichi videos and animated pixel art being pre-

ferred by 96.6% of independent raters when compared with

the state of the art [27] on our most challenging benchmark.

2. Related work
Image animation methods can be separated into super-

vised, which require knowledge about the animated object

during training, and unsupervised, which do not. Such

knowledge typically includes landmarks [4, 40, 24, 12],

semantic segmentations [22], and parametric 3D mod-

els [11, 32, 9, 20, 18]. As a result, supervised methods

are limited to a small number of object categories for which

a lot of labelled data is available, such as faces and human

bodies. Early face reenactment work [32] fitted a 3D mor-

phable model to an image, animating and rendering it back

using graphical techniques. Further works used neural net-

works to get higher quality rendering [16, 38], sometimes

requiring multiple images per identity [11, 23]. A body of

works treats animation as an image-to-image [30] or video-

to-video [36, 6, 25] translation problem. Apart from some

exceptions [35], these works further constrain the problem

to animating a single instance of an object, such as a single

face [16, 2] or a single human body [6, 25, 36], requiring

retraining [2, 6, 25] or fine-tuning [40] for each new instance.

Despite promising results, generalizing these methods be-

yond a limited range of object categories remains challeng-

ing. Additionally, they tend to transfer not only the motion

but also the shape of the driving object [16, 40].

Unsupervised methods address some of these limitations.

They do not require any labelled data regarding the shape or

landmarks of the animated object. Video-generation-based

animation methods predict future frames of a video, given

the first frame and an animation class label, such as “make a

happy face”, “do jumping jack”, or “play golf” [33, 26, 7].

A further group of works re-target animation from a driving

video to a source frame. X2Face [39] builds a canonical rep-

resentation of an input face, and generates a warp field con-

ditioned on the driving video. Monkey-Net [28] learns a set

of unsupervised keypoints to generate animations. Follow-

up work substantially improves the quality of animation by

considering a first order motion model (FOMM) [27] for

each keypoint, represented by regressing a local, affine trans-

formation. Both of these works apply to a wider range of

objects including faces, bodies, robots, and pixel art ani-

mations. Empirically, these methods extract keypoints on

the boundary of the animated objects. Articulated objects

such as human bodies are therefore challenging, as internal

motion, for example, an arm moving across the body, is not

well modeled, producing unconvincing animations.

This work presents an unsupervised method. We argue

that the limitations of previous such methods in animating

articulated objects is due to an inability of their internal rep-

resentations to capture complete object parts, their shape and

pose. X2Face [39] assumes an object can be represented with

a single RGB texture, while other methods find keypoints

on edges [28, 27]. Our new region motion representation

resembles the construction of a motion history image whose

shape is analyzed using principal components (namely Hu

moments [8]). In [8] the authors construct motion descrip-

tors by computing temporal image differences, aggregate

them into motion history images, and use Hu moments to

build a motion recognition system. In this manner, blob
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statistics are used to discriminate between different actions.

3. Method
We propose three contributions over FOMM [27], namely

our PCA-based motion estimation (Sec. 3.2), background

motion representation (Sec. 3.3) and animation via disentan-

glement (Sec. 3.6). To make the manuscript self-contained,

we first give the necessary technical background on the orig-

inal first order motion representation [27] (Sec. 3.1).

3.1. First Order Motion Model

FOMM [27] consists of the two main parts: motion es-

timation and image generation, where motion estimation

further contains coarse motion estimation and dense motion

prediction. Coarse motion is modelled as sparse motions

between separate object parts, while dense motion produces

an optical flow along with the confidence map for the entire

image. We denote by S and D the source and the driving

frames extracted from the same video respectively.

The first step is to estimate coarse motions from S and

D. Motions for each object part are represented by affine

transformations, Ak
X←R

∈ R2×3, to an abstract, common

reference frame, R; X is either S or D. Motions are esti-

mated for K distinct parts. An encoder-decoder keypoint

predictor network outputs K heatmaps, M1, ..,MK for the

input image, followed by softmax, s.t. Mk ∈ [0, 1]H×W ,

where H and W are the height and width of the image respec-

tively, and
∑

z∈ZM
k(z) = 1, where z is a pixel location

(x, y coordinates) in the image, the set of all pixel locations

being Z , and M
k(z) is the k-th heatmap weight at pixel z.

Thus, the translation component of the affine transformation

(which is the last column of Ak
X←R

) can be estimated using

softargmax:

µk =
∑

z∈Z

M
k(z)z. (1)

In FOMM [27] the remaining affine parameters are regressed

per pixel and form 4 additional channels P k
ij ∈ RH×W ,

where i ∈ {0, 1}, j ∈ {0, 1} indexes of the affine matrix

Ak
X←R

. The latter is estimated using weighted pooling:

Ak
X←R[i, j] =

∑

z∈Z

M
k(z)P k

ij(z). (2)

We refer to this way of computing motion as regression-

based, where affine parameters are predicted by a network

and pooled to compute Ak
X←R

. Motion between D and S

for part k is then computed via the common reference frame:

Ak
S←D = Ak

S←R

[

Ak
D←R

0 0 1

]−1

. (3)

Given the coarse motion, the next step is to predict the opti-

cal flow and the confidence map. Since the transformations

between D and S are known for each part, the task is to com-

bine them to obtain a single optical flow field. To this end,

the flow predictor selects the appropriate coarse transforma-

tion for each pixel, via a weighted sum of coarse motions.

Formally, K+1 assignment maps are output, one per region,

plus background, which FOMM [27] assumes is motion-

less, and softargmax is applied pixelwise across them, s.t.

W
k ∈ [0, 1]H×W , W0 corresponds to the background, and

∑K

k=0 W
k(z) = 1, ∀z. Optical flow per pixel, O(z) ∈ R

2,

is then computed as:

O(z) = W
0(z)z +

K
∑

k=1

W
k(z)Ak

S←D

[

z

1

]

. (4)

With such a model, animation becomes challenging when

there is even slight background motion. The model automat-

ically adapts by assigning several of the available keypoints

to model background as shown in the first row of Fig. 3(a).

A confidence map, C ∈ [0, 1]H×W , is also predicted

using the same network, to handle parts missing in the source

image. Finally S is passed through an encoder, followed by

warping the resulting feature map using the optical flow

(Eq. 4) and multiplied by the confidence map. A decoder

then reconstructs the driving image D.

At test time FOMM [27] has two modes of animating S:

standard and relative. In both cases the input is the source

image S and the driving video D1,D2, ..,Dt, ..,DT . In the

standard animation the motion between source and driving

is computed frame-by-frame using Eq. (3). For relative

animation, in order to generate a frame t the motion between

D1 and Dt is computed first and then applied to S. Both of

these modes are problematic when the object in question is

articulated, as we show in Sec. 3.6.

3.2. PCA­based motion estimation

Accurate motion estimation is the main requirement for

high-quality image animation. As mentioned previously,

FOMM regresses the affine parameters. This requires higher

capacity networks, and generalizes poorly (see Sec. 4.1). We

propose a different motion representation: all motions are

measured directly from the heatmap M
k. We compute the

translation as before, while in-plane rotation and scaling in

x- and y-directions are computed via a principal component

analysis (PCA) of the heatmap M
k. Formally, the transfor-

mation Ak
X←R

∈ R
2×3, of the kth region from the reference

frame to the image is computed as:

µk =
∑

z∈Z

M
k(z)z, (5)

UkSkV k =
∑

z∈Z

M
k(z)

(

z − µk
) (

z − µk
)T

(SVD), (6)

Ak
X←R =

[

UkSk
1

2 , µk

]

. (7)
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Figure 2: Overview of our model. The region predictor returns heatmaps for each part in the source and the driving images.

We then compute principal axes of each heatmap, to transform each region from the source to the driving frame through a

whitened reference frame. Region and background transformations are combined by the pixel-wise flow prediction network.

The target image is generated by warping the source image in a feature space using the pixel-wise flow, and inpainting newly

introduced regions, as indicated by the confidence map.

Here the singular value decomposition (SVD) approach to

computing PCA [34] is used, Eq. (6) decomposing the co-

variance of the heatmap into unitary matrices Uk and V k,

and Sk, the diagonal matrix of singular values. We call this

approach PCA-based, in contrast to regression-based for

Eq. (1). Despite using the same region representation and

encoder here, the encoded regions differ significantly (see

Fig. 3(a)), ours mapping to meaningful object parts such

as the limbs of an articulated body, due to our novel fore-

ground motion representation, described above. Note that

in our PCA-based approach, shear is not captured, therefore

our transform is not fully affine, with only five degrees of

freedom instead of six. Nevertheless, as we later show empir-

ically, it captures sufficient motion, with shear being a less

significant component of the affine transform for this task.

The reference frame in both is used only as an intermediate

coordinate frame between the source and driving image coor-

dinate frames. However, here (in contrast to FOMM) it is not

in fact abstract, corresponding to the coordinate frame where

the heatmap is whitened (i.e. has zero mean and identity

covariance); see Fig. 2. Ak
S←D

is computed per Eq. (3).

3.3. Background motion estimation

Background occupies a large portion of image. Hence

even small background motion between frames, e.g. due

to camera motion, negatively affects the animation qual-

ity. FOMM [27] does not treat background motion sepa-

rately, therefore must model it using keypoints. This has

two negative consequences: (i) additional network capac-

ity is required, since several keypoints are used to model

the background instead of the foreground; (ii) overfitting

to the training set, since these keypoints focus on specific

parts of the background, which may not appear in the test

set. Hence, we additionally predict an affine background

transformation, A0

S←D
, using an encoder network assuming

S and D as input and predicting six real values, a1, .., a6,

such that A0

S←D
= [ a1,a2,a3

a4,a5,a6
]. Since our framework is un-

supervised, the background network can include parts of

the foreground into the background motion. In practice this

does not happen, since it is easier for the network to use a

more appropriate PCA-based motion representation for the

foreground. It is also simpler for the network to use S and

D to predict background movement, instead of encoding it

in the heatmaps modelling the foreground. We verify this

empirically, demonstrating that the proposed motion rep-

resentations can separate background and foreground in a

completely unsupervised manner (see Fig. 6 and Sec. 4.5 for

comparisons).

3.4. Image generation

Similarly to FOMM [27], we render the target image

in two stages: a pixel-wise flow generator converts coarse

motions to dense optical flow, then the encoded features of

the source are warped according to the flow, followed by

inpainting the missing regions. The input of the dense flow

predictor is a H ×W × (4K +3) tensor, with four channels

per region, three for the source image warped according to

the region’s affine transformation, and one for a heatmap

of the region, which is a gaussian approximation of Mk,

and a further three channels for the source image warped

according to the background’s affine transformation. In con-

trast to FOMM, which uses constant variances, we estimate

covariances from heatmaps. Our dense optical flow is given
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Figure 3: Motion representation and disentanglement. (a) A comparison of part regions estimated by regression-based

(FOMM [27]) and PCA-based (our method) motion representations. Each row shows a generated sequence along with the

detected keypoints and region heatmaps (inset). (b) Framework for animating motion driving frame whilst retaining shape

from the source frame, by disentangling shape and pose from motion representations. (c) Qualitative animation results of

articulated objects, using FOMM [27], and our method using standard and disentangled motion transfer (sec. 3.6).

5 regions 10 regions 20 regions

L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 (AKD, MKR) AED

FOMM [27] 0.062 (7.34, 0.036) 0.181 0.056 (6.53, 0.033) 0.172 0.062 (8.29, 0.049) 0.196

Ours w/o bg 0.061 (6.67, 0.030) 0.175 0.059 (5.55, 0.026) 0.165 0.057 (5.47, 0.026) 0.155

Ours 0.049 (6.04, 0.029) 0.162 0.047 (5.59, 0.027) 0.152 0.046 (5.17, 0.026) 0.141

Table 1: Comparing our model with FOMM [27] on TaiChiHD (256), for K = 5, 10 and 20. (Best result in bold.)

by (cf. Eq. (4)):

O(z) =

K
∑

k=0

W
k(z)Ak

S←D

[

z

1

]

. (8)

The predicted optical flow and confidence map are used as

per FOMM [27]. However in contrast to FOMM [27], but

similar to Monkey-Net [28], here deformable skip connec-

tions [30] are used between the encoder and decoder.

3.5. Training

The proposed model is trained end-to-end using a recon-

struction loss in the feature space of the pretrained VGG-19

network [15, 37]. We use a multi-resolution reconstruction

loss from previous work [27, 31]:

Lrec(D̂,D) =
∑

l

∑

i

∣

∣

∣
Vi(Fl ⊙ D̂)−Vi(Fl ⊙D)

∣

∣

∣
, (9)

where D̂ is the generated image, Vi is the ith-layer of the

VGG-19 pretrained network, and Fl is a downsampling op-

erator. Per FOMM [27], we also use an equivariance loss,

Leq =
∣

∣

∣
Ak

X←R − ÃAk

X̃←R

∣

∣

∣
, (10)

where X̃ is image X transformed by Ã, and Ã is some

random geometric transformation. The final loss is the sum

of terms, L = Lrec + Leq.

3.6. Animation via disentanglement

Image animation using both standard and relative meth-

ods has limitations. The standard method directly transfers

object shape from the driving frame into the generated video,

while relative animation is only applicable to a limited set

of inputs, e.g. it requires that objects be in the same pose in

the source S and initial driving D1 frames. To address this,

we learn disentangled shape and pose encoders, as shown

in Fig. 3(b). The pose encoder takes in the set of driving

motions, {Ak
D←R

}Kk=1, while the shape encoder takes in the

set of source motions, {Ak
S←R

}Kk=1. A decoder then uses

the concatenated latent representations (each in R
64) of these

two encoders, to produce a set of modified driving motions,
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{Ãk
D←R

}Kk=1 encoding the motion of the former and the

shape of the latter. These are then used to render the output.

The encoders and the decoder are implemented using

fully connected layers, and trained separately from (and af-

ter) other blocks, using an L1 reconstruction loss on the

motion parameters. As with earlier training, source and driv-

ing frames come from the same video (i.e. the object has

the same shape), therefore to ensure that shape comes from

the correct branch, random horizontal and vertical scaling

deformations are applied to the driving motions during train-

ing, as shown in Fig. 3(b). This forces shape information

to come from the other (shape) branch. However, since the

shape branch has a different pose, the pose must still come

from the pose branch. Thus shape and pose are disentangled.

The deformations are not applied at test time.

4. Evaluation
We now discuss the datasets, metrics and experiments

used to evaluate the proposed method. Later we compare

with prior work, as well as ablate our contributions.

4.1. Toy Motion Representation Experiment

To demonstrate the benefit of the proposed PCA-based

motion representation, we devise an experiment on rotated

rectangles (see Sup. Mat.): the task is to predict the rota-

tion angle of a rectangle in an image. To fully isolate our

contribution, we consider a supervised task, where three

different architectures learn to predict angles under the L1

loss. The first, a Naive architecture, directly regresses the

angle using an encoder-like architecture. The second is

Regression-based, as in FOMM [27]. The third uses our

PCA-based approach (see Sup. Mat.). Test results are pre-

sented in Fig. 5, against training set size. The Naive baseline

struggles to produce meaningful results for any size of train-

ing set, while Regression-based performance improves with

more data. However, the PCA-based approach significantly

improves accuracy over the Regression-based one, being

over an order of magnitude better with a large number of

samples. This shows that it is significantly easier for the

network to infer geometric parameters of the image, such as

angle, using our proposed PCA-based representation.

4.2. Benchmarks

We evaluate our method on several benchmark datasets

for animating human faces, bodies and animated cartoons.

Each dataset has separate training and test videos. The

datasets are as follows:

• VoxCeleb [21] consists of interview videos of different

celebrities. We extract square, face regions and down-

scale them to 256× 256, following FOMM [27]. The

number of frames per video ranges from 64 to 1024.

• TaiChiHD [27] consists of cropped videos of full hu-

man bodies performing Tai Chi actions. We evaluate

on two resolutions of the dataset: 256 × 256 (from

FOMM [27]), and a new, 512× 512 subset, removing

videos lacking sufficient resolution to support that size.

• MGif [28] is a dataset of .gif files, that depicts 2D car-

toon animals. The dataset was collected using google

searches.

• TED-talks is a new dataset, collected for this paper in

order to demonstrate the generalization properties of

our model. We cropped the upper part of the human

body from the videos, downscaling to 384× 384. The

number of frames per video ranges from 64 to 1024.

Since video animation is a relatively new problem, there

are not currently many effective ways of evaluating it. For

quantitative metrics, prior works [39, 28, 27] use video re-

construction accuracy as a proxy for image animation quality.

We adopt the same metrics here:

• L1 error is the mean absolute difference between recon-

structed and ground-truth video pixel values.

• Average keypoint distance (AKD) and missing keypoint

rate (MKR) evaluate the difference between poses of

reconstructed and ground truth video. Landmarks are

extracted from both videos using public, body [5] (for

TaiChiHD and TED-talks) and face [3] (for VoxCeleb)

detectors. AKD is then the average distance between

corresponding landmarks, while MKR is the propor-

tion of landmarks present in the ground-truth that are

missing in the reconstructed video.

• Average Euclidean distance (AED) evaluates how well

identity is preserved in reconstructed video. Public re-

identification networks for bodies [13] (for TaiChiHD

and TED-talks) and faces [1] extract identity from re-

constructed and ground truth frame pairs, then we com-

pute the mean L2 norm of their difference across all

pairs.

4.3. Comparison with the state of the art

We compare our method with the current state of the

art for unsupervised animation, FOMM [27], on both re-

construction (the training task) and animation (the test-time

task). We used an extended training schedule compared

to [27], with 50% more iterations. To compare fairly with

FOMM [27], we also re-trained it with the same training

schedule. Also, for reference, we include comparisons with

X2Face [39] and Monkey-Net [28] on video reconstruction.

Reconstruction quality Quantitative reconstruction re-

sults are reported in Table 2. We first show that our

method reaches state-of-the-art results on a dataset with

non-articulated objects such as faces. Indeed, when com-

pared with FOMM [27] on VoxCeleb, our method shows

on-par results. The situation changes, however, when ar-

ticulated objects are considered, such as human bodies in
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Figure 4: Qualitative comparisons. We show representative examples of articulated animation using our method and

FOMM [27], on two datasets of articulated objects: TED-talks (left) and TaiChiHD (right). Zoom in for greater detail.

TaiChiHD (256) TaiChiHD (512) TED-talks VoxCeleb MGif

L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 AKD AED L1

X2Face 0.080 (17.65, 0.109) 0.27 - - - - - - 0.078 7.69 0.405 -

Monkey-Net 0.077 (10.80, 0.059) 0.228 - - - - - - 0.049 1.89 0.199 -

FOMM 0.056 (6.53, 0.033) 0.172 0.075 (17.12, 0.066) 0.203 0.033 (7.07, 0.014) 0.163 0.041 1.27 0.134 0.0223

Ours 0.047 (5.58, 0.027) 0.152 0.064 (13.86, 0.043) 0.172 0.026 (3.75, 0.007) 0.114 0.040 1.28 0.133 0.0206

Table 2: Video reconstruction: comparison with the state of the art on five different datasets. For all methods we use K = 10
regions. (Best result in bold.)
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Figure 5: Mean test-time absolute rotation error, as a func-

tion of training set size.

TaiChiHD and TED-talks datasets, on which our improved

motion representations boost all the metrics. The advantage

over the state of the art holds at different resolutions, for

TaiChiHD (256), TaiChiHD (512) and TED-talks, as well as

for different numbers of selected regions (discussed later).

Animation quality Fig. 3(a,c) & 4 show selected and rep-

resentative animations respectively, using our method and

FOMM [27], on articulated bodies. Here for FOMM [27]

we use the standard method, while ours uses animation via

disentanglement. The results show clear improvements, in

most cases, in animation quality, especially of limbs.

Animation quality was evaluated quantitatively through

a user preference study similar to that of [27]. AMT users

were presented with the source image, driving video, and

the output from our method and FOMM [27], and asked

which of the two videos they preferred. 50 such videos were

Dataset Our vs FOMM (%) Our vs Standard (%)

TaiChiHD (256) 83.7% 53.6%

TED-talks 96.6% 65.6%

Table 3: User study: second column - the proportion (%)

of users that prefer our method over FOMM [27]; third

column - the proportion (%) of users that prefer animation

via disentanglement over standard animation for our model.

evaluated, by 50 users each, for a total of 2500 preferences

per study. The results further support the reconstruction

scores in Tab. 2. When the animated object is not articulated

(VoxCeleb), the method delivers results comparable to the

previous work, e.g. 52% preference in favour of our method.

However, when bodies are animated (TaiChiHD & TED-

talks), FOMM [27] fails to correctly detect and animate the

articulated body parts such as hands. Our method renders

them in the driving pose even for extreme cases, leading to

a high preference in favor of it (see Tab. 3, middle column).

Moreover since it is not possible to demonstrate the benefits

of the animation via disentanglement using reconstruction

metrics, we run an additional user study to compare our

method with standard animation and animation via disen-

tanglement. Since animation via disentanglement preserves

shape of the object much better (see Fig. 3(c)), users prefer

it more often. It especially pronoun in case of the TED-talks

dataset, since shape of the objects differs more in that case

(see Tab. 3, last column).

13659



L1 (AKD, MKR) AED

No pca or bg model 0.060 (6.14, 0.033) 0.163

No pca 0.056 (9.58, 0.034) 0.206

No bg model 0.059 (5.55, 0.026) 0.165

Full method 0.048 (5.59, 0.027) 0.152

Table 4: Ablation study on TaiChiHD (256) dataset with

K = 10. (Best result in bold.)

Input Our method MSCS SCOPS

Figure 6: Qualitative co-part segmentation comparison with

recent methods.

Finally, we applied animation from a TED-talks video

to a photograph of George Washington, shown in Fig. 1,

demonstrating animation of out-of-domain data.

4.4. Ablations

In order to understand how much benefit each of our

contributions bring, we ran a number of ablation experiments,

detailed in Tab. 4.

PCA-based vs. regression-based representations First

we compare the PCA-based motion model with the previous,

regression-based one [27]. From the qualitative heatmap

depictions in Fig. 3(a), we observe that the regression-based

method localizes one edge of each corresponding part, while

our method predicts regions that roughly correspond to the

segmentation of the object into its constituent, articulated

parts. This meaningful segmentation arises completely unsu-

pervised.

From Tab. 1 we note that adding the PCA-based repre-

sentation alone (second row) had marginal impact on the L1

score (dominated by the much larger background region), but

it had a much larger impact on other metrics, which are more

sensitive to object-part-related errors on articulated objects.

This is corroborated by Tab. 4. Moreover, we observed that

when our PCA-based formulation is not used, the network

encodes some of the movement into the background branch,

leading to significant degradation of keypoint quality, which

in turn leads to degradation of the AKD and AED scores

(No-pca, Tab. 4).

We intuit that PCA-based estimation both captures re-

gions and improves performance because it is much easier

for the convolutional network to assign pixels of an object

part to the corresponding heatmap than to directly regress

motion parameters to an abstract reference frame. This is

borne out by our toy experiment (sec. 4.1). In order to esti-

mate the heatmap, it need only learn all appearances of the

corresponding object part, while regression-based networks

must learn the joint space of all appearances of a part in all

possible geometric configurations (e.g. rotated, scaled etc.).

One of the most important hyper-parameters of our model

is the number of regions, K. The qualitative and quantitative

ablations of this parameter are shown in Fig. 3(a) and Tab. 1

respectively. We can observe that, while the regression-

based representation fails when the number of keypoints

grows to 20, our PCA-based representation scales well with

the number of regions.

Modeling background motion Background motion mod-

eling significantly lowers L1 error (see Tab. 4, Full method

vs. No bg Model). Since background constitutes a large

portion of the image, and L1 treats all pixels equally, this

is to be expected. AED was also impacted, suggesting that

the identity representation captures some background ap-

pearance. Indeed, we observe (Fig. 3(a), second row) that

having no background model causes a reduction in region

segmentation quality. However, since AKD & MKR met-

rics evaluate object pose only, they are not improved by

background modelling.

4.5. Co­part Segmentation

While designed for articulated animation, our method pro-

duces meaningful object parts. To evaluate this capability of

our method, we compare it against two recent unsupervised

co-part segmentation works: MSCS [29] and SCOPS [14].

Following MSCS, we compute foreground segmentation IoU

scores on TaiChiHD. Despite not being optimized for this

task, our method achieves superior performance reaching

0.81 IoU vs. 0.77 for MSCS [29] and 0.55 for SCOPS [14].

See Fig. 6 for qualitative results.

5. Conclusion
We have argued that previous unsupervised animation

frameworks’ poor results on articulated objects are due to

their representations. We propose a new, PCA-based, region

motion representation, that we show both makes it easier

for the network to learn region motion, and encourages it to

learn semantically meaningful object parts. In addition, we

propose a background motion estimation module to decouple

foreground and background motion. Qualitative and quanti-

tative results across a range of datasets and tasks demonstrate

several key benefits: improved region distribution and sta-

bility, improved reconstruction accuracy and user perceived

quality, and an ability to scale to more regions. We also

introduce a new, more challenging dataset, TED-talks, for

benchmarking future improvements on this task.

While we show some results on out of domain data

(Fig. 1), generalization remains a significant challenge to

making this method broadly practical in articulated anima-

tion of inanimate objects.
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