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Abstract

Neural networks notoriously suffer from the problem of

catastrophic forgetting, the phenomenon of forgetting the

past knowledge when acquiring new knowledge. Overcom-

ing catastrophic forgetting is of significant importance to em-

ulate the process of “incremental learning”, where the model

is capable of learning from sequential experience in an effi-

cient and robust way. State-of-the-art techniques for incre-

mental learning make use of knowledge distillation towards

preventing catastrophic forgetting. Therein, one updates the

network while ensuring that the network’s responses to previ-

ously seen concepts remain stable throughout updates. This

in practice is done by minimizing the dissimilarity between

current and previous responses of the network one way or

another. Our work contributes a novel method to the arsenal

of distillation techniques. In contrast to the previous state

of the art, we propose to firstly construct low-dimensional

manifolds for previous and current responses and minimize

the dissimilarity between the responses along the geodesic

connecting the manifolds. This induces a more formidable

knowledge distillation with smooth properties which pre-

serves the past knowledge more efficiently as observed by

our comprehensive empirical study. 1

1. Introduction

Humans are able to gather and grow their knowledge grad-

ually and effortlessly while preserving their past knowledge.

In pursuing a similar capability at an algorithmic level and in

the so-called Incremental Learning (IL), an artificial machine

must learn and remember various tasks or concepts [22] to

accomplish a more broadened set of objectives. Formally,

a learning algorithm in IL will receive its objectives (e.g.,

recognizing new classes) gradually. This is in contrast to con-

ventional learning paradigm where the objectives and data

are available from the beginning to the learning algorithm.

1Our code is available at https://github.com/chrysts/

geodesic_continual_learning
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Figure 1: The visualization of our proposed method. To

regularize the network for incoming tasks, knowledge from

previous tasks is preserved by distilling the features follow-

ing the geodesic path between two subspaces of different

models. The distillation is based on the projection of two

sets of features from two different networks.

The gradual nature of learning in IL poses serious difficul-

ties as now the model has to sequentially learn and adapt

to new tasks, while being vigilant to its needs and require-

ments (e.g., limited memory to preserve the knowledge). As

shown in the seminal works of Kirkpatrick et al. [20] and

Rebuffi [34], the gradual nature of learning plus the presence

of constraints and limitations in IL can degrade the perfor-

mance of the model drastically, which is formally known as

“Catastrophic forgetting” [7,28,29]. The phenomenon refers

to a neural network experiencing performance degradation

at previously learned concepts when trained sequentially on

learning new concepts. This forgetting problem appears even

worse when the model is sequentially updated for new tasks

without considering the previous tasks as shown in [20, 23]

i.e., learning new tasks overrides the knowledge from previ-

ous tasks. Finding the balance among tasks, also known as

the stability-plasticity dilemma in [33], is crucial to achieve

the IL ultimate goal.

In classical classification on visual data, a Convolutional

Neural Network (CNN) is used to encode the input images
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into features and a final layer consists of classifiers to map

the features to the fixed number of classes. In class IL [38], a

CNN keeps learning and grows its capacity to accommodate

new classes or tasks. In order to achieve the equilibrium

performance between learning new tasks and maintaining

existing base performance, some IL methods store observed

tasks in the memory and replay them [10, 25] to prevent

catastrophic forgetting. However, learning through a large

number of tasks limits the exemplars that can be reserved in

the memory. Hou et al. [17] suggest to replay the exemplars

in the memory on both old and current models and prevent

the forgetting phenomenon with knowledge distillation.

The design of distillation loss remains an open research

problem. A knowledge distillation on the output space (after

the classifier) is firstly proposed in [23] so-called Learning

without Forgetting (LwF). However, the study in [17, 34]

shows that LwF lets the parameters of the new classes to

become more dominant than the old parameters. As a result,

the model tends to classify all test data to the new classes.

Because of this reason, the classifier is created based on

the nearest mean of exemplars and the distillation loss with

the cosine distance in the feature space is suggested in [17].

All these prior methods do not consider the gradual change

between tasks. In fact, human minds learn from one task to

another task by gradual walk as described in [3]. Inspired

by the idea of gradual change in human minds, we propose

a distillation loss in IL by adopting the concept of geodesic

flow between two tasks (see Fig. 1) called as GeoDL. To

summarize, the contributions of our work are:

1. We propose a novel distillation loss that considers the

information geometry aspect in incremental learning

and leads to improved performance.

2. We show that using geodesic path for knowledge dis-

tillation yields less forgetful networks compared to the

distillation losses using the Euclidean metric.

2. Related Work

In this section, we describe several approaches that pre-

vent catastrophic forgetting for incremental learning.

Representative memories. In IL, the selection of exem-

plars in the memory is very crucial as we cannot access the

whole data from past training phases. The selected exem-

plars are replayed as representatives from the past categories,

as a result, the model does not overfit to the new categories.

A method, so-called herding [34, 40], is used to pick po-

tential exemplars for future use in training models. Rebuffi

et al. [34] use prototypes (mean of each class) to find the

closest samples to be stored in the memory. However, some

selected samples may not be optimal for the future training

phases, Liu et al. [24] propose a meta-learning approach

to update the memory by the gradient descent. A memory

replay can also be achieved with a generative mechanism as

proposed in [19, 35, 41], but this approach needs additional

networks which are not easy to train and optimize. To ef-

ficiently keep exemplars in the memory, Iscen et al. [18]

proposes a feature adaptation strategy.

Gradient trajectories. A family of these approaches regu-

larize the update direction to be ‘less forgetting’. Inspired by

the synaptic consolidation from neurobiological models [8],

Kirkpatrick et al. [20] propose Elastic Weight Consolidation

(EWC) to regulate the update of DNN using the Fisher In-

formation Matrix and accommodate both the solution from

previous task and the new task, thus the training trajectories

lead to low errors on both tasks. By allowing positive back-

ward transfer, Gradient Episodic Memory (GEM) [25] adds

a constraint considering the similarity between the gradients

of the previous tasks and the gradients of the current task.

Riemannian walk [4] provides a generalization framework,

so-called EWC++, as an extension of EWC and an evaluation

method for forgetting and intransigence.

Parameter updates. In this line of work, there strategy is

to only update some parameters in which it is common using

dropout [37] and attention [16] for standard classification.

Mallya et al. [26, 27] encourage to use masking or pruning

to update selected network parameters for every different

task. Rajasegaran et al. [32] propose a simple controller with

random search to choose the optimal paths for a new task.

Regularization with distillation losses. Training neural

networks in the incremental fashion affects the model’s capa-

bility to maintain the performance of existing categories. An

effective strategy is to introduce knowledge distillation [15]

between an old model and a new model. A knowledge distil-

lation loss is performed on the output of neural networks as

proposed in [23] such that it preserves old task performance.

To avoid forgetting, Castro et al. [2] recommends balanced

fine-tuning with temporary distillation loss to the classifica-

tion layers. A distillation loss for incremental learning is

extended to the feature space with a measurement using the

Euclidean distance proposed in [6,17]. However, all of these

knowledge distillation methods do not consider to learn the

underlying manifold structure between old and current tasks.

Belouadah and Popescu [1] argue that knowledge distilla-

tion hurts the IL performance when there are at least a few

examples. However, our setting in this work follows [17] in

which the classifier weight is built based on the notion of

cosine distance and not a fully connected layer as in [1].

Geodesic flows. The gradual changes between two different

tasks can be modeled with the geodesic flow using projection

to intermediate subspaces [9]. The projection to subspaces

has been used previously in domain adaptation [12, 13] and

few-shot learning [36]. In contrast, our proposed method em-

ploys the geodesic flow for knowledge distillation such that

the learned features preserve similarity in the intermediate

subspaces along the geodesic path.
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3. Preliminaries

3.1. Class incremental learning setting

Below, we define the multi-class IL problem and closely

follow the IL setup in [17]. Suppose a sequence of T tasks

with associated data D0, · · · ,DT is given. We denote the

data in task t by Dt = {(xi, yi)
Nt

i=1}, with xi ∈ X and

yi ∈ Y . In contrast to classical training that has access to

every training example, a certain budget is determined for

the memory such that only limited amount of examples can

be storedM = {(xi,yi)
L
i=1}. At time t = 0, the training

data merely consists of D0. Afterwards, the training data is

formed as the union of the data at given task and the memory

(i.e., Dt ∪M). Note that, each Dt for t > 0 often has less

samples and novel categories (e.g. 2, 5, or 10) as compared

to D0.

In IL, a DNN parameterized with Φ = {θ,ϕ} is used

to realize a mapping in the form ŷ = f(x;Φ). Here, θ

represents a part of network that encodes the input into a

descriptor as z = fenc(x;θ). The descriptor is then passed

through a classifier parameterized by ϕ to produce the pre-

diction ŷ = fcls(z,ϕ). At time t, our goal is to update and

improve our model at Φt from the old model Φt−1 using

Dt ∪M. This, in practice means that the classifier ϕt keeps

expanding as more novel classes are observed.

Evaluating an IL Model. There are two important objec-

tives to assess the performance of a model in IL problems.

1). The average accuracy (A) to evaluate the capability of

the model in learning new tasks. 2). Forgetting rate (F)

to evaluate how much the model suffers from catastrophic

forgetting. For each task, we compute an accuracy score

At for a test set that is representative for all classes seen so

far (i.e., classes seen from D0 up to Dt). We quantify the

forgetting rate by considering the accuracy for the test set

at t = 0 using the model Φ0 and the final model ΦT . The

average accuracy and forgetting rate are defined as:

A =
1

T

T∑

t=1

At, F = A0|Φ0
−A0|ΦT

. (1)

Here, we overloaded our notations slightly and denote the

accuracy of a model Φt using the test set of the task at time

t = 0 by A0|Φt
. A successful model is one that has a high

average accuracy and low forgetting rate.

3.2. Regularization with knowledge distillation

We start this part by reviewing how prior works mitigate

the forgetting phenomenon with knowledge distillation. We

then discuss how our proposed method extends the idea of

distillation loss by considering the gradual change between

tasks (see Fig. 2 for a conceptual diagram that highlights the

differences between our approach and prior art). To prevent

catastrophic forgetting, distillation loss aims to minimize al-

teration on shared network parameters during the adaptation

process (i.e., learning a novel task). The distillation loss is

employed along with the cross-entropy loss [17,24,34] or the

triplet loss [43]. In the Learning without Forget (LwF) [23],

the knowledge distillation is applied to minimize the dissimi-

larity between predictions of the old and new model. This is

to ensure that predictions on previously seen classes do not

vary drastically (i.e., p(y|x,Φt) ≈ p(y|x,Φt−1)), leading

to maintaining prior knowledge. Formally and for a problem

with K classes, the loss of LwF is defined as:

LLwF(Φt,Φt−1) =
K∑

k=1

[
p(y|x,Φt−1)

]

k
log

[
p(y|x,Φt)

]

k

[
p(y|x,Φt)

]

k
=

exp(f(x,Φt)k/τ)
∑K

k=1 exp(f(x,Φt)k/τ)
. (2)

Here, [·]k denotes the element at index k of a vector and τ is

a temperature variable. Note that y belongs to the old class

in Dt−1.

Another form of distillation , again aiming to minimize

the dissimilarity between predictions, is to constraint the

latent features of the network (i.e., z = f(x;θ)). Hou et

al. [17] propose the so-called less-forget constraint which

employs a cosine embedding loss for knowledge distillation.

Formally, we have:

LCos(θt,θt−1) =
∑

x∼{Dt∪M}

[
1− sim

(
f(x;θt), f(x;θt−1)

)]
,

where:

sim
(
u,v

)
=

u⊤v

‖u‖‖v‖
. (3)

The cosine distance used in Eq. 3 is based on the Euclidean

metric between features from two models directly. The

aforementioned distillation losses do not benefit from the

manifold structure of each task.

4. Proposed Method

As described in §3.2, the existing methods for knowledge

distillation do not take into account the gradual change be-

tween consecutive tasks. Furthermore, the Euclidean norm

often used for distillation cannot capture the underlying ge-

ometry of two different feature spaces. Furthermore, the

previous works did not explicitly benefit from the geome-

try and manifold structure of the tasks during performing

distillation. To benefit from the manifold geometry during

distillation, we propose to enforce consistency along the

geodesic connecting the models Φt−1 and Φt (see Fig. 3 for

a conceptual diagram).
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Figure 2: Comparison with prior knowledge distillation approaches for IL. Knowledge distillation is applied to the features or

predictions from the old model Φt−1 and the current model Φt. LwF [23] distillation loss is based on the predictions and

LUCIR [17] preserves the knowledge from previous tasks using a cosine embedding loss. Our proposal, called GeoDL, makes

use of gradual walk between two subspaces from old and current features.

4.1. Gradual walk with intermediate subspaces

We use the concept of subspaces to embed a set of features

(e.g., a mini-batch) from both old and current models. To this

end, we model the geometry of latent samples in a model

by a low-dimensional subspace with a basis2 P ∈ R
d×n.

Subspaces form a Riemannian manifold are studied using

the geometry of Grassmann manifold.

Definition 1 (Grassmann Manifold) The set of n-

dimensional linear subspaces of Rd, 0 < n < d (“linear”

will be omitted in the sequel) is termed the Grassmann

manifold, and is denoted here by G(n, d). An element P of

G(n, d) can be specified by a basis, i.e., a d× n matrix with

orthonormal columns (i.e., G(n, d) ∋ P ⇒ P⊤P = In).

The gradual walk is essentially the geodesic flow between

two points on the Grassmann manifold. In contrast to the

distillation losses using the Euclidean metric, our approach

allows the features to be projected along the geodesic flow

and can capture the smooth changes between tasks.

Given a batch of B data samples, let Zt−1,Zt ∈ R
d×B

be the corresponding encodings by the model at time t− 1
and t, respectively. We propose to model Zt−1 and Zt by

two low-dimensional manifolds. This, in our work is indeed

the two subspaces spanning Zt−1 and Zt which we denote

by P t−1 and P t. The geodesic flow between P t−1 and P t

denoted by Π : ν ∈ [0, 1]→ Π(ν) ∈ G(n, d) is:

Π(ν) =
[
P t−1 R

]
[
U1Γ(ν)
−U2Σ(ν)

]

, (4)

where R ∈ R
d×(d−n) is the orthogonal complement of

P t−1 and the diagonal elements for Γ(ν) and Σ(ν) are

2Principal Component Analysis (PCA) can be used to obtain the basis

of the subspace.

γi = cos(νωi) and σi = sin(νωi), respectively for i =
1, 2, · · · , n and 0 ≤ ω1 ≤ · · · ≤ ωn ≤ π/2. In the sup-

plementary material of our paper, we provide more details

about the geodesic flow on Grassmannian and how R, Γ(ν)
and Σ(ν) can be obtained from P t−1 and P t.

Note that both P⊤
t−1P t and R⊤P t share the same right

singular vectors V , thus generalized Singular Value Decom-

position (SVD) [39] can be employed to decompose the

matrices.

4.2. Projection to the intermediate subspaces

We propose to distill the feature space of the previ-

ous model into the current one by considering the cosine

similarity between projections along Π(ν). Let zt−1 =
f(x,Φt−1) and zt = f(x,Φt) be the encodings of x ac-

cording to the previous and current models, respectively.

The inner product between projections of zt−1 and zt on a

subspace P is:

gP

(
zt−1, zt

)
=

〈

P⊤zt−1,P
⊤zt

〉

=
(
P⊤zt−1

)⊤
P⊤zt

= z⊤
t−1PP⊤zt .

From this, we can define the inner product along the geodesic

flow as:

gΠ (zt−1, zt) :=

∫ 1

0

gΠ(ν)(zt−1, zt) dν

=

∫ 1

0

z⊤
t−1Π(ν)Π(ν)⊤zt dν

= z⊤
t−1

(∫ 1

0

Π(ν)Π(ν)⊤ dν

)

︸ ︷︷ ︸

Q

zt.
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Figure 3: Pipeline of our proposed approach. We model the feature space of the previous Θt−1 and the current task Θt by two

low-dimensional subspaces and enforce distillation along the geodesic connecting them. This is achieved by aligning samples

along projection on the subspaces on the geodesic flow.

Let Q = ∆Λ∆
⊤. It can be shown that:

∆ =
[
P t−1U1 R U2

]
,

Λ =

∫ 1

0

[
Γ(ν)Γ(ν) −Γ(ν)Σ(ν)
−Σ(ν)Γ(ν) Σ(ν)Σ(ν)

]

dν.
(5)

Recall γi = cos(ωi) and σi = sin(ωi), we can calculate the

diagonal elements:

λ1i =

∫ 1

0

cos2(νω) dν = 1 +
sin(2ωi)

2ωi
,

λ2i = −

∫ 1

0

cos(νω)sin(νω) dν =
cos(2ωi)− 1

2ωi
,

λ3i =

∫ 1

0

sin2(νω) dν = 1−
sin(2ωi)

2ωi
.

(6)

This will enable us to compute Q in closed-form as (see our

supplementary material for the detailed derivations):

Q = ∆

[
λ1 λ2

λ2 λ3

]

∆
⊤, (7)

where Q is a d × d positive semi-definite matrix. In the

final form, the inner product between features projected onto

intermediate subspaces is:

gΠ (zt−1, zt) = z⊤
t Qzt−1. (8)

Intuitively, Q is the matrix that defines the manifold structure

between features of two different tasks. We argue that this

facilitates distilling the knowledge by taking into account the

smooth changes between the low-dimensional models (i.e.,

manifolds) of the tasks. To use gΠ for training, we propose

to minimize the following distillation loss, which can be

understood as a general form of cosine similarity when the

geodesic flow is considered:

LGeoDL = 1−
z⊤
t Qzt−1

‖Q1/2zt‖‖Q
1/2zt−1‖

. (9)

In practice, in order to better prevent catastrophic forget-

ting, we use an adaptive weighting scheme for GeoDL as

βad = β
√

|Nnew|/|Nold|. Note that this weighting scheme

is a common practice for recent IL algorithms [17,24]. Inter-

estingly, one can recover the conventional distillation loss in

Eq. 3 by choosing P t−1 = P t, resulting in Q = I. This re-

veals that the conventional distillation loss is indeed a special

case of our solution.

Algorithm 1 Train IL with GeoDL

Input: D0, · · · ,DT

1: Φ0 ← random initialization

2: Train Φ0 on D0 minimizing LCE

3: Select and store exemplars toM
4: for t in {1, ..., T} do

5: while not done do

6: Sample a mini-batch {X,Y } from {Dt ∪M}
7: Get Zt−1 = f(X,Φt−1),Zt = f(X,Φt)
8: Compute P t−1 = PCA(Zt−1)
9: Compute P t = PCA(Zt)

10: Generate the geodesic flow using Eq. 7

11: Project Zt and Zt−1 to the geodesic path

12: Minimize LCE and LGeoDL

13: Update Φt

14: end while

15: Evaluate on the test set

16: Update exemplars from Dt andM

17: end for

4.3. Classifiers and exemplars selection

Below we discuss the classifier design and sample se-

lection which are also important for IL. Both of these
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methods are widely known for tasks with visual data (e.g.,

see [5, 11, 17, 30, 34]). Suppose the classifier encodes the

template of class i by a normalized vector ϕi/‖ϕi‖. The

likelihood of class i can be obtained as:

p(yi|x) =
exp

(
sim(ϕi, zt)

)

∑

j exp
(
sim(ϕj , zt)

) . (10)

Note that ϕ is updated by SGD along other network parame-

ters. The classification uses the cross-entropy loss LCE.

In order to select exemplars to be stored in the memory,

we use the herding method by selecting top-k samples with

the nearest cosine distance to the mean-embedding classifier.

Algorithm 1 details out the steps of our approach. Note

that our approach is an end-to-end training algorithm, thus

the algorithm learns embeddings which transition smoothly

between tasks thanks to the geodesic flow.

5. Experiments

In this section, we examine our proposed method and

compare with the state of the art on several datasets: CIFAR-

100, ImageNet-subset, and ImageNet-full.

5.1. Dataset and implementation

The CIFAR-100 dataset [21] contains 100 classes and

each class has 500 train and 100 test images with the size

of 32 × 32. The ImageNet dataset is evaluated for two

different splits: ImageNet-subset with 100 categories and

ImageNet-full with 1000 categories. Both ImageNet and

CIFAR-100 datasets are used to examine our method. Basic

data augmentation is employed when training our algorithm

e.g. image flipping, color jitter, and random crop for all

datasets. For a fair comparison, arrangement of all classes in

our experiment closely follows a random seed (1993) in the

same way as implemented in [17,24] and our performance is

evaluated on three different runs. The first sequence (t = 0)

is trained with 50 classes for CIFAR-100 and ImageNet-

subset and 500 classes for ImageNet-full, afterwards the

IL tasks e.g. 5, 10, and 25 are performed to evaluate and

compare our proposed approach with the state-of-the-art

techniques.

The CNN backbone used for comparison on CIFAR-100

is ResNet-32 [14] following the network architecture in [17].

On ImageNet-subset and ImageNet-full, we evaluate the

proposed approach using ResNet-18 [14]. The Stochastic

Gradient Descent (SGD) optimizer is applied to train the

CNN for all experiments with an initial learning rate set to 0.1

and reduced by a factor 0.1 every half and three quarters of

the total epochs. The model is trained on each sequence with

160, 90, and 90 epochs on CIFAR-100, ImageNet-subset,

and ImageNet-full, respectively. We set the mini-batch size

128 and β = 6.0 for all datasets. We fix the memory size

and set to 20 exemplars per class for all experiments unless

otherwise specified. We use the PyTorch package [31] with

automatic differentiation in our implementation.

5.2. Evaluations

To evaluate our technique, we compare with the state

of the art in IL, namely LwF [23], iCARL [34], BiC [42],

LUCIR [17], and Mnemonics [24]. Note that, we cite the re-

sults of Mnemonics [24] from the corrected version on arXiv

that is different from the published version (CVPR2020).

Among all, LwF [23] and LUCIR [17] are the methods that

propose knowledge distillation to prevent catastrophic forget-

ting. To provide reference, we also report the upper-bound

(joint-CNN) in which all data from previous tasks is avail-

able and not limited to only samples from the memory. We

adopt several baselines to compare with the-state-of-the-art

methods. For selecting exemplars in the memory (herding),

we employ the nearest-mean-selection technique and the

nearest-mean-of-exemplars classifier in iCARL [34] with

GeoDL. Furthermore, we also incorporate our method with

LUCIR [17] by replacing the feature distillation loss Lcos by

our distillation loss LGeoDL while the cross-entropy loss and

the margin ranking loss remain in the objective function. We

show and compare our method on CIFAR-100, ImageNet-

subset, and ImageNet-full in Table 1. In addition, we also

plot the accuracy of GeoDL + LUCIR in comparison with

prior methods in Fig. 4. Please refer to our supplementary

material for additional plots and experiments.

Results on CIFAR-100. Table 1 provides comparisons with

the state-of-the-art methods on CIFAR-100. GeoDL im-

proves the basic iCARL [34] method (without knowledge

distillation) by 8%, 13%, and 15% for 5, 10, and 25 tasks,

respectively. Furthermore, our GeoDL also improves the

LUCIR algorithm [17] by 2%, 5%, and 5% for 5, 10, and

25 tasks, respectively. Our method also has lower forget-

ting rates in contrast to recent IL algorithms across different

numbers of tasks. Fig. 4 (left) also shows that GeoDL consis-

tently achieves higher accuracy than knowledge distillation

based methods e.g., LUCIR [17] and LwF [23] for each task.

Our method tops the balance to learn new tasks and avoid

catastrophic forgetting.

Results on ImageNet. Table 1 also reports the average

accuracy of our model. Fig. 4 (middle) shows the accu-

racy for each task in comparison to prior methods for IL

on ImageNet-subset. Our results suggest that GeoDL im-

proves the baseline methods by notable margin. The basic

iCARL [34] method without GeoDL achieves the classifica-

tion accuracy 70.10%, 70.86%, and 70.72% for 5, 10, and 25

tasks, respectively. Furthermore, GeoDL also improves the

LUCIR algorithm [17] with the highest accuracy 73.87%,

73.55%, and 71.72% for 5, 10, and 25 tasks, respectively.

Our method also has low forgetting rates across different

numbers of tasks. The evaluation on ImageNet-full shows

that our method outperforms the prior methods for IL where
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Figure 4: The accuracy for each task (5 and 10 tasks) on CIFAR-100 (left), ImageNet-subset (middle), and ImageNet-full

(right). The x-axis shows the number of classes learned at a specific time and y-axis is the corresponding accuracy.

Method CIFAR-100 ImageNet-subset ImageNet-full

Average accuracy (%) 5 10 25 5 10 25 5 10 25

LwF [23] 49.59 46.98 45.51 53.62 47.64 44.32 44.35 38.90 36.87

iCARL [34] 57.12 52.66 48.22 65.44 59.88 52.97 51.50 46.89 43.14

BiC [42] 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72 53.47

LUCIR [17] 63.17 60.14 57.54 70.84 68.32 61.44 64.45 61.57 56.56

Mnemonics [24] 63.34 62.28 60.96 72.58 71.37 69.74 64.63 63.01 61.00

iCARL + GeoDL 62.54 61.40 61.84 70.10 70.86 70.72 60.02 57.98 56.70

LUCIR + GeoDL 65.14 65.03 63.12 73.87 73.55 71.72 65.23 64.46 62.20

Forgetting rate (%) 5 10 25 5 10 25 5 10 25

LwF [23] 43.36 43.58 41.66 55.32 57.00 55.12 48.70 47.94 49.84

iCARL [34] 31.88 34.10 36.48 43.40 45.84 47.60 26.03 33.76 38.80

BiC [42] 31.42 32.50 34.60 27.04 31.04 37.88 25.06 28.34 33.17

LUCIR [17] 18.70 21.34 26.46 31.88 33.48 35.40 24.08 27.29 30.30

Mnemonics [24] 10.91 13.38 19.80 17.40 17.08 20.83 13.85 15.82 19.17

iCARL + GeoDL 12.20 21.10 26.84 26.84 22.44 24.88 21.84 22.87 28.22

LUCIR + GeoDL 9.49 9.10 12.01 13.78 12.68 15.21 11.03 12.81 15.11

Table 1: The average accuracy and the forgetting rate on ImageNet-subset. The numbers of tasks T are set to 5, 10, and 25.

Ideally, each method must find the balance to achieve the high average accuracy and the low forgetting rate.

it achieves high average accuracy and prevents catastrophic

forgetting.

5.3. Ablation studies

Below, we investigate how our method improves the basic

approach for IL without considering additional loss func-

tions and exemplars selection. We only use the cross-entropy

loss and the herding selection method [34] for exemplars in

our ablation studies. We compare GeoDL with the knowl-

edge distillation approaches proposed in LwF [23] and LU-

CIR [17]. In this study, we examine these distillation losses

and ours w.r.t. various classifiers and number of exemplars

in the memory on CIFAR-100.

Impact of different classifiers. We employ three differ-

ent classifiers to examine the behavior of our method. The

first classifier is based on learnable class prototypes ϕ, one

per class. Following work [17], we refer this classifier as

CNN. The second classifier is based on selecting the k-
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Figure 5: The average accuracy on CIFAR-100 (top) and ImageNet-subset (bottom) by varying the number of tasks (5, 10, 25)

and classifiers (CNN, k-NME, AME). The objective function contains only cross-entropy and distillation losses. The memory

size is 20 exemplars per class.

Method Classifier

Average accuracy (%)

Memory size per class

20 40 60 80 100

LCE

CNN 50.67 56.63 61.71 62.61 65.91

k-NME 51.42 56.12 61.11 61.88 64.81

AME 53.01 56.77 61.64 62.26 64.35

LCE + LLwF [23]

CNN 52.84 58.84 63.14 64.94 67.24

k-NME 57.31 59.07 63.14 64.35 66.53

AME 57.41 59.21 63.47 64.57 66.73

LCE + LCos [17]

CNN 59.82 61.55 65.39 65.11 67.68

k-NME 60.09 61.32 64.86 64.34 66.84

AME 60.46 61.21 64.85 64.32 66.78

LCE + LGeoDL

CNN 58.54 58.72 66.00 66.55 68.13

k-NME 61.40 61.86 65.82 65.54 67.31

AME 62.77 62.78 65.92 65.58 67.38

Table 2: The average accuracy for 10 tasks on CIFAR-100

by varying the number of exemplars in the memory.

nearest neighbors from the samples within the same class

(k-NME) [17]. The third classifier is based on the class

embedding of all samples (AME) [17]. Fig. 5 shows that

all distillation losses using AME achieve better accuracy

in comparison to other classifiers. Furthermore, our pro-

posed method achieves the best performance given AME.

GeoDL improves the performance for IL without any addi-

tional losses. We note that our method does not improve the

performance of CNN classifier by a large margin because

the CNN classifiers trained on past tasks do not get updated

when the model learns a new task.

Impact of increasing the number of exemplars in the

memory. We investigate the accuracy for 20, 40, 60, 80,

100 exemplars in the memory. In order to investigate the

trend of increasing the number of exemplars, only the cross-

entropy loss is appended in addition to the baseline ablation

setting. Table 2 shows that GeoDL outperforms the accu-

racy of training across various numbers of exemplars in the

memory given the LwF [23] with the feature distillation

loss [17]. The CNN classifier attains higher performance

given more exemplars compared to k-NME and AME due to

training with a well-balanced number of exemplars per class.

We also note that a high number of exemplars (e.g., 100 on

CIFAR-100) in the memory helps close the performance gap

between training given only the standard cross-entropy loss

vs. using the additional distillation loss.

Impact of subspace dimension on the result. In our

method (see PCA in Algorithm 1), the subspace dimension

n is a hyperparameter to be tuned. Table 3 shows the average

accuracy for 10 tasks on CIFAR-100. Our method is robust

to the choice of n and we set n = 127 in general.

Subspace Dimension n 16 32 64 127

GeoDL 61.87 61.04 61.66 62.77

Table 3: Results w.r.t. the subspace dimension (CIFAR-100).

6. Conclusions

We have presented a novel distillation loss for IL called

GeoDL. In contrast to the prior methods, GeoDL considers

the gradual change between consecutive tasks of IL to pre-

vent catastrophic forgetting. To this end, our objective func-

tion uses the geodesic path between the representations of

current task and old task, which results in a smooth transition

of the learning process. Our approach achieves competitive

results compared to the state of the art for IL on various

datasets. Furthermore, GeoDL consistently improves exist-

ing baselines and outperforms prior knowledge distillation

techniques. The ablation studies also highlight that GeoDL

performs better than previous distillation losses for IL.
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